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Vector Methods of Proof Vectors

Subsection 1

Vectors
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Vector Methods of Proof Vectors

Terminology and Notation

Vectors are generally written as ~v or ~A or
−−→
AB, with a little arrow over

the symbol or symbols.

A plane vector ~v is simply an ordered pair of real numbers, which are
called its coordinates. We write ~v = (a,b), where the coordinates a

and b are real numbers.
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Vector Methods of Proof Vectors

Addition, Subtraction and Scalar Multiplication

Vectors can be added or subtracted by adding or subtracting the
corresponding coordinates:

If ~v = (a,b) and ~w = (c ,d), we have:

~v +~w = (a+c ,b+d);
~v −~w = (a−c ,b−d).

Also, we can multiply vectors by scalars simply by multiplying each
coordinate by that scalar (a scalar is an ordinary real number):

If z is scalar and ~v = (a,b) is a vector, we write z~v = (za,zb).

Many of the usual rules of arithmetic also hold for vectors, e.g., the
commutative and associative laws are valid for vector addition, and
two distributive laws hold for addition and scalar multiplication.

Also, the vector ~0= (0,0), which is called the zero vector, behaves
very much like the number 0 in ordinary arithmetic:

If ~v is any vector and z is any scalar, then ~v +~0=~v and z~0=~0.
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Vector Methods of Proof Vectors

Vectors as Geometric Objects

Given a vector ~v = (a,b), let P be any point in the plane and suppose
that its coordinates are (x ,y).

If we let Q be the point whose coordinates are (x +a,y +b), then we
can think of the vector ~v as instructions about how to get from point
P to point Q:

Go a units right and b units up (if a is negative, we actually move left,
and if b is negative, we move down).

If we draw an arrow from P to Q with tail at P and head at Q, this
arrow is a “picture" of the vector ~v , and we write

−−→
PQ =~v .
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Vector Methods of Proof Vectors

From Arrows to Vectors

Given two points P and Q and an arrow with tail at P and head at Q,

we can reconstruct the vector ~v =
−−→
PQ by subtracting the

corresponding coordinates of P = (x1,y1) and Q = (x2,y2).

−−→
PQ = (x2−x1,y2−y1).

Note that we need the arrow from P to Q and not just the line
segment PQ, because we need to know which point is the head and

which is the tail so that we can subtract the tail coordinates from the
head coordinates, and not vice versa:

−−→
QP =−

−−→
PQ .
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Vector Methods of Proof Vectors

Geometric Interpretation of Vector Addition

Given vectors ~v and ~w , we represent:

~v as an arrow from P to Q, where P

is arbitrary;

~w as an arrow with starting point Q,

and we write ~w =
−−→
QR .

It is easy to see that the arrow from P to R represents ~v +~w , i.e., we

have the vector equation
−−→
PQ +

−−→
QR =

−−→
PR.

In terms of “instructions", the instructions for going from P to R are:

first to go from P to Q;
then to go from Q to R .
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Vector Methods of Proof Vectors

Arrows Representing the Same Vector

Given points P ,Q ,R and S , suppose it happens that
−−→
PQ =

−→
RS .

Claim: Line segments PQ and RS must be equal and parallel.

Consider the figure, where △PQX and △RSY

are right triangles (with horizontal and ver-
tical arms) with the given equal vectors as

hypotenuses. If we write
−−→
PQ = (a,b) =

−→
RS ,

we see that PX = a = RY and XQ = b = YS .
Thus, by SAS, △PXQ ∼=△RYS .
It follows that the lengths PQ and RS are equal (by the Pythagorean
theorem, PR and QS are equal to

p
a2+b2).

Moreover,
−−→
PQ +

−−→
QS =

−→
PS =

−−→
PR +

−→
RS . Subtracting the equal vectors−−→

PQ =
−→
RS , we deduce that

−−→
QS =

−−→
PR. It follows that QS =PR . So the

quadrilateral PQSR is a parallelogram. Hence, PQ ∥RS .

Conversely, two arrows that are equal, parallel, and point in the same
rather than in opposite directions correspond to equal vectors.
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Vector Methods of Proof Vectors

Geometric Interpretation of Scalar Multiplication

The geometric significance of multiplication of a vector ~v by a positive
scalar z is that an arrow representing z~v points in the same direction
as an arrow representing ~v , but it is of length z times the length of ~v .

If the scalar z is negative, the direction of the vector is reversed, but
otherwise, we get the same shrinking or stretching effect as with a
positive scalar.

Example: An arrow representing −3~v has three times the length of an
arrow representing ~v , but it points in the opposite direction.

If P ,Q ,R and S are four points lying
in that order along a line and equally
spaced so that PQ = QR = RS , then−−→
PQ =

−−→
QR =

−→
RS and

−−→
PR =

−−→
QS .

Some of the other equations that we can write in this situation are

−
−→
SP =

−→
PS = 3

−−→
PQ and

−−→
PR = − 2

3

−→
SP .
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Vector Methods of Proof Vectors and Geometry

Subsection 2

Vectors and Geometry
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Vector Methods of Proof Vectors and Geometry

Vectors and Points in the Plane

Suppose that a fixed point O, called the origin, has been selected in
the plane.

A vector of the form
−−→
OA, with tail at point O, will simply be written

as ~A.

Since for points A and B in the plane,
−−→
OA+

−−→
AB =

−−→
OB, using the

notational shortcut just described, we have ~A+
−−→
AB = ~B.

Hence
−−→
AB = ~B − ~A, i.e., any vector named by two points can be

described as a difference of two “single-point" vectors.

One way to prove that two points P and Q are actually identical is to

show that
−−→
PQ =~0. Since

−−→
PQ = ~Q −~P , this is the zero vector precisely

when ~Q = ~P .

In other words, to show that P and Q are the same point, it suffices
to show that the vectors ~P and ~Q corresponding to these points are
equal.
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Vector Methods of Proof Vectors and Geometry

The Midpoint of a Line Segment

Proposition

The vector ~M corresponding to the midpoint M of line segment AB is
exactly the average of the vectors ~A and ~B, corresponding to the endpoints
of the segment.

To get to M from A, we need to travel
exactly half of the way from A to B .
This can be expressed in vector lan-

guage by writing
−−→
AM = 1

2

−−→
AB.

Using the notation just introduced, we
rewrite ~M − ~A= 1

2
(~B − ~A).

Thus, ~M = ~A+ 1
2
(~B − ~A). This, finally, yields ~M = 1

2
(~A+ ~B).
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Vector Methods of Proof Vectors and Geometry

The Centroid Revisited

Theorem

The medians of △ABC are concurrent at a point G that lies two thirds of
the way along each median (moving from a vertex to the midpoint of the
opposite side). Furthermore, ~G = 1

3
(~A+ ~B + ~C ).

We compute the vector ~G corresponding to the point G that lies two
thirds of the way along median AM, where M is the midpoint of BC .

By the proposition, ~M = 1
2
(~B + ~C ). Hence, ~G − ~A=

−−→
AG = 2

3

−−→
AM =

2
3
( ~M − ~A)= 2

3
(1
2
(~B + ~C )− ~A). Therefore, ~G = 1

3
(~A+ ~B + ~C ).

Similarly, the vector corresponding to the point two thirds of the way
along each of the other two medians must also be the average of the
three vectors corresponding to the vertices.
The vectors corresponding to the points two thirds of the way along
the three medians are therefore equal, and it follows that these three
points are identical.
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Vector Methods of Proof Vectors and Geometry

Midpoints of the Sides of a Quadrilateral

Proposition

Let ABCD be any quadrilateral and
let W ,X ,Y and Z be the midpoints
of AB ,BC ,CD and DA. Then
WXYZ is a parallelogram.

We show that
−−→
WX =

−−→
ZY . This will imply that WX is both parallel and

equal to ZY . The given data are the four points A,B ,C and D, and

so we express
−−→
WX and

−−→
ZY in terms of ~A,

~B ,
~C and ~D. We have

~W = 1
2
(~A+ ~B),

~X = 1
2
(~B + ~C ),

~Z = 1
2
(~A+ ~D) and ~Y = 1

2
(~C + ~D).

−−→
WX = ~X − ~W = 1

2 (
~B + ~C )− 1

2 (
~A+ ~B)= 1

2 (
~C − ~A);

−−→
ZY = ~Y − ~Z = 1

2 (
~C + ~D)− 1

2 (
~A+ ~D)= 1

2 (
~C − ~A).
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Vector Methods of Proof Vectors and Geometry

A Point Dividing a Line Segment in a Given Ratio

We determine the vector corresponding to the point obtained by
moving a specified fraction γ of the way along a given line segment
AB .

Lemma

Let γ be a real number with 0< γ< 1 and suppose that X is the point lying
γ of the way from A to B along segment AB . Then ~X = (1−γ)~A+γ~B.

Example: If γ= 1
2
, then X is the point that lies half of the way from A

to B , and so X is the midpoint of segment AB . In this case, the
lemma asserts that ~X = 1

2
~A+ 1

2
~B, as expected from preceding work.

As γ approaches 0, point X approaches point A, and so ~X should
approach ~A, and this is consistent with the formula given.

A similar reasoning applies as γ approaches 1, so that X approaches B .

In general
−−→
AX = γ

−−→
AB . So ~X − ~A=γ(~B − ~A). Now compute

~X = ~A+γ(~B − ~A)= (1−γ)~A+γ~B .
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Vector Methods of Proof Vectors and Geometry

An Additional Application in Similarity

Proposition

Given △ABC , we construct △RST by
taking points R ,S and T on the sides of
the original triangle, as follows: Point R
lies one third of the way from A to B

along AB , point S lies one third of the
way from B to C along BC , and point
T lies one third of the way from C to A
along CA. Now repeat this process starting with △RST and obtain
△XYZ . Then △XYZ ∼△CAB and the corresponding sides of these two
triangles are parallel.

The strategy is to express the vectors along the sides of △XYZ in
terms of A,B and C . Since R is one third of the way from A to B ,
~R = 2

3
~A+ 1

3
~B . Similarly, ~S = 2

3
~B + 1

3
~C . Since X lies one third of the way

from R to S , ~X = 2
3
~R + 1

3
~S = 2

3
(2
3
~A+ 1

3
~B)+ 1

3
(2
3
~B + 1

3
~C ).
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Vector Methods of Proof Vectors and Geometry

An Additional Application in Similarity (Cont’d)

We found ~X = 2
3
(2
3
~A+ 1

3
~B)+ 1

3
(2
3
~B+

1
3
~C ). Hence ~X = 4

9
~A+4

9
~B+1

9
~C . Anal-

ogously, we get ~Y = 4
9
~B + 4

9
~C + 1

9
~A.

Now calculate
−−→
XY = ~Y − ~X = (4

9
~B +

4
9
~C + 1

9
~A)− (4

9
~A+ 4

9
~B + 1

9
~C ) = 1

3
~C −

1
3
~A= 1

3

−−→
AC .

Since the vector
−−→
XY is one third of the vector

−−→
AC , we know that the

corresponding arrows are parallel and that the former has one third the
length of the latter. Thus, XY ∥CA and XY = 1

3
CA.

Similarly, each side of △XYZ is parallel to the corresponding side of
△CAB , and each side of △XYZ has length equal to one third of the
length of the corresponding side of △CAB .
Thus, △XYZ ∼△CAB by SSS.
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Vector Methods of Proof Dot Products

Subsection 3

Dot Products
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Vector Methods of Proof Dot Products

The Dot Product

If ~v = (a,b) and ~w = (c ,d), then the dot product ~v ·~w is defined to
be the scalar

~v ·~w = ac +bd .

It is easy to check that the commutative and distributive laws hold for
dot products: If ~u,~v and ~w are any three vectors, we have the
following:

~u ·~v =~v ·~u;
~u · (~v +~w)=~u ·~v +~u ·~w .
In the last equation, the plus sign on the left represents vector addition,
but the plus sign on the right represents ordinary scalar addition.
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Vector Methods of Proof Dot Products

The Dot Product of a Vector by Itself

Consider the dot product of a vector with itself:

If ~v = (a,b), we see that ~v ·~v = a2+b2
.

This is the square of the length of an arrow representing ~v .

Using the absolute value notation |~v | to represent the length of a
vector ~v , we write

~v ·~v = |~v |2.

If P and Q are points and we write PQ to denote the length of the

line segment they determine, we can write |
−−→
PQ | =PQ.
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Vector Methods of Proof Dot Products

The Dot Product of Two Vectors

Now consider △ABC , with a,b and c

the lengths of sides BC ,AC and AB ,

respectively. Write ~v =
−−→
AC and ~w =−−→

AB. Then ~v ·~v = |~v |2 = b2
. Similarly,

~w ·~w = c2.

By the Law of cosines

(~v −~w) · (~v −~w )=
−−→
BC ·

−−→
BC = a2 = b2+c2−2ac cosA.

By distributivity, (~v −~w ) · (~v −~w)=~v ·~v −~v ·~w −~w ·~v +~w ·~w =
|~v |2+|~w |2−2(~v ·~w)= b2+c2−2(~v ·~w ).

We conclude that
~v ·~w = |~v ||~w |cosA.
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Vector Methods of Proof Dot Products

The Dot Product of Perpendicular Vectors

Corollary

Nonzero vectors are perpendicular if and only if their dot product is zero.

Suppose θ is the angle between ~v and ~w .

If ~v and ~w are perpendicular, then θ= 90◦. Since cos(90◦)= 0, we see
that ~v ·~w = |~v ||~w |cosθ = 0.

Conversely, if ~v and ~w are nonzero, then |~v | 6= 0 6= |~w |. Thus, if
~v ·~w = |~v ||~w |cosθ = 0, the only possibility is that cosθ = 0. So θ = 90◦

and ~v and ~w are perpendicular.
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Vector Methods of Proof Dot Products

The Orthocenter Revisited

Proposition

The altitudes of △ABC are concurrent.

Let H be the intersection of the altitudes from A and from B . We
show that H also lies on the altitude from C . If H is the point C ,
there is nothing to prove. If H is different from C , we show that CH is

perpendicular to AB . Since the vectors
−−→
CH and

−−→
AB are nonzero, it

suffices to show that
−−→
CH ·

−−→
AB = 0, i.e., that (~H − ~C ) · (~B − ~A)= 0. By

the distributive law, we must show ~H · (~B − ~A)= ~C · (~B − ~A).

Since H lies on the altitude from A,
−−→
AH ·

−−→
CB = 0, i.e.,

(~H − ~A) · (~B − ~C )= 0. So ~H · (~B − ~C )= ~A · (~B − ~C ). Since H also lies on
the altitude from B , similar reasoning yields ~H · (~C − ~A)= ~B · (~C − ~A).
No we have
~H · (~B − ~A)= ~H · (~B − ~C )+ ~H · (~C − ~A)= ~A · (~B − ~C )+ ~B · (~C − ~A)=
~A · ~B − ~A · ~C + ~B · ~C − ~B · ~A= ~B · ~C − ~A · ~C = ~C · (~B − ~A).
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Vector Methods of Proof Dot Products

Circumcenter, Orthocenter and Centroid

Proposition

The circumcenter of △ABC is collinear with the orthocenter and the
centroid.

The circumcenter O, the centroid G , and the orthocenter H actually
lie on the Euler line, and the point O lies on the opposite side of G
from H, and HG = 2GO.
We choose the origin as follows:

If H and G are the same point, we let O be this point too.
Otherwise, we choose O on line HG , on the opposite side of G from H ,
and half as far from G as H is.

Since O is collinear with H and G , it suf-
fices to show that O actually is the circum-
center.
We need to show, therefore, that the three
distances OA,OB and OC are all equal.
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Vector Methods of Proof Dot Products

Circumcenter, Orthocenter and Centroid

By construction,
−−→
OH = 3

−−→
OG . Thus,

we get ~H = 3~G = ~A+~B+ ~C , i.e., ~H−
~A= ~B+~C . Since AH is perpendicular

to BC , this yields 0=
−−→
AH ·

−−→
CB = (~H−

~A) · (~B − ~C ) = (~B + ~C ) · (~B − ~C )= ~B ·
~B− ~C ·~C . Thus, |~B |2 = ~B ·~B = ~C · ~C =
|~C |2.

Hence, |~B | = |~C |. But recall that ~B =
−−→
OB, and hence |~B | is the

distance OB . Similarly, |~C | =OC . So we have proved that OB =OC .

Similarly, O is equidistant from A and C .

Thus, O is the circumcenter of △ABC .
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Vector Methods of Proof Checkerboards

Subsection 4

Checkerboards
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Vector Methods of Proof Checkerboards

Checkerboards

Let ABCD be a convex quadrilateral, i.e., with all of its angles less
than 180◦.

Divide each side of ABCD into n equal parts, where n is some fixed
positive integer, and join the corresponding points to form a crisscross
pattern that we call an n×n checkerboard.

Example: The figures show 2×2,3×3 and 4×4 checkerboards, all
based on the same quadrilateral.
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Vector Methods of Proof Checkerboards

CrissCross Segments of a Checkerboard

Consider a 2×2 checkerboard.

We know that the midpoints of the four sides of the quadrilateral
ABCD are the vertices of a parallelogram.

The two crossing line segments of the 2×2 checkerboard are the
diagonals of this parallelogram, and hence they bisect each other.

Thus, each of the six line segments that make up a 2×2 checkerboard
is cut into two equal pieces.

Similarly, each of the eight line segments that make up a 3×3
checkerboard is divided into three equal pieces.

More generally, an n×n checkerboard is made up of 4+2(n−1) line
segments, and it turns out that each of these segments is divided into
n equal pieces.

By the definition of a checkerboard, we know that each side of the
original quadrilateral is divided into n equal pieces; the surprise is that
the 2n−2 crisscross segments are also equally divided.
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Vector Methods of Proof Checkerboards

The CrissCross Property

Theorem

Each of the 2n+2 line segments that comprise an n×n checkerboard is cut
into n equal pieces.

Suppose P is one of the division points on
side AB and Q is the corresponding divi-
sion point on side DC .
Then PQ is one of the crisscross line seg-
ments, and we have AP

AB
= k

n
= DQ

DC
, where

k is an integer with 0< k < n.
Similarly, suppose R and S are corresponding division points on sides
AD and BC . Thus, RS is a crisscross line segment and we have
AR
AD

= ℓ
n
= BS

BN
, where ℓ is an integer with 0< ℓ< n.

We need to show that PQ cuts RS at a point that lies exactly k
n

in of
the way from R to S as we move along RS and that this intersection
point lies exactly ℓ

n
of the way from P to Q along PQ.
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Vector Methods of Proof Checkerboards

The CrissCross Property (Cont’d)

We write α = k
n

and β = ℓ
n
. We get

for P ,Q ,R and S : ~P = (1−α)~A+α~B ,

~Q = (1−α)~D +α~C ,
~R = (1−β)~A+β~D

and ~S = (1−β)~B +β~C . Let X be the
point on RS that we expect is the point
where PQ crosses RS .

In other words, X is the point that lies α of the way from R to S

along RS . Similarly, let Y be the point on PQ that we expect lies on
RS . So Y lies β of the way from P to Q along PQ. Our goal is to
show that X and Y are the same point:
~X = (1−α)~R +α~S = (1−α)((1−β)~A+β~D)+α((1−β)~B +β~C )=
(1−α)(1−β)~A+α(1−β)~B +αβ~C + (1−α)β~D .

~Y = (1−β)~P +β~Q = (1−β)((1−α)~A+α~B)+β((1−α)~D +α~C )=
(1−α)(1−β)~A+α(1−β)~B +αβ~C + (1−α)β~D .

Thus X =Y must be the point of intersection of PQ and RS .
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Vector Methods of Proof Checkerboards

Deleting a Row and a Column

The figure shows a 5×5 checkerboard
ABCD. We focus on the smaller quadri-
lateral UVCW . We know that all of the
pieces on each crisscross line of the orig-
inal checkerboard are equal. So we see
that UV and UW are each divided into
four equal pieces. Thus, UVCW is a
4×4 checkerboard.

The same thing works in general: We can create an (n−1)× (n−1)
checkerboard from an n×n checkerboard by deleting the first row and
first column of boxes.
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Vector Methods of Proof Checkerboards

Areas of the Squares Along a Diagonal

Proposition

Let ABCD be a 2×2 checkerboard, where two
of the four boxes have been shaded. Then the
shaded area is exactly half of the total area of
the checkerboard.

Let P ,Q ,R and S be the midpoints of the sides of ABCD, and X the
point where PR meets QS . Draw the line segments joining X to
A,B ,C and D. This partitions the total into four triangular pieces:
△AXB , △BXC , △CXD, and △DXA. It suffices to show that exactly
half of the area of each of these four triangles is shaded. But
AP =PB . Thus △APX and △BPX have equal bases AP and PB ,
and they have equal altitudes. It follows that △APX and △BPX have
equal areas. Thus, exactly half of the area of △AXB is shaded.

A similar argument works for each of the other three triangles.
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Vector Methods of Proof Checkerboards

Introducing the n×n Case

If we shade the boxes along the diagonal of any n×n checkerboard, we
will prove that the total area of the n shaded boxes is exactly 1

n
of the

area of the entire checkerboard.

In this way, we have shaded exactly one n-th of the n2 boxes, but,
since, in general, the boxes do not all have equal areas, this certainly
does not show that we have shaded one n-th of the area:

The case n= 2 is exactly the preceding proposition;
The case n= 1 is a triviality with no content.

In fact, we need not restrict ourselves to diagonal boxes:

If we shade any n of the n2 boxes, subject only to the condition that
no two of the shaded boxes lie in the same row or column, then
exactly one n-th of the entire area will be shaded.
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Vector Methods of Proof Checkerboards

Introducing the n×n Case

Theorem

Suppose that we are given an arbitrary n×n checkerboard ABCD with area
KABCD . Writing d to denote the total area of the n boxes along the
diagonal of this checkerboard, we have d = 1

n
KABCD .

The theorem holds when n= 1. Assume n≥ 2. and that the theorem
holds for all smaller values of n. In particular, the area of the n−1
diagonal boxes of any (n−1)× (n−1) checkerboard is exactly 1

n−1
of

the total area of that checkerboard.
Let PQ and RS be the leftmost and up-
permost of the crisscross lines of the n× n

checkerboard ABCD and let X be the point
where these lines meet. Thus, APXR is the
uppermost of the n diagonal boxes whose to-
tal area d we need to compute. There are n−1
more shaded boxes, all lying inside XSCQ.
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Vector Methods of Proof Checkerboards

Introducing the n×n Case (Cont’d)

Quadrilateral XSCQ is an (n − 1)× (n − 1)
checkerboard. By the inductive hypothesis,
the area of the n − 1 diagonal boxes inside
quadrilateral XSCQ is 1

n−1
KXSCQ . Thus, the

total shaded diagonal area d is given by the
formula d =KAPXR + 1

n−1
KXSCQ .

We want to show that d = 1
n
KABCD , i.e., nd =KABCD . To accomplish

this, we join X to each of the points A,B ,C and D. Since AP = 1
n
AB

and AR = 1
n
AD , we see that KAXP = 1

n
KAXB and KAXR = 1

n
KAXD .

Adding these and multiplying by n, we get nKAPXR =KABXD .

Similarly, since QC = n−1
n
DC and SC = n−1

n
BC , we get

KXQC = n−1
n
KXDC and KXSC = n−1

n
KKBC . If we add these and multiply

by n, we get nKXSCQ = (n−1)KDXBC . Finally, we get nd =
nKAPXR + nKXSCQ

n−1
=KABXD + (n−1)KDXBC

n−1
=KABXD +KDXBC =KABCD .
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Vector Methods of Proof A Bit of Trigonometry

Subsection 5

A Bit of Trigonometry
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Vector Methods of Proof A Bit of Trigonometry

The Sine and Cosine of the Sum of Two Angles

Theorem

The following formulas hold for all angles α and β.

a. cos(α+β)= cos(α)cos(β)− sin(α)sin(β).

b. sin(α+β)= sin(α)cos(β)+cos(α)sin(β).

Let O be the origin, let P be the point (1,0),
and let A and B be the points on the unit
circle such that ∠POA = α and ∠POB = β.
The coordinates of A are (cos(α),sin(α)) and
the coordinates of B are (cos(β),sin(β)). So

we can write
−−→
OA = (cos(α),sin(α)) and

−−→
OB =

(cos(β),sin(β)).

We showed that the dot product of two vectors is equal to the product
of their lengths times the angle between them.
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Vector Methods of Proof A Bit of Trigonometry

The Sine and Cosine of the Sum (Cont’d)

We have |
−−→
OA| = 1, |

−−→
OB | = 1 and the angle between these vectors is

α−β. Hence
−−→
OA ·

−−→
OB = cos(α−β). By the definition of the dot

product,
−−→
OA ·

−−→
OB = cos(α)cos(β)+ sin(α)sin(β). Thus, we conclude

that cos(α−β)= cos(α)cos(β)+ sin(α)sin(β).

By substituting −β for β, we get

cos(α+β)= cos(α)cos(β)− sin(α)sin(β).

To prove (b), we compute that

sin(α+β) = cos(90◦−α−β)
= cos(90◦−α)cos(β)+ sin(90◦−α)sin(β)
= sin(α)cos(β)+cos(α)sin(β).
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Vector Methods of Proof A Bit of Trigonometry

A Geometric Proof for 0<α+β< 90◦

Start with line OC , and draw OB and OA so that
∠BOC = α and ∠AOB = β. Drop perpendiculars
AW and AV from A to OB and OC . Drop, also,
perpendiculars WX and WU from W to AV and
OC . We see that ∠WAP and ∠VOP are comple-
mentary to equal vertical angles ∠APW =∠OPV .
Thus, ∠WAP =∠VOP =α. Assume that the length OA is 1 unit.

Then we have

cos(α+β) = OV =OU −VU =OW cos(α)−XW

= cos(β)cos(α)−AW sin(α)
= cos(β)cos(α)− sin(β)sin(α);

sin(α+β) = AV =XV +AX

= OW sin(α)+AW cos(α)
= cos(β)sin(α)+ sin(β)cos(α).
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Subsection 6

Linear Operators
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Vector Methods of Proof Linear Operators

Operators

An operator is a function T that yields a vector whenever we plug in
a vector, i.e., if ~v is any vector, then T (~v) is some vector determined
by ~v according to some specific rule.

Example: The operator
T (~v)=−~v

reverses the direction of all arrows representing vectors.

Equivalently, T rotates all arrows by 180◦.

Example: More generally, given any number θ, we can consider the
operator T that rotates arrows representing vectors counterclockwise
through θ degrees.
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Vector Methods of Proof Linear Operators

The Rotation Operators

If ~v = (a,b), we want to express the coordinates
c and d of the vector T (~v ) = (c ,d) in terms
of the coordinates a and b and the angle of
rotation θ.
Suppose that ~v =

−−→
PQ and T (~v)=

−−→
PR, so that

∠QPR = θ.

Let α be the angle between
−−→
PQ and the horizontal vector (0,1). Let

r = |~v | =
−−→
PQ. Then a= r cos(α) and b = r sin(α). The angle between

−−→
PR and the horizontal is α+θ, and the length PR =PQ = r . It follows

that (c ,d)=T (~v )=
−−→
PR = (r cos(α+θ),r sin(α+θ)). By the theorem,

c = r cos(α+θ)= r(cos(α)cos(θ)− sin(α)sin(θ))= acos(θ)−b sin(θ),

d = r sin(α+θ)= r(cos(α)sin(θ)+ sin(α)cos(θ))= asin(θ)+b cos(θ).

This transformation can be written (c ,d)= (a,b)

(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)

.
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Vector Methods of Proof Linear Operators

Linear Operators

An operator T is linear if, for all vectors ~v and ~w and for all scalars z ,

T (~v +~w)=T (~v )+T (~w);
T (z~v)= zT (~v).

Example: To check that our rotation operator is linear, we choose
arbitrary vectors ~v and ~w , and, denoting A the matrix of sines and
cosines, compute:

T (~v +~w )= (~v +~w )A=~vA+~wA=T (~v)+T (~w ).

Also, if z and ~v are an arbitrary scalar and an arbitrary vector, we have

T (z~v)= (z~v)A= z(~vA)= zT (~v).
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Vector Methods of Proof Linear Operators

Representation of the Sum of Two Vectors

It is also possible to see geometrically why the rotation operator T is
linear.

Represent the vectors ~v ,~w as arrows all having

the same tail P , say ~v =
−−→
PQ and ~w =

−−→
PR. Form

the parallelogram PQSR . We then have
−−→
PR =−−→

QS . Hence

−−→
PQ +

−−→
PR =

−−→
PQ +

−−→
QS =

−→
PS .

To add two vectors represented by arrows with a common tail, we
complete the parallelogram and the arrow along the diagonal of the
parallelogram represents the sum of the two original vectors.
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Vector Methods of Proof Linear Operators

Linearity of Rotation: A Different View

To see that rotation is linear we need to show, first, that rotating the
sum is the same as the sum of the rotated vectors:

We drew the parallelogram PQSR , and then we
rotate the entire configuration counterclock-
wise through θ degrees about point P .
The result of this rotation is parallelogram

PQ ′S ′R ′, and it should be clear that T (
−−→
PQ)=

−−→
PQ ′

, T (
−−→
PR)=

−−→
PR ′ and T (

−→
PS)=

−−→
PS ′

.

We can now see that
T (

−−→
PQ +

−−→
PR)=T (

−→
PS)=

−−→
PS ′ =

−−→
PQ ′+

−−→
PR ′ =T (

−−→
PQ)+T (

−−→
PR). Thus,

the operator T respects vector addition.

To see that the rotation operator T also respects scalar multiplication,
and hence is linear, observe that if we stretch a vector and then rotate
it, the result is the same as that obtained by first rotating and then
stretching the same vector.
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Vector Methods of Proof Linear Operators

Property of a Quadrilateral

Proposition

Outward-facing squares are drawn on the sides of an
arbitrary quadrilateral ABCD. If P ,Q ,R and S are the
centers of these four squares, then line segments PR

and SQ are equal and perpendicular.

Let T be the linear operator corresponding to a 90◦ counterclockwise

rotation. It suffices to show T (
−−→
PR)=

−−→
SQ. We express P ,Q ,R and S

in terms of A,B ,C and D. Let U be the midpoint of AB . Note that

PU =AU and PU is perpendicular to AU . Thus, T (
−−→
AU)=

−−→
UP. By the

linearity of T , T (~U)−T (~A)=T (~U − ~A)=T (
−−→
AU)=

−−→
UP = ~P − ~U . This

yields ~P = ~U +T (~U)−T (~A). We also know ~U = 1
2
(~A+ ~B). Thus,

~P = 1
2
(~A+ ~B +T (~A)+T (~B))−T (~A)= 1

2
(~A+ ~B −T (~A)+T (~B)).
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Vector Methods of Proof Linear Operators

Property of a Quadrilateral (Cont’d)

Marching around the quadrilateral, replacing A by B , B by C , C by
D, and D by A, we get

~P = 1
2
(~A+ ~B −T (~A)+T (~B)),

~Q = 1
2
(~B + ~C −T (~B)+T (~C )),

~R = 1
2
(~C + ~D −T (~C )+T (~D)),

~S = 1
2
(~D + ~A−T (~D)+T (~A)).

Next, we compute−−→
PR = ~R −~P = 1

2
(~C + ~D−T (~C )+T (~D)− ~A− ~B +T (~A)−T (~B)).

To compute T (
−−→
PR), we must apply T to the right side of this

equation. So we need to know how to compute T (T (~v )), where ~v is
an arbitrary vector. Since T is a 90◦ rotation, we get T (T (~v ))= −~v .

Using this fact, together with the linearity of T , we obtain

T (
−−→
PR)= 1

2
(T (~C )+T (~D)+ ~C − ~D −T (~A)−T (~B)− ~A+ ~B). Finally,

note
−−→
SQ = ~Q −~S = 1

2
(~B + ~C −T (~B)+T (~C )− ~D − ~A+T (~D)−T (~A)).

This is identical with the formula for T (
−−→
PR).
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Vector Methods of Proof Linear Operators

Equilateral Triangles Sharing a Vertex

Proposition

Equilateral triangles △PAB , △PCD and △PEF share
a vertex. The remaining six vertices of these three
triangles are joined in pairs by line segments FA,BC

and DE and points X ,Y and Z are the midpoints of
these three segments. Then △XYZ is equilateral.

Let T be the linear operator that rotates vectors counterclockwise

through 60◦. Choose the origin at P so that
−→
PA= ~A, ~B =T (~A),

~D =T (~C ) and ~F =T (~E ). We express X ,Y and Z in terms of A,C and

E . It suffices to show T (
−−→
ZX )=

−−→
ZY .

Note ~X = 1
2
(~A+~F )= 1

2
(~A+T (~E )). Similarly, ~Y = 1

2
(~C +T (~A)). and

~Z = 1
2
(~E +T (~C )). Therefore,

−−→
ZX = ~X −~Z = 1

2
(~A+T (~E )− ~E −T (~C )).

We now must apply T , and show the result equal to−−→
ZY = ~Y − ~Z = 1

2
(~C +T (~A)− ~E −T (~C )).
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Vector Methods of Proof Linear Operators

Equilateral Triangles Sharing a Vertex (Cont’d)

We got
−−→
ZX = 1

2
(~A+T (~E )− ~E −T (~C )). We now must apply T , and

show the result equal to
−−→
ZY = 1

2
(~C +T (~A)− ~E −T (~C )).

We first obtain a formula for T (T (~v )), where ~v is an arbitrary vector.

Assume
−−→
PQ =~v ,

−−→
PR =T (~v) and ~PS =T (T (~v )).

Then PR =PS and ∠RPS = 60◦. It follows that
△RPS is equilateral. Thus, RS =RP =PQ , and
∠SRP = 60◦ = ∠RPQ. We conclude that RS is
parallel and equal to PQ, i.e.,

−→
RS = −

−−→
PQ = −~v .

We, thus, have T (T (~v ))=T (T (
−−→
PQ))=

−→
PS =

−−→
PR +

−→
RS =T (~v)−~v .

We now have: T (
−−→
ZX )= 1

2
T (~A+T (~E )− ~E −T (~C ))=

1
2
(T (~A)+T (T (~E ))−T (~E )−T (T (~C )))=

1
2
(T (~A)+T (~E )− ~E −T (~E )−T (~C )+ ~C )= 1

2
(T (~A)− ~E −T (~C )+ ~C ).
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Vector Methods of Proof Linear Operators

Napoleon Bonaparte’s Theorem

Theorem

If we construct outward-pointing equilateral triangles on the three sides of
an arbitrary given triangle, then the triangle formed by the centroids of the
three equilateral triangles is equilateral.

Given △ABC , we construct equilateral △BCP ,
△CAQ and △ABR , with centroids X ,Y and Z .
We express X ,Y and Z in terms of A,B and C .

We then show T (
−−→
XY )=

−−→
XZ , where T is the op-

erator that rotates vectors 60◦ counterclockwise.
Since △BCP is equilateral, we see that T (

−−→
CB)=

−→
CP. Thus, ~P − ~C =T (~B − ~C ).

The linearity of T and some algebra yield ~P = ~C −T (~C )+T (~B). But
~X = 1

3
(~B + ~C +~P). So ~X = 1

3
(~B +2~C −T (~C )+T (~B)).
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Vector Methods of Proof Linear Operators

Napoleon Bonaparte’s Theorem (Cont’d)

We obtained ~X = 1
3
(~B +2~C −T (~C )+T (~B)).

Similarly, we get

~Y = 1

3
(~C +2~A−T (~A)+T (~C )),

~Z = 1

3
(~A+2~B −T (~B)+T (~A)).

These equations yield−−→
XY = ~Y − ~X = 1

3
(~C +2~A−T (~A)+T (~C )− ~B −2~C +T (~C )−T (~B))=

1
3
(2~A− ~B − ~C −T (~A)−T (~B)+2T (~C )) and

−−→
XZ = ~Z − ~X = 1

3
(~A+2~B −T (~B)+T (~A)− ~B −2~C +T (~C )−T (~B))=

1
3
(~A+ ~B −2~C +T (~A)−2T (~B)+T (~C )).

To compute T (
−−→
XY ), recall that T (T (~v))=T (~v)−~v . Therefore,

T (
−−→
XY )= 1

3
(2T (~A)−T (~B)−T (~C )−T (~A)+~A−T (~B)+~B+2T (~C )−2~C )=

1
3
(~A+ ~B −2~C +T (~A)−2T (~B)+T (~C )).

George Voutsadakis (LSSU) College Geometry June 2019 52 / 54



Vector Methods of Proof Linear Operators

Extension of Napoleon’s Theorem

Theorem

Suppose that three similar outward-pointing trian-
gles are constructed on the sides of an arbitrary
△ABC , where △PCB ∼ △CQA ∼ △BAR . If X ,Y

and Z are, respectively, the centroids of these three
similar triangles, then △XYZ is similar to each of
them.

We define a linear operator T as:
a counterclockwise rotation by θ =∠CPB =∠QCA=∠ABR ;
followed by multiplication by the scalar z = PB

PC
.

By the definition of T , T (
−−→
PC )=

−−→
PB . Since △PCB ∼△CQA,

PC
CQ

= PB
CA

. So CA
CQ

= PB
PC

= z . It follows that if we rotate the vector
−−→
CQ

counterclockwise through θ and then multiply by the scalar z , the

result is the vector
−→
CA. Thus, T (

−−→
CQ)=

−→
CA. Similarly, T (

−→
BA)=

−−→
BR .
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Vector Methods of Proof Linear Operators

Extension of Napoleon’s Theorem (Cont’d)

We show that T (
−−→
XY )=

−−→
XZ . It will then fol-

low that ∠YXZ = θ =∠CPB . We also know
that XZ

XY
= z = PB

PC
. Hence PC

XY
= PB

XZ
. Thus,

△XYZ ∼ △PCB by the SAS similarity crite-
rion.

We have the following equations:

T (~C )−T (~P)=T (
−−→
PC )=

−−→
PB = ~B −~P ,

T (~Q)−T (~C )=T (
−−→
CQ)=

−→
CA= ~A− ~C ,

T (~A)−T (~B)=T (
−→
BA)=

−−→
BR = ~R − ~B .

But ~Y = 1
3
(~C + ~Q + ~A),

~X = 1
3
(~P + ~C + ~B), and ~Z = 1

3
(~B + ~A+ ~R). By

adding the preceding three equations and multiplying by 1
3
, we obtain

T (~Y )−T (~X )= ~Z − ~X . Thus, T (
−−→
XY )=

−−→
XZ , as desired.
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