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Planarity Planar Graphs

Subsection 1

Planar Graphs
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Planarity Planar Graphs

Planar and Plane Graphs

A planar graph is a graph that can be drawn in the plane without
crossings, i.e., so that no two edges intersect geometrically except at
a vertex to which both are incident.

Any such drawing is a plane drawing.

For convenience, we often use the abbreviation plane graph for a
plane drawing of a planar graph.

Example: From the three drawings of the planar graph K4,

only the second and third are plane graphs.
K. Wagner (1936) and I. Fary (1948) showed that:

Every simple planar graph can be drawn with straight lines.
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Planarity Planar Graphs

Non-Planarity of K3,3

Theorem

K3,3 and K5 are non-planar.

Suppose first that K3,3 is planar.

Since K3,3 has a cycle u → v →
w → x → y → z → u of length
6, any plane drawing must con-
tain this cycle drawn in the form
of a hexagon, as on the right.

Now the edge wz must lie either wholly inside the hexagon or wholly
outside it.

Assume wz lies inside the hexagon (the other case is similar).
Since the edge ux must not cross the edge wz , it must lie outside the
hexagon. It is then impossible to draw the edge vy , as it would cross
either ux or wz . This yields a contradiction.
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Planarity Planar Graphs

Non-Planarity of K5

Now suppose that K5 is planar.

K5 has a cycle v → w → x → y → z → v of length 5.

Any plane drawing must contain
this cycle drawn in the form of
a pentagon, as on the right.
The edge wz must lie either
wholly inside the pentagon or
wholly outside it.

We deal with the case in which wz lies inside the pentagon (other case
is similar).
Since the edges vx and vy do not cross the edge wz , they must both
lie outside the pentagon. But the edge xz cannot cross the edge vy

and so must lie inside the pentagon. Similarly the edge wy must lie
inside the pentagon. But then, the edges wy and xz must cross. This
yields a contradiction.
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Planarity Planar Graphs

Kuratowski’s Theorem

Every subgraph of a planar graph is planar.

Every graph with a non-planar subgraph must be non-planar.

Thus, any graph with K3,3 or K5 as a subgraph is non-planar.

K3,3 and K5 are the “building blocks” for non-planar graphs, in the
sense that a non-planar graph must “contain” at least one of them:

Define two graphs to be homeomorphic if both can be obtained from
the same graph by inserting new vertices of degree 2 into its edges.

Example: Any two cycle
graphs are homeomorphic.
The graphs on the right are
also.

Theorem (Kuratowski, 1930)

A graph is planar if and only if it contains no subgraph homeomorphic to
K5 or K3,3.
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Planarity Planar Graphs

A Second Criterion for Planarity

Define a graph H to be contractible to K5 or K3,3 if we can obtain
K5 or K3,3 by successively contracting edges of H.

Example: The Petersen graph
is contractible to K5, since the
five “spokes” joining the inner
and outer 5-cycles can be con-
tracted to obtain K5.

Theorem

A graph is planar if and only if it contains no subgraph contractible to K5

or K3,3.

⇐: Assume first that the graph G is non-planar. Then, by Kuratowski’s
theorem, G contains a subgraph H homeomorphic to K5 or K3,3.
Successively contract edges of H that are incident to a vertex of
degree 2. Then H is contracted to K5 or K3,3.
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Planarity Planar Graphs

A Second Criterion for Planarity (The Converse)

⇒: Now assume that G contains a subgraph H contractible to K3,3, and
let the vertex v of K3,3 arise from contracting the subgraph Hv of H.

The vertex v is incident in K3,3 to three edges e1, e2 and e3. When
regarded as edges of H, these edges are incident to three (not
necessarily distinct) vertices v1, v2 and v3 of Hv . If v1, v2 and v3 are
distinct, then we can find a vertex w of Hv and three paths from w

to these vertices, intersecting only at w . (A similar construction
applies if the vertices are not distinct, the paths degenerating in this
case to single vertices.)
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Planarity Planar Graphs

A Second Criterion for Planarity (Converse Cont’d)

It follows that we can replace the subgraph Hv by a vertex w and
three paths leading out of it. If this construction is carried out for
each vertex of K3,3, and the resulting paths joined up with the
corresponding edges of K3,3, then the resulting subgraph is
homeomorphic to K3,3. It follows from Kuratowski’s theorem that G
is non-planar.

A similar argument can be carried out if G contains a subgraph
contractible to K5. The details are more complicated, as the subgraph
obtained by this process can be homeomorphic to either K5 or K3,3.
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Planarity Planar Graphs

The Crossing Number

If we try to draw K5 or K3,3 on the plane, then there must be at least
one crossing of edges, since these graphs are not planar.

However, we do not need more
than one crossing.
We say that K5 and K3,3 have
crossing number 1.

The crossing number cr(G ) of a graph G is the minimum number of
crossings that can occur when G is drawn in the plane.

Thus, the crossing number measures how “unplanar” G is.

Example: The crossing number of any planar graph is 0;
cr(K5) = cr(K3,3) = 1.

“crossing” always refers to the intersection of just two edges, since
crossings of three or more edges are not permitted.
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Planarity Euler’s Formula

Subsection 2

Euler’s Formula

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 12 / 48



Planarity Euler’s Formula

Faces of a Graph

If G is a planar graph, then any plane drawing of G divides the set of
points of the plane not lying on G into regions, called faces.

Example: The plane graphs shown below

have eight faces and four faces, respectively.

Note that, in each case, the face f4 is unbounded; it is called the
infinite face.
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Planarity Euler’s Formula

Switching the Infinite Face

Any face can be chosen as the infinite face:

Map the graph onto the surface of a sphere by stereographic projection;

Rotate the sphere so that the point of projection (the north pole) lies
inside the face we want as the infinite face;
Project the graph down onto the plane tangent to the sphere at the
south pole;
The chosen face is now the infinite face.
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Planarity Euler’s Formula

Example

Consider again the graph on the left

The right figure shows a representation of the previous graph in which
the infinite face is f3.
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Planarity Euler’s Formula

Euler’s Formula

Theorem (Euler, 1750)

Let G be a plane drawing of a connected planar graph, and let n,m and f

denote, respectively, the number of vertices, edges and faces of G . Then
n −m + f = 2.

Example: n = 11, m = 13, f = 4,
and n−m + f = 11− 13 + 4 = 2.
The proof by induction on the number
of edges of G :

If m = 0, then n = 1 (since G is connected) and f = 1 (the infinite
face). The theorem is therefore true in this case.
Suppose the theorem holds for all graphs with at most m − 1 edges.
Let G be a graph with m edges.

If G is a tree, then m = n − 1 and f = 1. So that n −m + f = 2.
If G is not a tree, let e be an edge in some cycle of G . Then G − e is a
connected plane graph with n vertices, m − 1 edges and f − 1 faces.
Thus, n− (m− 1) + (f − 1) = 2, by the hypothesis. So, n−m+1 = 2.
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Planarity Euler’s Formula

Euler’s Formula and Polyhedra

Euler’s formula is often called “Euler’s polyhedron formula”, since it
relates the numbers of vertices, edges and faces of a convex
polyhedron.

Example: For a cube we have n = 8,
m = 12, f = 6 and n − m + f =
8− 12 + 6 = 2.

The connection is established as follows:
Project the polyhedron out onto its circumsphere;
Use stereographic projection to project it down onto the plane.

The resulting graph is a polyhedral graph, i.e., a 3-connected plane
graph in which each face is bounded by a polygon.

Corollary

Let G be a polyhedral graph, with number of vertices, edges and faces,
respectively, n, m and f . Then n −m + f = 2.
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Planarity Euler’s Formula

Euler’s Formula for Disconnected Graphs

Corollary

Let G be a plane graph with n vertices, m edges, f faces and k

components. Then n −m + f = k + 1.

Suppose G has k components G1, . . . ,Gk .

Assume component Gi has ni vertices, mi edges and fi faces.

Then, we have the following relations:

n1 + n2 + · · ·+ nk = n;
m1 +m2 + · · ·+mk = m;

f1 + f2 + · · ·+ fk = f + (k − 1).

Using Euler’s formula for each of the components, we get:

(n1 −m1 + f1) + (n2 −m2 + f2) + · · ·+ (nk −mk + fk) = 2k
(n1 + · · · + nk)− (m1 + · · ·+mk) + (f1 + · · ·+ fk) = 2k

n −m + f + (k − 1) = 2k
n −m + f = k + 1.
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Planarity Euler’s Formula

Inequalities for Connected Simple Graphs

Corollary

(i) If G is a connected simple planar graph with n (≥ 3) vertices and m

edges, then m ≤ 3n − 6.

(ii) If, in addition, G has no triangles, then m ≤ 2n − 4.

(i) Suppose we have a plane drawing of G . Each face is bounded by at
least three edges. Each edge bounds two faces. Thus, by counting up
the edges around each face, we get 3f ≤ 2m. So f ≤ 2

3m. Apply
Euler’s formula:

2 = m − n+ f ≤ n −m +
2

3
m = n −

1

3
m.

Multiply both sides by 3: 6 ≤ 3n −m. So m ≤ 3n − 6.

(ii) This part follows in a similar way, except that the inequality 3f ≤ 2m
is replaced by 4f ≤ 2m.
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Planarity Euler’s Formula

Second Proof of Non-Planarity of K5 and K3,3

Corollary

K5 and K3,3 are non-planar.

Suppose K5 is planar. Recall that n = 5 and m = 10. Applying the
inequality m ≤ 3n − 6, we get 10 ≤ 3 · 5− 6 = 9. This is a
contradiction.

Suppose K3,3 is planar. Recall that n = 6 and m = 9. Note that K3,3

does not have any triangles. Applying the inequality m ≤ 2n − 4, we
get 9 ≤ 2 · 6− 4 = 8. This is a contradiction.
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Planarity Euler’s Formula

Planarity and Minimum Degree of a Vertex

Theorem

Every simple planar graph contains a vertex of degree at most 5.

Without loss of generality we can assume that the graph is connected
and has at least three vertices.

Suppose each vertex has degree at least 6.

With the above notation, we have the inequality

6n ≤ 2m.

So 3n ≤ m.

Thus, by the corollary,

3n ≤ m ≤ 3n − 6 ⇒ 0 ≤ −6.

This yields a contradiction.
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Planarity Euler’s Formula

Thickness of a Graph

We define the thickness t(G ) of a graph G to be the smallest
number of planar graphs that can be superimposed to form G .

Like the crossing number, the thickness is a measure of how
“unplanar” a graph is.

Example: The thickness of a planar graph is 1. The thickness of K5

and K3,3 is 2.

The thickness of K6 is 2.
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Planarity Euler’s Formula

Lower Bounds on the Thickness of a Graph

Theorem

Let G be a simple graph with n (≥ 3) vertices and m edges. Then the
thickness t(G ) of G satisfies t(G ) ≥ ⌈ m

3n−6⌉ and t(G ) ≥ ⌊m+3n−7
3n−6 ⌋.

Suppose G has n vertices and m edges.

Each of the k = t(G ) layers G1, . . . ,Gk has n vertices and, say, mi

edges, with m1 +m2 + · · ·+mk = m.

Since each layer is planar, we must have

m1 ≤ 3n − 6,m2 ≤ 3n − 6, . . . ,mk ≤ 3n − 6.

So m1 + · · ·+mk ≤ t(G )(3n − 6), i.e., m ≤ t(G )(3n − 6).

This gives t(G ) ≥ m
3n−6 . Since t(G ) is an integer, t(G ) ≥ ⌈ m

3n−6⌉.

The second part follows from the first by using the relation
⌈ a
b
⌉ = ⌊a+b−1

b
⌋, where a and b are positive integers.
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Planarity Graphs on Other Surfaces

Subsection 3

Graphs on Other Surfaces
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Planarity Graphs on Other Surfaces

Surfaces Other than the Plane

We considered graphs drawn in the
plane or (equivalently) on the surface
of a sphere.

We may draw graphs on other
surfaces, such as the torus.

Example: K5 and K3,3 can be drawn without crossings on the surface
of a torus.
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Planarity Graphs on Other Surfaces

The Genus of a Surface and the Genus of a Graph

The torus can be thought of as a sphere with one “handle”.

A surface is of genus g if it is topologically homeomorphic to a
sphere with g handles (intuitively the surface of a doughnut with g

holes in it).

Example: The genus of a sphere is 0, and that of a torus is 1.

A graph that can be drawn without crossings on a surface of genus g ,
but not on one of genus g − 1, is a graph of genus g .

Example: K5 and K3,3 are graphs of genus 1 (also called toroidal

graphs).
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Planarity Graphs on Other Surfaces

Upper Bound on the Genus of a Graph

Theorem

The genus of a graph does not exceed the crossing number.

We draw the graph on the surface of a sphere so that the number of
crossings is as small as possible, and is therefore equal to the crossing
number c .

At each crossing, we construct a
“bridge” and run one edge over the
bridge and the other under it.

Since each bridge can be thought of as a handle, we have drawn the
graph on the surface of a sphere with c handles. It follows that the
genus does not exceed c .
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Planarity Graphs on Other Surfaces

Kuratowski’s and Euler’s Theorems for Graphs of Genus g

There is currently no complete analogue of Kuratowski’s theorem for
surfaces of genus g .

Robertson and Seymour have proved that there exists a finite
collection of “forbidden” subgraphs of genus g , for each value of g ,
corresponding to the forbidden subgraphs K5 and K3,3 for graphs of
genus 0.

In the case of Euler’s formula, we define a face of a graph of genus g
in the obvious way.

Theorem

Let G be a connected graph of genus g with n vertices, m edges and F

faces. Then n −m + f = 2− 2g .
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Planarity Graphs on Other Surfaces

Lower Bound on the Genus of a Graph

Corollary

The genus g(G ) of a simple graph G with n (≥ 4) vertices and m edges
satisfies the inequality g(G ) ≥ ⌈m−3n

6 + 1⌉.

Since each face is bounded by at least three edges, we have 3f ≤ 2m.
Thus, f ≤ 2

3m. Now we use n −m + f = 2− 2g .

n−m + 2
3m ≥ 2− 2g

n − 1
3m ≥ 2− 2g

2g ≥ 1
3m − n + 2

g ≥ 1
6m − 1

2n + 1

g ≥ m−3n
6 + 1.

Since g is an integer, g ≥ ⌈m−3n
6 + 1⌉.

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 29 / 48



Planarity Graphs on Other Surfaces

Genus of Complete Graphs

The complete graph Kn has n vertices and n(n−1)
2 edges.

By the corollary, g ≥ ⌈m−3n
6 + 1⌉:

g(Kn) ≥

⌈

n(n−1)
2

−3n

6 + 1

⌉

g(Kn) ≥ ⌈n
2
−n−6n
12 + 1⌉

g(Kn) ≥ ⌈n
2
−7n+12
12 ⌉

g(Kn) ≥ ⌈ (n−3)(n−4)
12 ⌉.

Heawood asserted in 1890 that the inequality g(Kn) ≥
⌈

(n−3)(n−4)
12

⌉

is an equality.

Theorem (Ringel and Youngs, 1968)

g(Kn) =
⌈

(n−3)(n−4)
12

⌉

.
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Planarity Dual Graphs

Subsection 4

Dual Graphs
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Planarity Dual Graphs

The Dual Graph of a Planar Graph

Given a plane drawing of a planar graph G , we construct another
graph G ∗, called the (geometric) dual of G :
(i) inside each face f of G we choose a point v∗; these points are the

vertices of G∗;
(ii) corresponding to each edge e of G we draw a line e∗ that crosses e

(but no other edge of G), and joins the vertices v∗ in the faces f
adjoining e; these lines are the edges of G∗.

Example: The vertices v∗ of G ∗ are rep-
resented by small squares.
The edges e of G are shown as solid
lines.
The edges e∗ of G ∗ are shown as dotted
lines.

An end-vertex or a bridge of G gives rise to a loop of G ∗.

If two faces of G have more than one edge in common, then G ∗ has
multiple edges.
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Planarity Dual Graphs

Relations Between Duals

Any two geometric duals of G must be isomorphic.

This is why G ∗ is called “the dual of G” instead of “a dual of G”.

On the other hand, if G
is isomorphic to H, it does
not necessarily follow that
G ∗ is isomorphic to H∗:
If G is both plane and connected, then G ∗ is plane and connected:

Lemma

Let G be a plane connected graph with n vertices, m edges and f faces,
and let its geometric dual G ∗ have n∗ vertices, m∗ edges and f ∗ faces.
Then n∗ = f , m∗ = m and f ∗ = n.

The first two relations are direct consequences of the definition of G ∗.
The third relation follows on substituting these two relations into
Euler’s formula, applied to both G and G ∗.
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Planarity Dual Graphs

The Dual of the Dual

Since the dual G ∗ of a plane graph G is also a plane graph, we can
repeat the above construction to form the dual G ∗∗ of G ∗.

If G is connected, then the relationship between G ∗∗ and G is
particularly simple:

Theorem

If G is a plane connected graph, then G ∗∗ is isomorphic to G .

The result follows immediately, since the construction that gives rise
to G ∗ from G can be reversed to give G from G ∗.

We need to check only that a face of G ∗ cannot contain more than
one vertex of G . Letting n∗∗ be the number of vertices of G ∗∗, we get:

n∗∗ = f ∗ = n.

So each face of G ∗ contains exactly one vertex of G .
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Planarity Dual Graphs

Example

The graph G is the dual of the graph G ∗.
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Planarity Dual Graphs

Geometric Duals, Cycles and Cutsets

Theorem

Let G be a planar graph and let G ∗ be a geometric dual of G . Then a set
of edges in G forms a cycle in G if and only if the corresponding set of
edges of G ∗ forms a cutset in G ∗.

We can assume that G is a connected plane graph. If C is a cycle in
G , then C encloses one or more finite faces of C . Thus, it contains in
its interior a non-empty set S of vertices of G ∗.

It follows that those edges of G ∗ that cross the
edges of C form a cutset of G ∗ whose removal
disconnects G ∗ into two subgraphs, one with vertex
set S and the other containing those vertices that
do not lie in S .
The converse implication is similar.
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Planarity Dual Graphs

Geometric Duals, Cutsets and Cycles

Corollary

A set of edges of G forms a cutset in G if and only if the corresponding
set of edges of G ∗ forms a cycle in G ∗.

The result follows on applying the preceding theorem to G ∗:

A set of edges in G ∗ forms a cycle in G ∗

iff the corresponding set of edges of G ∗∗ forms a cutset in G ∗∗.

But G ∗∗ is isomorphic to G .

So, we get

A set of edges in G ∗ forms a cycle in G ∗

iff the corresponding set of edges of G forms a cutset in G .
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Planarity Infinite Graphs

Subsection 5

Infinite Graphs
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Planarity Infinite Graphs

Infinite Graphs

An infinite graph G consists of:

An infinite set V (G) of elements called vertices;
An infinite family E (G) of unordered pairs of elements of V (G) called
edges.

If V (G ) and E (G ) are both countably infinite, then G is a countable

graph.

We exclude the possibility of:

V (G) being infinite but E (G) finite, as such objects are merely finite
graphs together with infinitely many isolated vertices;
E (G) being infinite but V (G) finite, as such objects are essentially
finite graphs but with infinitely many loops or multiple edges.

Many of our earlier definitions (adjacent, incident, isomorphic,
subgraph, connected, planar, etc.) extend to infinite graphs.
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Planarity Infinite Graphs

Degrees in Infinite Graphs

The degree of a vertex v of an infinite graph is the cardinality of the
set of edges incident to v , and may be finite or infinite.

An infinite graph, each of whose vertices has finite degree, is locally
finite.

Examples: The infinite square lattice and the infinite triangular lattice
are both locally finite infinite graphs.

We similarly define a locally countable infinite graph to be one in
which each vertex has countable degree.
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Planarity Infinite Graphs

Connected Locally Countable Infinite Graphs

Theorem

Every connected locally countable infinite graph is a countable graph.

Let v be any vertex of such an infinite graph. Let A1 be the set of
vertices adjacent to v , A2 be the set of all vertices adjacent to a
vertex of A1, and so on. By hypothesis, A1 is countable. Since the
union of a countable collection of countable sets is countable, so are
A2,A3, . . . . Hence {v},A1,A2, . . . is a sequence of sets whose union
is countable and contains every vertex of the infinite graph, by
connectedness. This yields the result.

Corollary

Every connected locally finite infinite graph is a countable graph.
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Planarity Infinite Graphs

Types of Paths in Infinite Graphs

In an infinite graph G , there are three different types of walk:

(i) A finite walk is defined as for finite graphs;
(ii) A one-way infinite walk with initial vertex v0 is an infinite sequence

of edges of the form v0v1, v1v2, . . .;
(iii) A two-way infinite walk is an infinite sequence of edges of the form

. . . , v−2v−1, v−1v0, v0v1, v1v2, . . .;

One-way and two-way infinite trails and paths are defined
analogously, as are the length of a path and the distance between
vertices.
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Planarity Infinite Graphs

König’s Lemma

Theorem (König’s Lemma, 1927)

Let G be a connected locally finite infinite graph. Then, for any vertex v

of G , there exists a one-way infinite path with initial vertex v .

Eor each vertex z other than v , there is a non-trivial path from v to
z . It follows that there are infinitely many paths in G with initial
vertex v . Since the degree of v is finite, infinitely many of these paths
must start with the same edge. If vv1 is such an edge, then we can
repeat this procedure for the vertex v1 and thus obtain a new vertex
v2 and a corresponding edge v1v2. By carrying on in this way, we
obtain the one-way infinite path v → v1 → v2 → · · · .
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Planarity Infinite Graphs

Planarity and Infinite Graphs

Theorem

If G be a countable graph, every finite subgraph of which is planar, then G

is planar.

Since G is countable, its vertices may be listed as v1, v2, v3, . . ..
Construct a strictly increasing sequence G1 ⊂ G2 ⊂ G3 ⊂ · · · of
subgraphs of G , where Gk is the subgraph whose vertices are
v1, . . . , vk and whose edges those of G joining two of these vertices.
Graph Gi can be drawn in the plane in only a finite number m(i) of
topologically distinct ways.

We use this to construct another infinite graph H.
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Planarity Infinite Graphs

Planarity and Infinite Graphs (Cont’d)

We construct the infinite graph H as follows:

The vertices wij , i ≥ 1, 1 ≤ j ≤ m(i), of H correspond to the drawings
of the graphs Gi ;
The edges of H join those vertices wij and wkℓ, for which k = i +1 and
the plane drawing corresponding to wkℓ extends the drawing
corresponding to wij .

Since H is connected and locally finite, by König’s Lemma, H
contains a one-way infinite path.

Since G is countable, this infinite path gives a plane drawing of G .
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Planarity Infinite Graphs

Eulerian Infinite Graphs

We call a connected infinite graph G Eulerian if there exists a
two-way infinite trail that includes every edge of G .

Such an infinite trail is a two-way Eulerian trail.

These definitions require G to be countable.

The following theorems give additional necessary conditions for an
infinite graph to be Eulerian:

Theorem

Let G be a connected countable graph which is Eulerian. Then:

(i) G has no vertices of odd degree;

(ii) For each finite subgraph H of G , the infinite graph H obtained by deleting
from G the edges of H has at most two infinite connected components;

(iii) If, in addition, each vertex of H has even degree, then H has exactly one
infinite connected component.
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Planarity Infinite Graphs

Eulerian Infinite Graphs: Proof of Necessary Conditions

(i) Suppose that P is an Eulerian trail. Then, by the argument given in
the proof of the finite case, each vertex of G must have either even or
infinite degree.

(ii) Let P be split up into three subtrails P−, P0 and P+ in such a way
that P0 is a finite trail containing every edge of H, and possibly other
edges as well, and P− and P+ are one-way infinite trails. Then the
infinite graph K formed by the edges of P− and P+ and the vertices
incident to them, has at most two infinite components. Since H is
obtained by adding only a finite set of edges to K , the result follows.

(iii) Let the initial and final vertices of P0 be v and w . We wish to show
that v and w are connected in H.

If v = w , this is obvious.
Suppose v 6= w . If we remove the edges of H from P0, the resulting
graph has exactly two vertices v and w of odd degree. Therefore, v
and w must belong to the same component, i.e., they are connected.
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Characterization of Eulerian Infinite Graphs

It turns out the preceding three conditions are also sufficient.

Theorem

If G is a connected countable graph, then G is Eulerian if and only if
Conditions (i), (ii) and (iii) of the preceding theorem are satisfied.
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