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Paths and Cycles Connectivity

Subsection 1

Connectivity

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 3 / 40



Paths and Cycles Connectivity

Walks

Given a graph G , a walk in G is a finite sequence of edges of the form
v0v1, v1v2, . . . , vm−1vm, also denoted by v0 → v1 → v2 → · · · → vm,
in which any two consecutive edges are adjacent or identical.

Such a walk determines a sequence of vertices v0, v1, . . . , vm.

We call v0 the initial vertex and vm the final vertex of the walk, and
speak of a walk from v0 to vm.

The number of edges in a walk is called its length.

Example:

In the following graph, v → w →
x → y → z → z → y → w is a
walk of length 7 from v to w .
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Paths and Cycles Connectivity

Trails and Paths

A walk in which all the edges are distinct is a trail.

If, in addition, the vertices v0, v1, . . . , vm are distinct (except, possibly,
v0 = vm), then the trail is a path.

A path or trail is closed if v0 = vm, and a closed path containing at
least one edge is a cycle.

Note that any loop or pair of multiple edges is a cycle.

Example:

v → w → x → y → z → z → x is
a trail.
v → w → x → y → z is a path.
v → w → x → y → z → x → v

is a closed trail.
v → w → x → y → v is a cycle.

A cycle of length 3, such as v → w → x → v , is a triangle.
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Paths and Cycles Connectivity

Connected Graphs

A graph is connected if and only if there is a path between each pair
of vertices.

Example:
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Paths and Cycles Connectivity

Bipartite Graphs and Cycles

Note also that G is a bipartite graph if and only if each cycle of G
has even length.

We prove only one half of this result, leaving the proof of its converse
as an exercise:

Theorem

If G is a bipartite graph, then each cycle of G has even length.

Since G is bipartite, we can split its vertex set into two disjoint sets A
and B so that each edge of G joins a vertex of A and a vertex of B .

Let v0 → v1 → · · · → vm → v0 be a cycle in G , and assume (without
loss of generality) that v0 is in A. Then v1 is in B , v2 is in A, and so
on. Since vm must be in B , the cycle has even length.
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Paths and Cycles Connectivity

Bounding the Number of Edges

Consider the number of edges of a simple connected graph on n
vertices:

The graph has fewest edges when it has no cycles;
The graph has most edges when it is a complete graph.

Thus, the number of edges must lie between n − 1 and n(n−1)
2 .

Theorem

Let G be a simple graph on n vertices. If G has k components, then the
number m of edges of G satisfies n − k ≤ m ≤ (n−k)(n−k+1)

2 .

We prove m ≥ n − k by induction on the number of edges of G :

The result is trivial if G is a null graph.
If G contains as few edges as possible (say m0), then the removal of
any edge of G must increase the number of components by 1. The
graph that remains has n vertices, k + 1 components, and m0 − 1
edges. By the induction hypothesis, m0 − 1 ≥ n − (k + 1), giving
m0 ≥ n − k , as required.
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Paths and Cycles Connectivity

Proving the Upper Bound

To prove the upper bound, we can assume that each component of G
is a complete graph. Suppose, then, that there are two components
Ci and Cj with ni and nj vertices, respectively, where ni ≥ nj > 1.

If we replace Ci and Cj by complete graphs on ni + 1 and nj − 1
vertices, then the total number of vertices remains unchanged, and
the number of edges is changed by

(ni+1)ni−ni (ni−1)
2 −

nj (nj−1)−(nj−1)(nj−2)
2 = ni − nj + 1 > 0.

It follows that, in order to attain the maximum number of edges, G
must consist of a complete graph on n− k + 1 vertices and k − 1
isolated vertices. The result now follows.

Corollary

Any simple graph with n vertices and more than (n−1)(n−2)
2 edges is

connected.
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Paths and Cycles Connectivity

Disconnecting Sets

We ask “how connected is a connected graph?”

One interpretation of this is to ask how many edges or vertices must
be removed in order to disconnect the graph.

A disconnecting set in a connected graph G is a set of edges whose
removal disconnects G .

Example: In the graph of the figure on the left the sets

{e1, e2, e5} and {e3, e6, e7, e8} are disconnecting sets of G . The
disconnected graph left after removal of the second is on the right.
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Paths and Cycles Connectivity

Cutsets and Bridges

We define a cutset to be a disconnecting set, no proper subset of
which is a disconnecting set.
Example: {e3, e6, e7, e8} is a cutset.

The removal of the edges in a cutset always leaves a graph with
exactly two components.
If a cutset has only one edge e, we call e a bridge (right figure).
For (possibly disconnected) graphs G ,

a disconnecting set of G is a set of edges whose removal increases
the number of components of G ;
a cutset of G is a disconnecting set, no proper subset of which is a
disconnecting set.
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Paths and Cycles Connectivity

Edge Connectivity

If G is connected, its edge connectivity λ(G ) is the size of the
smallest cutset in G .

Thus λ(G ) is the minimum number of edges that we need to delete in
order to disconnect G .

Example:

For G in the figure, λ(G ) = 2, corresponding to the cutset {e1, e2}.

We also say that G is k-edge connected if λ(G ) ≥ k .

Example: The graph above is 1-edge connected and 2-edge
connected, but not 3-edge connected.
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Paths and Cycles Connectivity

Separating Sets and Cut-Vertices

We also need the analogous concepts for the removal of vertices:

A separating set in a connected graph G is a set of vertices whose
deletion disconnects G or leaves only one vertex; recall that when we
delete a vertex, we also remove its incident edges.

Example:

In the graph of the figure, the sets {w , x} and {w , x , y} are
separating sets of G ; the disconnected graph left after removal of the
first is shown on the right.

If a separating set contains only one vertex v , we call v a cut-vertex.
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Paths and Cycles Connectivity

Connectivity

If G is connected and not a complete graph, its (vertex)
connectivity κ(G ) is the size of the smallest separating set in G .

Thus κ(G ) is the minimum number of vertices that we need to delete
in order to disconnect G .

Example: If G is the graph in the
figure, then κ(G ) = 2, correspond-
ing to the separating set {w , x}.

We also say that G is k-connected if κ(G ) ≥ k .

Example: The graph above is 1-connected and 2-connected, but not
3-connected.
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Paths and Cycles Connectivity

Connectivity and Edge-Connectivity

Lemma

For any graph G with n vertices κ(G ) ≤ n − 1.

Clearly, removing n − 1 vertices leaves only one vertex.

Thus, we need to remove at most n − 1 vertices to disconnect the
graph. It follows that κ(G ) ≤ n − 1.

Theorem

For any graph G with n vertices,

κ(G ) ≤ λ(G ).

Consider a smallest cut set [S ,S ′] separating the graph into two sets
of vertices S and S ′.

Note that, if S has m vertices, then n ≥ m + 1.

So (m − 1)n ≥ (m − 1)(m + 1) ⇒ mn − n ≥ m2 − 1
⇒ m(n −m) ≥ n − 1 or |S | · |S ′| ≥ n − 1.
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Paths and Cycles Connectivity

Connectivity and Edge-Connectivity (Cont’d)

We consider two cases:

If every vertex of S is adjacent to every vertex in S ′, then

λ(G) = |[S , S ′]| = |S | · |S ′| ≥ n − 1 ≥ κ(G).

Otherwise, choose x ∈ S and y ∈ S ′ not adjacent.

Let T be the set of neighbors of x in S ′

together with those vertices in S − {x}
with neighbors in S ′.
Note that |T | ≤ |[S , S ′]|.

Every path from x to y passes through a vertex in T .
So T is a separating set.
Now we have

λ(G) = |[S , S ′]| ≥ |T | ≥ κ(G).

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 16 / 40



Paths and Cycles Eulerian Graphs

Subsection 2

Eulerian Graphs
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Paths and Cycles Eulerian Graphs

Eulerian and Semi-Eulerian Graphs

A connected graph G is Eulerian if there exists a closed trail
containing every edge of G .

Such a trail is an Eulerian trail.

The definition requires each edge to be traversed once and once only.

A non-Eulerian graph G is semi-Eulerian if there exists a trail
containing every edge of G .

Example: An Eulerian, semi-Eulerian and non-Eulerian graph,
respectively.
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Paths and Cycles Eulerian Graphs

The Königsberg Bridges Problem

A typical problem related to Eulerian graphs might ask whether a
given diagram can be drawn without lifting one’s pencil from the
paper and without repeating any lines.

Königsberg Bridges Problem (Euler): Can a pedestrian cross each
of the seven bridges exactly once and return to his starting point?

This is equivalent to asking whether the graph on the right has an
Eulerian trail.
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Paths and Cycles Eulerian Graphs

Existence of Cycles

Lemma

If G is a graph in which the degree of each vertex is at least 2, then G

contains a cycle.

If G has any loops or multiple edges, the result is trivial. We can
therefore suppose that G is a simple graph. Let v be any vertex of G .
We construct a walk v → v1 → v2 → · · · inductively by choosing:

v1 to be any vertex adjacent to v ;
for each i > 1, vi+1 to be any vertex adjacent to vi except vi−1;
the existence of such a vertex is guaranteed by our hypothesis.

Since G has only finitely many vertices, we must eventually choose a
vertex that has been chosen before. Suppose vk is the first such
vertex. Then the part of the walk lying between the two occurrences
of vk is the required cycle.

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 20 / 40



Paths and Cycles Eulerian Graphs

Euler’s Characterization of Eulerian Graphs

Theorem (Euler 1736)

A connected graph G is Eulerian if and only if the degree of each vertex of
G is even.

⇒: Suppose that P is an Eulerian trail of G . Whenever P passes through
a vertex, there is a contribution of 2 towards the degree of that
vertex. Since each edge occurs exactly once in P , each vertex must
have even degree.

⇐: The proof is by induction on the number of edges of G . Suppose that
the degree of each vertex is even. Since G is connected, each vertex
has degree at least 2. So, by the lemma, G contains a cycle C .

If C contains every edge of G , the proof is complete.
If not, we remove from G the edges of C to form a new, possibly
disconnected, graph H with fewer edges than G and in which each
vertex still has even degree.
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Paths and Cycles Eulerian Graphs

Euler’s Characterization of Eulerian Graphs (Cont’d)

We remove from G the edges of C to form a new, possibly
disconnected, graph H with fewer edges than G and in which each
vertex still has even degree. By the induction hypothesis, each
component of H has an Eulerian trail. Since each component of H has
at least one vertex in common with C , by connectedness, we obtain the
required Eulerian trail of G as follows:

Trace the edges of C until a non-isolated
vertex of H is reached;

Trace the Eulerian trail of the component
of H that contains that vertex;

Continue along the edges of C until
reaching a vertex belonging to another
component of H, and so on.

The whole process terminates when we return to the initial vertex.
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Paths and Cycles Eulerian Graphs

Consequence of Euler’s Theorem

Corollary

A connected graph is Eulerian if and only if its set of edges can be split up
into disjoint cycles.

Corollary

A connected graph is semi-Eulerian if and only if it has exactly two
vertices of odd degree.

Note that, in a semi-Eulerian graph, any semi-Eulerian trail must have
one vertex of odd degree as its initial vertex and the other as its final
vertex.

Note also that, by the Handshaking Lemma, a graph cannot have
exactly one vertex of odd degree.
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Paths and Cycles Eulerian Graphs

Fleury’s Algorithm

We conclude with an algorithm for constructing an Eulerian trail in a
given Eulerian graph.

Theorem (Fleury’s Algorithm)

Let G be an Eulerian graph. Then the following construction is always
possible, and produces an Eulerian trail of G .

Start at any vertex u and traverse the edges in an arbitrary manner, subject
only to the following rules:

(i) Erase the edges as they are traversed, and if any isolated vertices result,
erase them too;

(ii) At each stage, use a bridge only if there is no alternative.

We show first that the construction can be carried out at each stage.
Suppose that we have just reached a vertex v .

If v 6= u, then the subgraph H that remains is connected and contains
only two vertices of odd degree, u and v .
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Paths and Cycles Eulerian Graphs

Fleury’s Algorithm (Cont’d)

If v 6= u, then the subgraph H that remains is connected and contains
only two vertices of odd degree, u and v .
We must show that the removal of the next edge does not disconnect
H , or, equivalently, that v is incident with at most one bridge.

If this is not the case, then there exists a bridge vw ,
such that the component K of H − vw containing
w does not contain u. Since the vertex w has odd
degree in K , some other vertex of K must also
have odd degree, yielding a contradiction.

If v = w , the proof is almost identical, as long as there are still edges
incident with u.

We show that this construction always yields a complete Eulerian trail:
There can be no edges of G remaining untraversed when the last
edge incident to u is used. Otherwise the removal of some earlier
edge adjacent to one of these edges would have disconnected the
graph, contradicting (ii).
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Paths and Cycles Hamiltonian Graphs

Subsection 3

Hamiltonian Graphs
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Paths and Cycles Hamiltonian Graphs

Hamiltonian and Semi-Hamiltonian Graphs

In the previous section we discussed whether there exists a closed trail
that includes every edge of a given connected graph G .
A similar problem is to determine whether there exists a closed trail
passing exactly once through each vertex of G .
Such a trail must be a cycle, except when G is the graph N1.
Such a cycle is a Hamiltonian cycle and G is a Hamiltonian graph.
A non-Hamiltonian graph G is semi-Hamiltonian if there exists a
path passing through every vertex.
Example: A Hamiltonian, semi-Hamiltonian and non-Hamiltonian
graph, respectively.
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Paths and Cycles Hamiltonian Graphs

Hamilton and the Dodecahedron Graph

The name “Hamiltonian cycle” arises from the fact that Sir William
Hamilton investigated the existence of such cycles in the
dodecahedron graph:

A Hamiltonian cycle in the dodecahedron graph is shown with heavy
lines denoting its edges.
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Paths and Cycles Hamiltonian Graphs

Ore’s Theorem

Finding necessary and sufficient conditions for a connected graph to
be Hamiltonian is an open problem.

Theorem (Ore, 1960)

If G is a simple graph with n (≥ 3) vertices, and if deg(v) + deg(w) ≥ n,
for each pair of non-adjacent vertices v and w , then G is Hamiltonian.

We assume the theorem false, and derive a contradiction.

Let G be a non-Hamiltonian graph with n vertices, satisfying the given
condition on the vertex degrees. By adding extra edges if necessary,
we may assume that G is “only just” non-Hamiltonian, in the sense
that the addition of any further edge gives a Hamiltonian graph.

Note: Adding extra edges does not violate the condition on the vertex
degrees.
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Paths and Cycles Hamiltonian Graphs

Ore’s Theorem (Cont’d)

It follows that G contains a path v1 → v2 → · · · → vn passing
through every vertex. But since G is non-Hamiltonian, the vertices v1
and vn are not adjacent. So, by hypothesis, deg(v1) + deg(vn) ≥ n. It
follows that there must be some vertex vi adjacent to v1 with the
property that vi−1 is adjacent to vn.

But then the following is a Hamiltonian cycle:

v1 → v2 → · · · → vi−1 → vn → vn−1 → · · · → vi+1 → vi → v1

This contradicts the non-Hamiltonicity of G .
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Paths and Cycles Hamiltonian Graphs

Dirac’s Theorem

Lacking a characterization of Hamiltonicity, the best we can do is
formulate useful sufficient or useful necessary conditions.

Corollary (Dirac, 1952)

If G is a simple graph with n (≥ 3) vertices, and if deg(v) ≥ n
2 , for each

vertex v , then G is Hamiltonian.

The result follows immediately from Ore’s Theorem, since for each
pair of vertices v and w (whether adjacent or not),

deg(v) + deg(w) ≥
n

2
+

n

2
= n.
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Paths and Cycles Some Algorithms

Subsection 4

Some Algorithms
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Paths and Cycles Some Algorithms

The Shortest Path Problem

Suppose that we have a “map” in which the letters A-L refer to
towns that are connected by roads:

If the lengths of these roads are as marked, we want to compute the
length of the shortest path from A to L.

Note that an upper bound for the answer can easily be obtained by
taking any path from A to L and calculating its length.

Example: The path A
3
→ B

2
→ D

3
→ G

5
→ J

5
→ L has total length 18.

So the length of the shortest path cannot exceed 18.
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Paths and Cycles Some Algorithms

Weighted Graphs and Minimum-Weight Paths

A connected graph in which a nonnegative number is assigned to
each edge is called a weighted graph. The number assigned to each
edge e is the weight of e, denoted by w(e).

The problem is to find a path from A to L with minimum total weight.

If the weight of each edge is 1, the problem reduces to that of finding
the number of edges in the shortest path from A to L.

To solve this problem we move across the graph from left to right,
associating with each vertex V a number ℓ(V ) indicating the shortest
distance from A to V .

E.g., when we reach K , ℓ(K ) is the smallest of ℓ(H) + 6 and ℓ(I ) + 2.
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Paths and Cycles Some Algorithms

Illustrating the Algorithm

We first assign A the label 0.

Adjacent to A:

ℓ(B) = ℓ(A) + 3 = 3;
ℓ(E ) = ℓ(A) + 9 = 9;
ℓ(C ) = ℓ(A) + 2 = 2.
ℓ(C ) = 2 is the smallest
label.

Adjacent to C :

ℓ(F ) = ℓ(C ) + 9 = 1;
ℓ(E ) = ℓ(C ) + 6 = 8 < 9.
ℓ(B) = 3 is the smallest
label.
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Paths and Cycles Some Algorithms

Illustrating the Algorithm (Cont’d)

Adjacent to B :
ℓ(D) = ℓ(B) + 2 = 5;
ℓ(E ) = ℓ(B) + 4 = 7 < 8.
ℓ(D) = 5 is the smallest label.

Continuing in this way, we successively obtain the permanent labels

ℓ(E) = 7, ℓ(G) = 8, ℓ(H) = 9, ℓ(F ) = 10, ℓ(I ) = 12, ℓ(J) = 13, ℓ(K) = 14, ℓ(L) = 17.

It follows that the shortest path from A to L has length 17.
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Paths and Cycles Some Algorithms

The Chinese Postman Problem

A postman wishes to deliver his letters, covering the least possible
total distance and returning to his starting point.

He must obviously traverse each road in his route at least once, but
should avoid covering too many roads more than once.

We consider a weighted graph corresponding to the network of roads,
with the weight of each edge being the length of the corresponding
road.

The requirement is to find a closed walk of minimum total weight
that includes each edge at least once.

If the graph is Eulerian, then any Eulerian trail is a closed walk of the
required type.
Such an Eulerian trail can be found by Fleury’s algorithm.
If the graph is not Eulerian, then the problem is harder, but there are
still efficient algorithms for its solution.
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Paths and Cycles Some Algorithms

The Chinese Postman Problem: A Special Case

Suppose exactly two vertices have odd degree:

Since vertices B and E are the only vertices of odd degree, we can find
a semi-Eulerian trail from B to E covering each edge exactly once.
In order to return to the starting point, covering the least possible
distance, we now find the shortest path from E to B using the
algorithm described previously.
The solution of the Chinese postman problem is then obtained by
taking this shortest path together with the original semi-Eulerian trail.

Note: If we combine the shortest path and the semi-Eulerian trail, we
get an Eulerian graph as on the right figure.
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Paths and Cycles Some Algorithms

The Traveling Salesman Problem

A travelling salesman wishes to visit several given cities and return to
his starting point, covering the least possible total distance.

Example: If there are five cities A, B, C, D and E, and if the distances
are as in the figure

then the shortest possible route is A
2
→ B

3
→ D

5
→ E

8
→ C

8
→ A.

Thus, we get total distance of 26.
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Paths and Cycles Some Algorithms

The Traveling Salesman Problem (Cont’d)

This problem can also be reformulated in terms of weighted graphs.

In this case, the requirement is to find a Hamiltonian cycle of least
possible total weight in a weighted complete graph.

One possible algorithm is to calculate the total distance for all
possible Hamiltonian cycles, but this is far too complicated for even a
moderate number of cities:

For 20 cities, then the number of possible cycles is 19!
2 ≈ 6× 1016.

Various other algorithms have been proposed, but they take too long
to apply.

There are several heuristic algorithms that quickly tell us
approximately what the shortest distance is.
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