College Geometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 325

(1) Ceva's Theorem and Its Relatives

- Ceva's Theorem
- Interior and Exterior Cevians
- Ceva's Theorem and Angles
- Menelaus' Theorem

Subsection 1

Ceva's Theorem

Point Giving a Fixed Ratio of Distances

Lemma

Given distinct points A and B and a positive number μ, there is exactly one point X on the line segment $A B$, such that $\frac{A X}{X B}=\mu$. Also, there is at most one other point on the line $A B$ for which this equation holds.

- View X as a variable point and let $f(X)$ be the function whose value at X is the quantity $\frac{A X}{X B} . f(X)$ is a nonnegative real number, and it is defined everywhere except when $X=B$. As X moves from A toward B along segment $A B$, we see that $A X$ increases and $X B$ decreases. Thus, $f(X)$ is monotonically increasing from 0 when X is at A, and it approaches infinity as X approaches B. There is, thus, exactly one point X between A and B, where $f(X)=\mu$.

External Point Giving a Fixed Ratio of Distances

- If X is on line $A B$ outside of segment $A B$, there are just two possibilities:
- B is between X and A : Then, $A X=X B+B A$ and $f(X)=\frac{A X}{X B}=1+\frac{B A}{X B}>1$.
- A is between X and B : Then, $A X=X B-B A$ and

$$
f(X)=\frac{A X}{X B}=1-\frac{B A}{X B}<1
$$

For any given value $f(X)=\mu$, therefore, at most one of these two situations can occur depending on whether $\mu>1$ or $\mu<1$.

- If B is between X and A, the function $f(X)=1+\frac{B A}{X B}$ is monotonically decreasing as X moves farther from B.
- Otherwise, $f(X)=1-\frac{B A}{X B}$ is monotonically increasing as X gets farther from B.
In either case, we see that there can be at most one point X, such that $f(X)=\mu$.

A Property of Ratios

- If two ratios are equal, say, $\frac{a}{b}=\frac{c}{d}$, then we automatically get two more ratios equal to these two, namely,

$$
\frac{a+c}{b+d} \text { and } \frac{a-c}{b-d}
$$

assuming, of course, that $b+d$ is nonzero for the first of these and that $b-d$ is nonzero for the second.
To see why this works, write $\lambda=\frac{a}{b}=\frac{c}{d}$. Then $a=\lambda b$ and $c=\lambda d$.
So $a+c=\lambda(b+d)$ and $a-c=\lambda(b-d)$. Thus,

$$
\frac{a+c}{b+d}=\lambda=\frac{a-c}{b-d} .
$$

- These properties are called addition and subtraction principles for ratios.

Ceva's Theorem, Cevians and the Cevian Product

Theorem (Ceva)

Let $A P, B Q$ and $C R$ be three lines joining the vertices of $\triangle A B C$ to points P, Q and R on the opposite sides. Then these three lines are concurrent if and only if

$$
\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}=1 .
$$

- A line going through exactly one vertex of a triangle is called a Cevian of the triangle.
- Ceva's Theorem asserts that, if we wish to prove that three Cevians are concurrent, we must compute the product of the three fractions in Ceva's theorem and show that the resulting quantity is equal to 1 .
- In general, we will refer to this quantity as the Cevian product associated with the three given Cevians.

Proof of Ceva's Theorem: Necessity

- Assume first that the three Cevians are concurrent at some point T. View $B P$ and $P C$ as the bases of $\triangle A B P$ and $\triangle A P C$, respectively, and observe that these triangles have equal heights. It follows that $\frac{B P}{P C}$ is the ratio of the areas of these two triangles. Segments $B P$ and $P C$ can also be viewed as the bases of $\triangle T B P$ and $\triangle T P C$, and these two triangles also have equal heights. Thus, we get $\frac{K_{A P B}}{K_{A P C}}=\frac{B P}{P C}=\frac{K_{T B P}}{K_{T P C}}$. By the subtraction principle for ratios, we deduce that

$$
\frac{B P}{P C}=\frac{K_{A B P}-K_{T B P}}{K_{A P C}-K_{P C}}=\frac{K_{A B T}}{K_{A B T}} .
$$

Exactly similar reasoning yields

$$
\frac{A R}{R B}=\frac{K_{C A T}}{K_{B C T}} \quad \text { and } \quad \frac{C Q}{Q A}=\frac{K_{B C T}}{K_{A B T}} .
$$

We can now compute the Cevian product $\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}=\frac{K_{C A T}}{K_{B C T}} \frac{K_{A B T}}{K_{C A T}} \frac{K_{B C T}}{K_{A B T}}=1$.

Proof of Ceva's Theorem: Sufficiency

- To prove the converse, we assume that the Cevian product is trivial.

We prove that $A P, B Q$ and $C R$ are concurrent by defining T to be the intersection of $A P$ and $B Q$ and showing that line $C R$ must also pass through T.
It suffices to show that line $C T$ goes through R. So we let R^{\prime} be the point where line $C T$
 actually does meet side $A B$.
Then $C R^{\prime}$ is a Cevian that is concurrent with $A P$ and $B Q$. By the first part of the proof, the corresponding Cevian product is trivial. Hence, $\frac{A R^{\prime}}{R^{\prime} B} \frac{B P}{P C} \frac{C Q}{Q A}=1=\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}$, where the second equality is by assumption. Cancelation yields that $\frac{A R^{\prime}}{R^{\prime} B}=\frac{A R}{R B}=\mu$. But there can only be one point X on line segment $A B$ for which $\frac{A X}{X B}=\mu$. Thus, R and R^{\prime} must actually be the same point. So $C T$ goes through R.

The Gergonne Point of a Triangle

Proposition

Let P, Q and R be the points of tangency of the incircle of $\triangle A B C$ with sides $B C, C A$ and $A B$, respectively. Then lines $A P, B Q$ and $C R$ are concurrent.

- The point of concurrency of the three lines is sometimes called the Gergonne point of the triangle.
- The Gergonne point need not be the center of the circle. Thus, in general, the three lines are not the angle bisectors.
- We know that $A R=Q A, B P=R B$ and $C Q=P C$. We calculate the Cevian product: $\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}=\frac{A R}{B P} \frac{B P}{C Q} \frac{C Q}{A R}=1$. It follows by Ceva's theorem that the three Cevians are concurrent.

Application: The Centroid

- Suppose that our three Cevians are the medians of $\triangle A B C$.

So P, Q and R are the midpoints of $B C, C A$ and $A B$, respectively. Thus $A R=R B, B P=P C$ and $C Q=Q A$. The medians are concurrent. So the Cevian product is 1 . Indeed we have

$$
\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}=1 \cdot 1 \cdot 1=1
$$

Application: The Incenter

- Consider the case where the Cevians $A P, B Q$ and $C R$ are the angle bisectors.

Again, the Cevian product must be 1 since the angle bisectors are always concurrent. Recall that an angle bisector of a triangle divides the opposite side into pieces whose lengths are proportional to the nearer sides of the triangle. We have $\frac{A R}{R B}=\frac{b}{a}, \frac{B P}{P C}=\frac{c}{b}$ and $\frac{C Q}{Q A}=\frac{a}{c}$.
The Cevian product $\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}=\frac{b}{a} \frac{c}{b} \frac{a}{c}=1$.

The Ratio on the Cevian

Theorem

Let $A P, B Q$ and $C R$ be Cevians in $\triangle A B C$, where P, Q and R lie on sides $B C, C A$ and $A B$, respectively. If these Cevians are concurrent at a point T, then

$$
\frac{A T}{A P}=\frac{A R \cdot C Q+Q A \cdot R B}{A R \cdot C Q+Q A \cdot R B+R B \cdot C Q}
$$

and similar formulas hold for $\frac{B T}{B Q}$ and $\frac{C T}{C R}$.

- If masses $m_{A}=1$ and $m_{B}=\frac{A R}{R B}$ and $m_{C}=\frac{Q A}{C Q}$ are placed at the vertices of $\triangle A B C$, then the point T is the center of mass of the system (because of the Cevian product). We calculate:

$$
\begin{aligned}
\frac{A T}{A P} & =\frac{1}{\frac{A T+T P}{A T}}=\frac{1}{1+\frac{T P}{A T}}=\frac{1}{1+\frac{m_{A}}{m_{B} m_{C}}}=\frac{m_{B}+m_{C}}{m_{A}+m_{B}+m_{C}} \\
& =\frac{\frac{A R}{R B}+\frac{Q A}{C Q}}{1+\frac{A R}{R B}+\frac{Q A}{C Q}}=\frac{A R \cdot C Q+Q A \cdot R B}{A R \cdot C Q+Q A \cdot R B+R B \cdot C Q}
\end{aligned}
$$

Subsection 2

Interior and Exterior Cevians

Interior and Exterior Cevians

- Cevians $A P, B Q$ and $C R$ that "begin" at vertices of $\triangle A B C$, cut across the interior of the triangle and "terminate" at points lying on the opposite sides of the triangle are called interior Cevians.
- Ceva's theorem remains valid even if we expand the definition and allow exterior Cevians:
These are lines that join a vertex of a triangle to a point on an extension of the opposite side, and which thus do not cut across the interior of the triangle.
Example: $A P$ is an exterior Cevian if point P lies on line $B C$, but it does not lie on the line segment $B C$;
In particular, P is not one of the points B or C.

Configurations Involving Exterior Cevians

- Note that:
- On the left, all Cevians are interior;
- In the other two diagrams, $A P$ is interior while both $B Q$ and $C R$ are exterior.
- If three Cevians are concurrent, then the number of interior Cevians among them is necessarily either one or three.

General Form of Ceva's Theorem

Theorem (Ceva's Theorem)

Let $A P, B Q$ and $C R$ be Cevians of $\triangle A B C$, where P, Q and R lie on lines $B C, C A$ and $A B$, respectively. Then these Cevians are concurrent if and only if an odd number of them are interior and $\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}=1$.

- (Sketch) If the three Cevians are concurrent, we observe from an appropriate diagram that an odd number of them must be interior. In particular, at least one is interior, and so we can assume that $A P$ is interior. We can assume that we are in the situation of one of the three preceding diagrams. In all cases, we have $\frac{A R}{R B}=\frac{K_{A C R}}{K_{R C B}}=\frac{K_{A T R}}{K_{R T B}}$, $\frac{B P}{P C}=\frac{K_{B A P}}{K_{P A C}}=\frac{K_{B T P}}{K_{P T C}}$ and $\frac{C R}{R A}=\frac{K_{C B Q}}{K_{Q B A}}=\frac{K_{C T Q}}{K_{Q T A}}$. We apply the addition and subtraction principles for ratios, but the appropriate principle in each case depends on which of the three diagrams is under consideration. We get $\frac{A R}{R B}=\frac{K_{C A T}}{K_{B C T}}, \frac{B P}{P C}=\frac{K_{A B T}}{K_{C A T}}$ and $\frac{C R}{R A}=\frac{K_{B C T}}{K_{A B T}}$. Thus, $\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}=1$.

Ceva's Theorem (Parallel Cevians and Converse)

- To prove the converse, assume that the number of interior Cevians is odd and that the Cevian product is trivial.
Suppose two Cevians (say, $A P$ and $B Q$) meet at some point T. We show that line $C T$ goes through R. So we let R^{\prime} be the point where $C T$ meets line $A B$, and we work to show that R and R^{\prime} are the same point. Now $C R^{\prime}$ is a Cevian that is concurrent with $A P$ and $B Q$. The corresponding Cevian product is trivial. Reasoning as before, we deduce that $\frac{A R^{\prime}}{R^{\prime} B}=\frac{A R}{R B}$. The set $\{A P, B Q, C R\}$ contains an odd number of interior Cevians by hypothesis. The set $\left\{A P, B Q, C R^{\prime}\right\}$ contains an odd number since these three Cevians are known to be concurrent by construction. Thus, either both of the Cevians $C R$ and $C R^{\prime}$ are interior or else neither is. It follows either that both of the points R and R^{\prime} lie on the line segment $A B$ or else neither of them does. By a preceding lemma R and R^{\prime} must be the same point.

Using Ceva's Theorem to Prove Concurrency of Altitudes

Proposition

Ceva's theorem can be used to show that the altitudes of a triangle are concurrent.

- There are exactly three possibilities for $\triangle A B C$. Either all angles are acute or one of the angles (say, $\angle A$) is obtuse or the triangle has a right angle.
- In the case of a right triangle, each altitude clearly goes through the right angle, and so there is nothing to prove.
- We can thus assume that one of the other two cases arises. Thus, the altitudes $A P, B Q$ and $C R$ are Cevians that we want to show are concurrent.
In either case, the number of altitudes that are interior is odd. By Ceva's Theorem, it suffices to show that the product $\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}$ is trivial.

The Acute Angle and Obtuse Angle Cases

- In the first case, we have $A R=b \cos (A), B P=$ $c \cos (B), \quad C Q=\operatorname{acos}(C), \quad R B=a \cos (B)$, $P C=b \cos (C), Q A=c \cos (A)$. Each of a, b and c occurs once in the numerator and once in the denominator of the Cevian product. Similarly, each of $\cos (A), \cos (B)$ and $\cos (C)$ occurs once in the numerator and once in the
 denominator. Everything cancels and the Cevian product is trivial.

In the second case, exactly the same equations hold for the lengths of the six line segments provided that we interpret $\angle A$ as referring to the exterior angle of the triangle at A so that $\cos (A)$ will be positive. It follows that in this case too the Cevian product is trivial.

Subsection 3

Ceva's Theorem and Angles

Using Angles to Compute the Cevian Product

- Suppose that $A P$ is a Cevian in $\triangle A B C$.
- $A P$ determines the two distances $B P$ and $P C$, used in the Cevian product.
- $A P$ also determines two angles $\angle B A P$ and $\angle P A C$, neither of which is zero.
- Given three Cevians there are six angles determined.
- It is impossible to determine the six distances appearing in the Cevian product from knowledge of these six angles.
- Surprisingly, however, it is possible to compute the value of the Cevian product.
- The six angles can thus be used to determine whether or not the three Cevians are concurrent.

The Cevian Product in Terms of Angles

Theorem

Suppose that $A P, B Q$ and $C R$ are Cevians in $\triangle A B C$. Then the corresponding Cevian product is equal to $\frac{\sin (\angle A C R)}{\sin (\angle R C B)} \frac{\sin (\angle B A P)}{\sin (\angle P A C)} \frac{\sin (\angle C B Q)}{\sin (\angle Q B A)}$ In particular, the three Cevians are concurrent if and only if an odd number of them are interior and this angular Cevian product is equal to 1.

- The three factors of the Cevian product are $\frac{A R}{R B}, \frac{B P}{P C}$ and $\frac{C Q}{Q A}$. We will use the law of sines to express each of these in terms of angles. We work first with the ratio $\frac{B P}{P C}$, and we begin with the case where the Cevian $A P$ is interior. In $\triangle A B P$, we have $\frac{B P}{\sin (\angle B A P)}=\frac{A P}{\sin (\angle B)}$. In $\triangle A C P$, we have $\frac{P C}{\sin (\angle P A C)}=\frac{A P}{\sin (\angle C)}$. If we solve these equations for $B P$ and $P C$ and then divide and cancel $A P$, we obtain $\frac{B P}{P C}=$
 $\frac{\sin (\angle B A P)}{\sin (\angle P A C)} \frac{\sin (\angle C)}{\sin (\angle B)}$.

The Cevian Product in Terms of Angles (Cont'd)

- In the case where $A P$ is an exterior Cevian, it turns out that we get exactly the same formula.

In $\triangle A B P, \frac{B P}{P C}=\frac{\sin (\angle B A P)}{\sin (\angle P A C)} \frac{\sin (\angle C)}{\sin (\angle B)}$. In $\triangle P A C$, the angle opposite side $A P$ is not the original $\angle C=\angle A C B$, but instead, the corresponding exterior angle $\angle A C P=180^{\circ}-\angle C$. But the sines are equal, so we get the same formula
 $\frac{P C}{\sin (\angle P A C)}=\frac{A P}{\sin (\angle C)}$.
So in all cases we have $\frac{B P}{P C}=\frac{\sin (\angle B A P)}{\sin (\angle P A C)} \frac{\sin (\angle C)}{\sin (\angle B)}$. Similarly, $\frac{C Q}{Q A}=\frac{\sin (\angle C B Q)}{\sin (\angle Q B A)} \frac{\sin (\angle A)}{\sin (\angle C)}$ and $\frac{A R}{R B}=\frac{\sin (\angle A C R)}{\sin (\angle R C B)} \frac{\sin (\angle B)}{\sin (\angle A)}$. When we multiply the three ratios, we get $\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}=\frac{\sin (\angle A C R)}{\sin (\angle R C B)} \frac{\sin (\angle B A P)}{\sin (\angle P A C)} \frac{\sin (\angle C B Q)}{\sin (\angle Q B A)}$.

An Application

Theorem

Given an arbitrary $\triangle A B C$, build three outwardpointing triangles $B C U, C A Y$ and $A B W$, each sharing a side with the original triangle. Assume that $\angle B A W=\angle C A V, \angle C B U=\angle A B W$ and $\angle A C V=\angle B C U$. Assume further that lines $A U, B V$ and $C W$ cut across the interior of $\triangle A B C$. Then lines $A U, B V$ and $C W$ are concurrent.

- Lines $A U, B V$ and $C W$ are interior Cevians. So, by the theorem, it suffices to show that $\frac{\sin (\angle A C W)}{\sin (\angle W C B)} \frac{\sin (\angle B A U)}{\sin (\angle U A C)} \frac{\sin (\angle C B V)}{\sin (\angle V B A)}=1$. We write $\alpha=\angle B A W=\angle C A V$ and β, γ for the other two pairs. By the law of sines in $\triangle A C W$ to deduce that $\frac{A W}{\sin (\angle A C W)}=\frac{C W}{\sin (\angle W A C)}$. Since $\angle W A C=\angle A+\alpha$, we have $\sin (\angle A C W)=\frac{A W \sin (\angle A+\alpha)}{C W}$. Similarly, $\sin (\angle W C B)=\frac{B W \sin (\angle B+\beta)}{C W}$. Therefore, $\frac{\sin (\angle A C W)}{\sin (\angle W C B)}=\frac{A W \sin (\angle A+\alpha)}{B W \sin (\angle B+\beta)}$.

An Application (Cont'd)

- We got $\frac{\sin (\angle A C W)}{\sin (\angle W C B)}=\frac{A W \sin (\angle A+\alpha)}{B W \sin (\angle B+\beta)}$.

The ratio $\frac{A W}{B W}$ can be computed using the law of sines in $\triangle A B W$. We have $\frac{A W}{\sin (\beta)}=\frac{B W}{\sin (\alpha)}$. Thus, $\frac{A W}{B W}=\frac{\sin (\beta)}{\sin (\alpha)}$. Substitution of this into our previous formula yields $\frac{\sin (\angle A C W)}{\sin (\angle W C B)}=\frac{\sin (\beta)}{\sin (\alpha)} \frac{\sin (\angle A+\alpha)}{\sin (\angle B+\beta)}$.

Similar reasoning yields $\frac{\sin (\angle B A U)}{\sin (\angle U A C)}=\frac{\sin (\gamma)}{\sin (\beta)} \frac{\sin (\angle B+\beta)}{\sin (\angle C+\gamma)}$ and $\frac{\sin (\angle C B V)}{\sin (\angle V B A)}=\frac{\sin (\alpha)}{\sin (\gamma)} \frac{\sin (\angle C+\gamma)}{\sin (\angle A+\alpha)}$. So when we multiply these three ratios of sines to compute the angular Cevian product, everything cancels and the result is 1 .

Perpendiculars to the Sides of the Pedal Triangle

Proposition

The pedal triangle of acute $\triangle A B C$ is $\triangle D E F$. Perpendiculars $A U, B V$ and $C W$ are dropped from the vertices of the original triangle to the sides of the pedal triangle. Then the lines $A U$, $B V$ and $C W$ are concurrent. The point of concurrence is the circumcenter of $\triangle A B C$.

- By Ceva's theorem, we need $\frac{\sin (\angle A C W)}{\sin (\angle W C B)} \frac{\sin (\angle B A U)}{\sin (\angle U A C)} \frac{\sin (\angle C B V)}{\sin (\angle V B A)}=1$. Since $\triangle E W C$ is a right triangle, we see that $\sin (\angle A C W)=\cos (\angle W E C)$. Similarly, $\sin (\angle U A C)=\cos (\angle U E A)$. Since $\triangle D E F$ is the pedal of $\triangle A B C$, we have $\angle U E A=\angle W E C$. Hence $\sin (\angle A C W)=\sin (\angle U A C)$. Similarly, all other factors cancel, and the lines meet at some point X. We have $\angle C A X=90^{\circ}-\angle A E U=90^{\circ}-\angle C E W=\angle A C X$. Thus $\triangle A X C$ is isosceles and $A X=C X$. Similarly, $B X=C X$. Thus, X must be the circumcenter.

Diagonals of an Inscribed Hexagon

Theorem

Let $A B C D E F$ be a hexagon inscribed in a circle. Then the diagonals $A D, B E$ and $C F$ are concurrent if and only if $\frac{A B}{B C} \frac{C D}{D E} \frac{E F}{F A}=1$.

- Draw lines $A C, C E$ and $E A$.

View the three diagonals as Cevians of $\triangle A C E$. These diagonals are concurrent if and only if $\frac{\sin (\angle A E B)}{\sin (\angle B E C)} \frac{\sin (\angle C A D)}{\sin (\angle D A E)} \frac{\sin (\angle E C F)}{\sin (\angle F C A)}=1$. We show that this angular Cevian product is equal to the hexagonal Cevian product in the statement.
 By the extended law of sines in $\triangle A B E, \frac{A B}{\sin (\angle A E B)}=2 R$, where R is the radius of the given circle, and hence is the circumradius of $\triangle A B E$. Thus, $\sin (\angle A E B)=\frac{A B}{2 R}$. Similarly, considering $\triangle B E C$, we get $\sin (\angle B E C)=\frac{B C}{2 R}$. Thus, $\frac{\sin (\angle A E B)}{\sin (\angle B E C)}=\frac{B C}{B C}$. Similarly, the other two ratios of sines are equal to the other two ratios of side lengths.

Subsection 4

Menelaus' Theorem

Collinear Points on Lines Forming a Triangle

- Given $\triangle A B C$, three arbitrary points P, Q and R on lines $B C, C A$ and $A B$, respectively, might be collinear.
- This cannot happen if each of P, Q and R lies on an actual side of the triangle rather than on an extension of the side.
- For P, Q and R to be collinear, it is necessary that either exactly two of them or none of them lie on sides of the triangle.

- The fact that the number of members of the set $\{P, Q, R\}$ that lie on sides of the triangle must be even for these points to be collinear is the exact opposite of the situation in Ceva's theorem.

Menelaus' Theorem

Theorem (Menelaus)

Given $\triangle A B C$, let points P, Q and R lie on lines $B C, C A$ and $A B$, respectively, and assume that none of these points is a vertex of the triangle. Then P, Q and R are collinear if and only if an even number of them lie on segments $B C, C A$ and $A B$ and $\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}=1$.

- First, assume that P, Q and R are collinear. The number of members of the set $\{P, Q, R\}$ that are on sides of the triangle must be even. We need to show that the Cevian product is trivial. Draw $A P$ and $C R$. $B P$ and $P C$ can be viewed as the bases of $\triangle B P R$ and $\triangle C P R$ having equal heights. So $\frac{B P}{P C}=\frac{K_{B P R}}{K_{C P R}}$.

Menelaus' Theorem (Cont'd)

- We obtained $\frac{B P}{P C}=\frac{K_{B P R}}{K_{C P R}}$.

Similarly, using $\triangle A P R$ and $\triangle B P R$, with bases $A R$ and $R B$, we get $\frac{A R}{R B}=\frac{K_{A P R}}{K_{B P R}}$. We compute the ratio $\frac{C Q}{Q A}$ twice, using $\triangle C Q P$ and $\triangle A Q P$, and also $\triangle C Q R$ and $\triangle A Q R: \frac{C Q}{C A}=\frac{K_{C Q P}}{K_{A Q P}}=\frac{K_{C Q R}}{K_{A Q R}}$. Applying the subtraction principle, we get $\frac{C Q}{Q A}=\frac{K_{C Q P}-K_{C Q R}}{K_{A Q P}-K_{A Q R}}=\frac{K_{C P R}}{K_{A P R}}$. Everything now cancels when we compute $\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}$. Thus this Cevian product is equal to 1 .

Menelaus' Theorem: The Converse

- We now assume that the Cevian product is trivial and that an even number of P, Q and R lie on sides of the triangle. The only way it can happen that $P Q\|A B, Q R\| B C$ and $R P \| C A$ is for all three of P, Q and R to lie on sides of the triangle, which is not the case. We can assume, therefore, that $P Q$ is not parallel to $A B$, and we let R^{\prime} be the point where $P Q$ meets $A B$. We show R and R^{\prime} are actually the same point. R^{\prime} is neither A nor B. Since an even numbers of points in each of the sets $\{P, Q, R\}$ and $\left\{P, Q, R^{\prime}\right\}$ lie on sides of the triangles, R^{\prime} lies between A and B if and only if R lies between A and B.

By hypothesis, $\frac{A R}{R B} \frac{B P}{P C} \frac{C Q}{Q A}=1$. Since P, Q and R^{\prime} are collinear, $\frac{A R^{\prime}}{R^{\prime} B} \frac{B P}{P C} \frac{C Q}{Q A}=1$. It follows that $\frac{A R}{R B}=\frac{A R^{\prime}}{R^{\prime} B}$. Thus R and R^{\prime} must be the same point.

The Lemoine Axis of a Triangle

Proposition

Consider the tangent lines to the circumcircle of $\triangle A B C$ at the vertices of the triangle. If the tangent at A, B and C meet lines $B C, C A$ and $A B$ at points P, Q and R, respectively, then P, Q and R are collinear.

- Since points P, Q, and R lie outside of the circle, none of them lies on a side and Menelaus' theorem applies. We compute the three ratios $\frac{A R}{R B}, \frac{B P}{P C}$, and $\frac{C Q}{Q A}$ and show that their product is equal to 1 . We have $\angle B A Q \doteq \frac{1}{2} \widehat{B C} \doteq$ $\angle C B Q$. Also $\angle B Q A=\angle C Q B$. Hence, $\triangle B A Q \sim \triangle C B Q$ by AA.

It follows that $\frac{C Q}{B Q}=\frac{B Q}{A Q}=\frac{C B}{B A}=\frac{a}{c}$. Thus, $C Q=\frac{a}{c} B Q$ and $A Q=\frac{c}{a} B Q$.
This yields $\frac{C Q}{Q A}=\frac{\frac{a}{c}}{\frac{c}{a}}=\frac{a^{2}}{c^{2}}$. Similarly, $\frac{A R}{R B}=\frac{b^{2}}{a^{2}}$ and $\frac{B P}{P C}=\frac{c^{2}}{b^{2}}$. It follows that the Cevian product is equal to 1 , and the points are collinear.

Pappus' Theorem

Theorem (Pappus)

Suppose that points A, B and C lie on some line ℓ and that points X, Y and Z lie on line m, where the six points are distinct and the two lines are also distinct. Assume that lines $B Z$ and $C Y$ meet at P, lines $A Z$ and $C X$ meet at Q and lines $A Y$ and $B X$ meet at R. Then points P, Q and R are collinear.

- Define point L, M, N as the intersections of $X C, A Y, A Y, B Z$ and $B Z, X C$, respectively.
We are assuming that none of the pairs of lines defining points L, M and N is parallel. Note that points P, Q and R lie on lines $M N, N L$ and $L M$, respectively. We show that these three points are collinear by applying Menelaus' theorem to $\triangle L M N$. We compute
 the Cevian product $\frac{L R}{R M} \frac{M P}{P N} \frac{N Q}{Q L}$ and show that it is equal to 1 .

Pappus' Theorem (Cont'd)

- We should also check, of course, that the number of members of the set $\{P, Q, R\}$ that lie on actual sides of $\triangle L M N$ is even, but we shall omit the verification of this.
Observe that points A, B and C are collinear and lie on lines $L M, M N$ and $N L$, respectively. By Menelaus' Theorem, $\frac{L A}{A M} \frac{M B}{B N} \frac{N C}{C L}=1$. From the fact that X, Y and Z are collinear, we get $\frac{L Y}{Y M} \frac{M Z}{Z N} \frac{N X}{X L}=1 . R, B$ and X are collinear, and thus $\frac{L R}{R M} \frac{M B}{B N} \frac{N X}{X L}=1$.

From the collinearity of A, Q and Z we get $\frac{L A}{A M} \frac{M Z}{Z N} \frac{N Q}{Q L}=1$. From the collinearity of C, P and Y, we get $\frac{L Y}{Y M} \frac{M P}{P N} \frac{N C}{C L}=1$. Multiplying the last three equations and the first two, we get
$\frac{L R}{R M} \frac{M B}{B N} \frac{N X}{X L} \frac{L A}{A M} \frac{M Z}{Z N} \frac{N Q}{Q L} \frac{L Y}{Y M} \frac{M P}{P N} \frac{N C}{C L}=1=\frac{L A}{A M} \frac{M B}{B N} \frac{N C}{C L} \frac{L Y}{Y M} \frac{M Z}{Z N} \frac{N X}{X L}$.
Six fractions on each side cancel, yielding the desired equation.

