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Trees Properties of Trees

Trees and Forests

A forest is a graph that contains no cycles.

A connected forest is a tree.

Example: The figure shows a forest with four components, each of
which is a tree.

Note that trees and forests are simple graphs.

Note: Because of their relatively simple structure, trees serve as
testing ground for conjectures about general graphs.

Several conjectures not proven yet for arbitrary graphs are known to
be true for trees.
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Trees Properties of Trees

Characterizations of Trees

Theorem

Let T be a graph with n vertices. Then the following are equivalent:

(i) T is a tree;

(ii) T contains no cycles, and has n − 1 edges;

(iii) T is connected, and has n − 1 edges;
(iv) T is connected, and each edge is a bridge;

(v) Any two vertices of T are connected by exactly one path;

(vi) T contains no cycles, but the addition of any new edge creates
exactly one cycle.

(i)⇒(ii): If T is a tree, then it contains no cycles and has n− 1 edges.

If T is a tree it is by definition acyclic and connected.
We use induction on the number n of vertices to show that it must
have n − 1 edges.

For n = 1 the result is trivial.
Assume the conclusion holds for any tree with k vertices, 1 ≤ k < n.
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Trees Properties of Trees

Characterizations of Trees (Cont’d)

(i)⇒(ii) (Cont’d):

Let T be a tree with n vertices. Since T is acyclic and connected, the
removal of any edge leaves two trees T1 and T2, with, say, k and n− k

vertices, respectively, where 1 ≤ k < n. By the Induction Hypothesis,
T1 has k − 1 edges and T2 has n − k − 1 edges. Therefore, T has
(k − 1) + (n − k − 1) + 1 = n− 1 edges.

(ii)⇒(iii): If T is acyclic with n − 1 edges, then it is connected.

Suppose that T is disconnected and consists of k components
T1, . . . ,Tk , k > 1, with, say, n1, . . . , nk vertices, respectively,
n1 + · · · + nk = n. Then each component is acyclic and connected,
i.e., a tree. By (i)⇒(ii), each component Ti has one fewer edge than
it has vertices, i.e., component Ti has ni − 1 edges. Therefore T has
number of edges:

(n1−1)+(n2−1)+· · ·+(nk−1) = (n1+· · ·+nk)−k = n−k
k>1
< n−1.

But this contradicts the hypothesis that T has exactly n − 1 edges.
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Trees Properties of Trees

Characterizations of Trees (Cont’d)

(iii)⇒(iv): If T is connected with n − 1 edges, then each edge is a
bridge.

Recall: A simple graph with n vertices and k components has at least
n − k edges.

Suppose that T has an edge which is not a bridge. Then the removal
of that edge leaves a connected graph with n vertices. This graph
must have at least n − 1 edges. Thus, the original graph has at least
(n − 1) + 1 = n edges, a contradiction.
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Trees Properties of Trees

Characterizations of Trees (Cont’d)

(iv)⇒(v): If T is connected and each edge is a bridge, then any two
vertices of T are connected by exactly one path.

Since T is connected, any two vertices are connected by at least one
path.

Suppose two vertices x 6= y are connected by at least two paths, say

P1 : x → v1 → v2 → · · · → vk−1 → y ;
P2 : x → u1 → u2 → · · · → uℓ−1 → y .

Consider the first common vertex on P1 and P2 after x (such exists,
since they share y 6= x), say vi = uj . Then the path

x → v1 → v2 → · · · → vi = uj → uj−1 → · · · → u1 → x

is a cycle. But then x → v1 is not a bridge, a contradiction.
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Trees Properties of Trees

Characterizations of Trees (Conclusion)

(v)⇒(vi): If any two vertices of T are connected by exactly one path
then:
(a) T contains no cycles;
(b) The addition of any new edge in T creates exactly one cycle.

(a) Suppose T contains a cycle, say x → v1 → v2 → · · · → vk−1 → x .
Then the vertices x and v1 are connected by two paths P1 : x → v1
and P2 : x → vk−1 → · · · → v2 → v1, a contradiction.

(b) Suppose the addition of a new edge x → y creates no cycle.

Then there is no path from x to y in T , contradicting the hypothesis.

Suppose that the addition of a new edge x → y creates two cycles,
say

C1 : x → y → v1 → · · · → vk−1 → x ;
C2 : x → y → u1 → · · · → uℓ−1 → x .

Then in T there are two different paths from y to x :
P1 : y → v1 → · · · vk−1 → x and P2 : y → u1 → · · · → uℓ−1 → x .
This contradicts the hypothesis.
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Trees Properties of Trees

Characterizations of Trees (Conclusion)

(vi)⇒(i): If T contains no cycles and the addition of any new edge
creates exactly one cycle, then T is connected.

Suppose that T is disconnected.

Then, if we add to T any edge joining a vertex of one component to
a vertex in another, no cycle is created.

This contradicts the hypothesis.

Corollary

If G is a forest with n vertices and k components, then G has n− k edges.

Apply Part (iii) of the theorem to each component of G .

By the Handshaking Lemma, the sum of the degrees of the n vertices
of a tree is equal to twice the number of edges (= 2n− 2). Therefore:

If n > 2, any tree on n vertices has at least two end-vertices.
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Trees Properties of Trees

Spanning Trees

Given any connected graph G , we can choose a cycle and remove any
one of its edges, and the resulting graph remains connected.

We repeat this procedure with one of the remaining cycles, continuing
until there are no cycles left.

The graph that remains is a tree that connects all the vertices of G .
It is called a spanning tree of G .

Example: Remove in turn e5, e6, e7 and e8.
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Trees Properties of Trees

Spanning Forest, Cycle Rank and Cutset Rank

If G is a graph with n vertices, m edges and k components, we can
carry out the spanning tree procedure on each component of G .

The result is called a spanning forest.

The total number of edges removed in this process is the cycle rank

of G , denoted by γ(G ). Note that γ(G ) = m − n + k .

We also define the cutset rank of G to be the number of edges in a
spanning forest, denoted by ξ(G ). Note that ξ(G ) = n − k .

Example:

In the graph G above, γ(G ) = 4 = ξ(G ).
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Trees Properties of Trees

Properties of Spanning Forests

The complement of a spanning forest T of a (not necessarily simple)
graph G is the graph obtained from G by removing the edges of T .

Theorem

If T is any spanning forest of a graph G , then:

(i) Each cutset of G has an edge in common with T ;

(ii) Each cycle of G has an edge in common with the complement of T .

(i) Let C ∗ be a cutset of G . The removal of C ∗ splits a component of G
into two subgraphs H and K . Since T is a spanning forest, T must
contain an edge joining a vertex of H to a vertex of K . This edge is
the required edge.

(ii) Let C be a cycle of G having no edge in common with the
complement of T . Then C must be contained in T . This contradicts
the acyclicity of T .
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Trees Properties of Trees

Fundamental Set of Cycles

If we add to a spanning forest T of a graph G any edge of G not
contained in T , then we obtain a unique cycle.

The set of all cycles formed in this way, by adding separately each
edge of G not contained in T , is the fundamental set of cycles

associated with T .

Sometimes we are not interested in the particular spanning forest
chosen, and refer simply to a fundamental set of cycles of G .

Note that the number of cycles in any fundamental set must equal
the cycle rank γ(G ) of G .

Example: For the graph G and spanning tree T shown on the left,

the fundamental set of cycles is shown on the right.
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Trees Properties of Trees

Fundamental Set of Cutsets

The removal of any edge of a spanning forest T of a graph G divides
the vertex set of T into two disjoint sets V1 and V2.

The set of all edges of G joining a vertex of V1 to one of V2 is a
cutset of G .

The set of all cutsets obtained by removing separately each edge of T
is the fundamental set of cutsets associated with T .

Note that the number of cutsets in any fundamental set must equal
the cutset rank ξ(G ) of G .

Example:

The fundamental set of cutsets of G associated with T consists of:
{e1, e5}, {e2, e5, e7, e8}, {e3, e6, e7, e8} and {e4, e6, e8}.
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Trees Counting Trees

Subsection 2

Counting Trees
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Trees Counting Trees

Example: Number of Labeled Trees

We look at the number of labeled trees with a given number of
vertices.

Example: The figure shows three ways of labeling a tree with four
vertices.

Since the second labeled tree is the reverse of the first one, these two
labeled trees are the same.
Neither of the first two labeled trees is isomorphic to the third labeled
tree, as can be seen by comparing the degrees of vertex 3.

Since the reverse of any labeling does not result in a new one, the
number of ways of labeling this tree is 4!

2 = 12.
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Trees Counting Trees

Example (Cont’d)

The number of ways of labeling the following tree is 4.

The central vertex can be labeled in four different ways;
Each one determines the labeling.

The previous two shapes cover all possible unlabeled trees on four
vertices.

It follows that the total number of non-isomorphic labeled trees on
four vertices is 12 + 4 = 16.
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Trees Counting Trees

Cayley’s Theorem

Theorem (Cayley, 1889)

There are nn−2 distinct labeled trees on n vertices.

We establish a one-one correspondence between the set of labeled
trees of order n and the set of sequences (a1, a2, . . . , an−2), where
each ai is an integer satisfying 1 ≤ ai ≤ n. Since there are precisely
nn−2 such sequences, the result follows.

We assume that n ≥ 3, since the result is trivial if n = 1 or 2.
Let T be a labeled tree of order n:

If b1 is the smallest label assigned to an end-vertex, we let a1 be the
label of the vertex adjacent to the vertex b1.
We then remove b1 and its incident edge, leaving a labeled tree of
order n − 1. We let b2 be the smallest label assigned to an end-vertex
of the new tree, and a2 be the label of the vertex adjacent to b2.
We then remove the vertex b2 and its incident edge, as before.
We proceed in this way until there are only two vertices left, and the
required sequence is (a1, a2, . . . , an−2).
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Trees Counting Trees

Example of the Construction of the Sequence

Example: Let T be the labeled tree shown below.

b1 = 2, a1 = 6;
b2 = 3, a2 = 5;
b3 = 4, a3 = 6;
b4 = 6, a4 = 5;
b5 = 5, a5 = 1.

The required sequence is therefore (6, 5, 6, 5, 1).
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Trees Counting Trees

Construction of the Tree

To obtain the reverse correspondence, we take (a1, . . . , an−2):

let b1 be the smallest number that does not appear in it, and join the
vertices a1 and b1;
Then remove a1 from the sequence, remove the number b1 from
consideration, and proceed as before.

In this way we build up the tree, edge by edge.

We can check that, if we start with any labeled tree,

find the corresponding sequence,
and then find the labeled tree corresponding to that sequence,

we obtain the tree we started from.

We have now established the required correspondence, and Cayley’s
Theorem follows.
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Trees Counting Trees

Example of the Construction of the Labeled Tree

Suppose we start with the sequence (6, 5, 6, 5, 1).
Then we build the labeled tree as follows:

b1 = 2; Add edge 62; List: (3, 4, 7); Sequence: (5, 6, 5, 1);
b2 = 3; Add edge 53; List: (4, 7); Sequence: (6, 5, 1);
b3 = 4; Add edge 64; List: (6, 7); Sequence: (5, 1);
b4 = 6; Add edge 56; List: (5, 7); Sequence: (1);
b5 = 5; Add edge 15; List: (1, 7); Sequence: ();
Add edge 17.
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Trees Counting Trees

Second Proof of Cayley’s Theorem

Let T (n, k) be the number of labeled trees on n vertices in which a
given vertex v has degree k .

We derive an expression for T (n, k), and then sum from k = 1 to
k = n − 1 to obtain the result.

Let A be any labeled tree in which deg(v) = k − 1. The removal from
A of any edge wz , not incident with v , leaves two subtrees, one
containing v and either w or z (w , say), and the other z . If we join
the vertices v and z , we obtain a labeled tree B in which deg(v) = k .

We call a pair (A,B) of labeled
trees a linkage if B can be ob-
tained from A as described.

A may be chosen in T (n, k − 1) ways; B is uniquely defined by the
edge wz which may be chosen in (n− 1)− (k − 1) = n− k ways; The
total number of linkages (A,B) is (n − k)T (n, k − 1).
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Trees Counting Trees

Counting Linkages

Now let B be a labeled tree in which deg(v) = k , and let T1, . . . ,Tk

be the subtrees obtained from B by removing the vertex v and each
edge incident with v .

We obtain a labeled tree A with deg(v) = k − 1 by removing from B

just one of these edges (vwi , say, where wi lies in Ti ), and joining wi

to any vertex u of any other subtree T .

Note that the corresponding pair
(A,B) of labeled trees is a linkage,
and that all linkages may be ob-
tained in this way.

B can be chosen in T (n, k) ways; The number of ways of joining wi

to vertices in any other Tj is (n − 1)− ni , where ni is the number of
vertices of Ti ; Thus, the total number of linkages (A,B) is
T (n, k)[(n − 1− n1) + · · ·+ (n − 1− nk)] = (n − 1)(k − 1)T (n, k).
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Trees Counting Trees

Counting Labeled Trees

By the two countings of the total number of linkages, we get

(n − k)T (n, k − 1) = (n − 1)(k − 1)T (n, k).

Noting that T (n, n − 1) = 1, we get:

T (n, k) = (n−1)k
n−k−1T (n, k + 1)

= (n−1)2k(k−1)
(n−k−1)(n−k−2)T (n, k + 2)

= (n−1)3k(k+1)(k+2)
(n−k−1)(n−k−2)(n−k−3)T (n, k + 3)

= · · ·

= (n−1)n−k−1k(k+1)(k+2)···(k+(n−k−2))
(n−k−1)(n−k−2)···(n−k−(n−k−1))

T (n, k + (n − k + 1))

= (n−1)n−k−1(n−2)!
(n−k−1)!(k−1)! =

(

n−2
k−1

)

(n − 1)n−k−1.
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Trees Counting Trees

Counting Labeled Trees (Cont’d)

We found that

T (n, k) =

(

n− 2

k − 1

)

(n − 1)n−k−1.

So, summing over all possible values of k , we deduce that the number
T (n) of labeled trees on n vertices is

T (n) =

n−1
∑

k=1

T (n, k)

=
n−1
∑

k=1

(

n−2
k−1

)

(n − 1)n−k−1

= {(n − 1) + 1}n−2

= nn−2.
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Trees Counting Trees

On the Number of Spanning Trees of Kn

Corollary

The number of spanning trees of Kn is nn−2.

To each labeled tree on n vertices there corresponds a unique
spanning tree of Kn.

Conversely, each spanning tree of Kn gives rise to a unique labeled
tree on n vertices.
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Trees More Applications

Subsection 3

More Applications
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Trees More Applications

The Minimum Connector Problem

Suppose that we wish to build a railway network connecting n given
cities so that a passenger can travel from any city to any other.

If, for economic reasons, the total amount of track must be a
minimum, then the graph formed by taking the n cities as vertices
and the connecting rails as edges must be a tree.

The problem is to find an efficient algorithm for deciding which of the
nn−2 possible trees connecting these cities uses the least amount of
track, assuming that all pairwise distances are known.

We can reformulate the problem in terms of weighted graphs:

Denote the weight of the edge e by w(e).

The aim is to find the spanning tree T with least possible total
weight W (T ).

There is a simple greedy algorithm that solves the problem:

It involves choosing edges of minimum weight in such a way that no
cycle is created.
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Trees More Applications

Illustrating the Algorithm

Suppose there are five cities, as in the figure:

Choose edge AB (weight 2). Choose edge BD (weight 3). We cannot
choose the edge AD (weight 4), since it would create the cycle ABD.
Choose edge DE (weight 5). We cannot choose edges AE or BE
(weight 6), since each would create a cycle. Choose edge BC (weight
7). This completes the tree.
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Trees More Applications

Correctness of the Greedy Algorithm

Theorem

Let G be a connected graph with n vertices. Then the following
construction gives a solution of the minimum connector problem:

(i) Let e1 be an edge of G of smallest weight;

(ii) Define e2, e3, . . . , en−1 by choosing at each stage a new edge of
smallest possible weight that forms no cycle with previously chosen
edges ei .

The required spanning tree is the subgraph T of G whose edges are
e1, . . . , en−1.

The fact that T is a spanning tree of G follows immediately from the
tree characterization theorem.

It remains to show that the total weight of T is a minimum.

Suppose, to the contrary, that S is a spanning tree of G such that
W (S) < W (T ).
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Trees More Applications

Correctness of the Greedy Algorithm (Cont’d)

If ek is the first edge in the above sequence that does not lie in S ,
then the subgraph of T formed by adding ek to S contains a unique
cycle C containing the edge ek . Since C contains an edge e lying in S

but not in T , the subgraph obtained from S on replacing e by ek is a
spanning tree S ′.

By the construction, w(ek) ≤ w(e). So W (S ′) ≤ W (S). Moreover,
S ′ has one more edge in common with T than S .

By repeating this procedure, we can change S into T , one step at a
time, with the total weight decreasing at each stage.

This yields W (T ) ≤ W (S), a contradiction.
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Trees More Applications

Applying Greedy to Lower Bound Traveling Salesman

We apply the greedy algorithm to obtain a lower bound for the
solution of the traveling salesman problem.

This is useful, since the greedy algorithm is an efficient algorithm,
whereas no efficient general algorithms are known for the traveling
salesman problem.

If we take any Hamiltonian cycle in a weighted complete graph and
remove any vertex v , then we obtain a semi-Hamiltonian path, and
such a path must be a spanning tree.

So any solution of the traveling salesman problem must consist of a
spanning tree of this type together with two edges incident to v .

It follows that if we take the weight of a minimum-weight spanning
tree (obtained by the greedy algorithm) and add the two smallest
weights of edges incident with v , then we get a lower bound for the
solution of the traveling salesman problem.
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Trees More Applications

Illustrating the Technique

If we take the weighted graph of the figure on the left

and remove the vertex C , then the remaining weighted graph has the
four vertices A,B ,D and E .

The minimum weight spanning tree joining these four vertices is the
tree whose edges are AB ,BD and DE , with total weight 10.

The two edges of minimum weight incident with C are CB and CA

(or CE ) with total weight 15.

So, the lower bound for the traveling salesman problem is 25.
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Trees More Applications

Enumeration of Chemical Molecules

If we have a molecule consisting only of carbon atoms and hydrogen
atoms, then we can represent it as a graph in which each carbon
atom appears as a vertex of degree 4, and each hydrogen atom
appears as a vertex of degree 1.

Example: The graphs of n-butane and 2-methyl propane are shown
below:

Although they have the same
chemical formula C4H10, they
are different molecules because
the atoms are arranged differ-
ently within the molecule.

These two molecules form part of a general class of molecules known
as the alkanes, or paraffins, with chemical formula CnH2n+2.

We want to find how many different molecules there are with this
formula.
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Trees More Applications

Counting the Alkanes

The graph of a molecule with formula CnH2n+2 is connected and has:

n+ (2n + 2) = 3n+ 2 vertices;
4n+(2n+2)

2 = 3n+ 1 edges.

Thus, it is a tree.

Note also that the molecule is deter-
mined completely once we know how
the carbon atoms are arranged.
Discarding the hydrogen atoms, the
problem reduces to that of finding the
number of trees with n vertices, each of
degree 4 or less.

This problem was solved by Cayley in 1875, by counting the number
of ways in which trees can be built up from their center(s), but the
argument is complicated.
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Trees More Applications

Electrical Networks

Suppose that we are given the electrical network

and that we wish to find the current in each wire.

To do this, we assign an arbitrary direction to the current in each wire
and apply Kirchhoff’s laws:

(i) the algebraic sum of the currents at each vertex is 0;
(ii) the total voltage in each cycle is obtained by adding the products of

the currents ik and resistances Rk in that cycle.
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Trees More Applications

Application of Kirchhoff’s Laws

Applying Kirchhoff s second law to the cycles VYXV ,VWYV and
VWYXV , we obtain the equations

i1R1 + i2R2 = E ;
i3R3 + i4R4 − i2R2 = 0;
i1R1 + i3R3 + i4R4 = E .

The last of these three equations is simply the sum of the first two,
and gives us no further information.

Similarly, if we have the Kirchhoff equations for the cycles VWYV

and WZYW , then we can deduce the equation for the cycle VWZYV .
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Trees More Applications

Eliminating Redundancy

To find a set of cycles that gives us the information we need without
any redundancy, we use a fundamental set of cycles

for the cycle VYXV, i1R1 + i2R2 = E

for the cycle VYZV, i2R2 + i5R5 + i6R6 = 0
for the cycle VWZV, i3R3 + i5R5 + i7R7 = 0
for the cycle VYWZV, i2R2 − i4R4 + i5R5 + i7R7 = 0

The equations arising from Kirchhoff’s first law are:

for the vertex X, i0 − i1 = 0
for the vertex V, i1 − i2 − i3 + i5 = 0
for the vertex W, i3 − i4 − i7 = 0
for the vertex Z, i5 − i6 − i7 = 0.
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Trees More Applications

Finding the Currents

These eight equations

i1R1 + i2R2 = E i0 − i1 = 0
i2R2 + i5R5 + i6R6 = 0 i1 − i2 − i3 + i5 = 0
i3R3 + i5R5 + i7R7 = 0 i3 − i4 − i7 = 0

i2R2 − i4R4 + i5R5 + i7R7 = 0 i5 − i6 − i7 = 0

can now be solved to give the eight currents i0, i1, . . . , i7.

Example: If E = 12, and if each wire has unit resistance (that is,
Ri = 1 for each i), then the solution is:
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Trees More Applications

Searching Trees

In many applications, the trees that we consider have a hierarchical
structure, with one vertex at the top (called the root), and the other
vertices branching down from it:

If a particular piece of information is required, we need to be able to
search the tree in a systematic way. This involves examining every
part of the tree until the desired vertex is found.

We would like to find a search technique that eventually visits all
parts of the tree without visiting any vertex too often.
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Trees More Applications

Breadth First Search

Two well-known search procedures - depth first search and breadth
first search visit all the vertices, but in a different order:

In breadth first search, we fan out to as many vertices as possible,
before penetrating deeper into the tree.
This means that we visit all the vertices adjacent to the current vertex
before proceeding to another vertex.
Example:

Start at vertex a. Visit the ver-
tices b and c that are adjacent to
a. Then visit the vertices d and e

adjacent to b. Then the vertices f ,
g and h adjacent to c . Finally, visit
the vertices i , j and k adjacent to
d , and l adjacent to f .

This gives us a labeled tree, where the labels correspond to the order in
which the vertices are visited.
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Trees More Applications

Depth First Search

In depth first search, we penetrate as deeply as possible into a tree
before fanning out to other vertices.
Example: Consider again the tree on the left.

Start at vertex a. Move down to b, d and i . Since we cannot
penetrate further, we backtrack to d . Then go down to j . We must
then backtrack again, and go to k . We now backtrack via d to b,
from which we can go down to e. Backtracking to a then takes us to
c , f and l . Then we visit g and h. Finally, we return to a.

The labeled trees obtained from breadth- and from depth-first search,
respectively, are shown on the right.
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