Introduction to Graph Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

LSSU Math 351

Planarity

- Planar Graphs
- Euler's Formula
- Graphs on Other Surfaces
- Dual Graphs
- Infinite Graphs

Subsection 1

Planar Graphs

Planar and Plane Graphs

- A planar graph is a graph that can be drawn in the plane without crossings, i.e., so that no two edges intersect geometrically except at a vertex to which both are incident.
- Any such drawing is a plane drawing.
- For convenience, we often use the abbreviation plane graph for a plane drawing of a planar graph.
Example: From the three drawings of the planar graph K_{4},

only the second and third are plane graphs.
- K. Wagner (1936) and I. Fary (1948) showed that:

Every simple planar graph can be drawn with straight lines.

Non-Planarity of $K_{3,3}$

Theorem

$K_{3,3}$ and K_{5} are non-planar.

- Suppose first that $K_{3,3}$ is planar.

Since $K_{3,3}$ has a cycle $u \rightarrow v \rightarrow$ $w \rightarrow x \rightarrow y \rightarrow z \rightarrow u$ of length 6 , any plane drawing must contain this cycle drawn in the form of a hexagon, as on the right.

Now the edge wz must lie either wholly inside the hexagon or wholly outside it.

- Assume wz lies inside the hexagon (the other case is similar). Since the edge $u x$ must not cross the edge $w z$, it must lie outside the hexagon. It is then impossible to draw the edge $v y$, as it would cross either $u x$ or $w z$. This yields a contradiction.

Non-Planarity of K_{5}

- Now suppose that K_{5} is planar.
K_{5} has a cycle $v \rightarrow w \rightarrow x \rightarrow y \rightarrow z \rightarrow v$ of length 5 .

Any plane drawing must contain this cycle drawn in the form of a pentagon, as on the right. The edge wz must lie either wholly inside the pentagon or wholly outside it.

- We deal with the case in which wz lies inside the pentagon (other case is similar).
Since the edges $v x$ and $v y$ do not cross the edge $w z$, they must both lie outside the pentagon. But the edge $x z$ cannot cross the edge vy and so must lie inside the pentagon. Similarly the edge wy must lie inside the pentagon. But then, the edges wy and $x z$ must cross. This yields a contradiction.

Kuratowski's Theorem

- Every subgraph of a planar graph is planar.
- Every graph with a non-planar subgraph must be non-planar.
- Thus, any graph with $K_{3,3}$ or K_{5} as a subgraph is non-planar.
- $K_{3,3}$ and K_{5} are the "building blocks" for non-planar graphs, in the sense that a non-planar graph must "contain" at least one of them:
- Define two graphs to be homeomorphic if both can be obtained from the same graph by inserting new vertices of degree 2 into its edges.
Example: Any two cycle graphs are homeomorphic. The graphs on the right are also.

Theorem (Kuratowski, 1930)

A graph is planar if and only if it contains no subgraph homeomorphic to K_{5} or $K_{3,3}$.

A Second Criterion for Planarity

- Define a graph H to be contractible to K_{5} or $K_{3,3}$ if we can obtain K_{5} or $K_{3,3}$ by successively contracting edges of H.
Example: The Petersen graph is contractible to K_{5}, since the five "spokes" joining the inner and outer 5-cycles can be contracted to obtain K_{5}.

Theorem

A graph is planar if and only if it contains no subgraph contractible to K_{5} or $K_{3,3}$.

Assume first that the graph G is non-planar. Then, by Kuratowski's theorem, G contains a subgraph H homeomorphic to K_{5} or $K_{3,3}$. Successively contract edges of H that are incident to a vertex of degree 2. Then H is contracted to K_{5} or $K_{3,3}$.

A Second Criterion for Planarity (The Converse)

Now assume that G contains a subgraph H contractible to $K_{3,3}$, and let the vertex v of $K_{3,3}$ arise from contracting the subgraph H_{v} of H.

The vertex v is incident in $K_{3,3}$ to three edges e_{1}, e_{2} and e_{3}. When regarded as edges of H, these edges are incident to three (not necessarily distinct) vertices v_{1}, v_{2} and v_{3} of H_{v}. If v_{1}, v_{2} and v_{3} are distinct, then we can find a vertex w of H_{v} and three paths from w to these vertices, intersecting only at w. (A similar construction applies if the vertices are not distinct, the paths degenerating in this case to single vertices.)

A Second Criterion for Planarity (Converse Cont'd)

It follows that we can replace the subgraph H_{v} by a vertex w and three paths leading out of it. If this construction is carried out for each vertex of $K_{3,3}$, and the resulting paths joined up with the corresponding edges of $K_{3,3}$, then the resulting subgraph is homeomorphic to $K_{3,3}$. It follows from Kuratowski's theorem that G is non-planar.
A similar argument can be carried out if G contains a subgraph contractible to K_{5}. The details are more complicated, as the subgraph obtained by this process can be homeomorphic to either K_{5} or $K_{3,3}$.

The Crossing Number

- If we try to draw K_{5} or $K_{3,3}$ on the plane, then there must be at least one crossing of edges, since these graphs are not planar.
- However, we do not need more than one crossing.
We say that K_{5} and $K_{3,3}$ have crossing number 1.

- The crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of crossings that can occur when G is drawn in the plane. Thus, the crossing number measures how "unplanar" G is.
Example: The crossing number of any planar graph is 0 ;
$\operatorname{cr}\left(K_{5}\right)=\operatorname{cr}\left(K_{3,3}\right)=1$.
- "crossing" always refers to the intersection of just two edges, since crossings of three or more edges are not permitted.

Subsection 2

Euler's Formula

Faces of a Graph

- If G is a planar graph, then any plane drawing of G divides the set of points of the plane not lying on G into regions, called faces.
Example: The plane graphs shown below

have eight faces and four faces, respectively.
Note that, in each case, the face f_{4} is unbounded; it is called the infinite face.

Switching the Infinite Face

- Any face can be chosen as the infinite face:
- Map the graph onto the surface of a sphere by stereographic projection;

- Rotate the sphere so that the point of projection (the north pole) lies inside the face we want as the infinite face;
- Project the graph down onto the plane tangent to the sphere at the south pole;
- The chosen face is now the infinite face.

Example

- Consider again the graph on the left

The right figure shows a representation of the previous graph in which the infinite face is f_{3}.

Euler's Formula

Theorem (Euler, 1750)

Let G be a plane drawing of a connected planar graph, and let n, m and f denote, respectively, the number of vertices, edges and faces of G. Then $n-m+f=2$.

Example: $n=11, m=13, f=4$, and $n-m+f=11-13+4=2$.
The proof by induction on the number of edges of G :

- If $m=0$, then $n=1$ (since G is connected) and $f=1$ (the infinite face). The theorem is therefore true in this case.
- Suppose the theorem holds for all graphs with at most $m-1$ edges. Let G be a graph with m edges.
- If G is a tree, then $m=n-1$ and $f=1$. So that $n-m+f=2$.
- If G is not a tree, let e be an edge in some cycle of G. Then $G-e$ is a connected plane graph with n vertices, $m-1$ edges and $f-1$ faces.
Thus, $n-(m-1)+(f-1)=2$, by the hypothesis. So, $n-m+1=2$.

Euler's Formula and Polyhedra

- Euler's formula is often called "Euler's polyhedron formula", since it relates the numbers of vertices, edges and faces of a convex polyhedron.
Example: For a cube we have $n=8$, $m=12, f=6$ and $n-m+f=$ $8-12+6=2$.

- The connection is established as follows:
- Project the polyhedron out onto its circumsphere;
- Use stereographic projection to project it down onto the plane.

The resulting graph is a polyhedral graph, i.e., a 3-connected plane graph in which each face is bounded by a polygon.

Corollary

Let G be a polyhedral graph, with number of vertices, edges and faces, respectively, n, m and f. Then $n-m+f=2$.

Euler's Formula for Disconnected Graphs

Corollary

Let G be a plane graph with n vertices, m edges, f faces and k components. Then $n-m+f=k+1$.

- Suppose G has k components G_{1}, \ldots, G_{k}. Assume component G_{i} has n_{i} vertices, m_{i} edges and f_{i} faces. Then, we have the following relations:

$$
\begin{aligned}
n_{1}+n_{2}+\cdots+n_{k} & =n \\
m_{1}+m_{2}+\cdots+m_{k} & =m \\
f_{1}+f_{2}+\cdots+f_{k} & =f+(k-1)
\end{aligned}
$$

Using Euler's formula for each of the components, we get:

$$
\begin{gathered}
\left(n_{1}-m_{1}+f_{1}\right)+\left(n_{2}-m_{2}+f_{2}\right)+\cdots+\left(n_{k}-m_{k}+f_{k}\right)=2 k \\
\left(n_{1}+\cdots+n_{k}\right)-\left(m_{1}+\cdots+m_{k}\right)+\left(f_{1}+\cdots+f_{k}\right)=2 k \\
n-m+f+(k-1)=2 k \\
n-m+f=k+1 .
\end{gathered}
$$

Inequalities for Connected Simple Graphs

Corollary

If G is a connected simple planar graph with $n(\geq 3)$ vertices and m edges, then $m \leq 3 n-6$.
If, in addition, G has no triangles, then $m \leq 2 n-4$.
(i) Suppose we have a plane drawing of G. Each face is bounded by at least three edges. Each edge bounds two faces. Thus, by counting up the edges around each face, we get $3 f \leq 2 m$. So $f \leq \frac{2}{3} m$. Apply Euler's formula:

$$
2=m-n+f \leq n-m+\frac{2}{3} m=n-\frac{1}{3} m .
$$

Multiply both sides by 3 : $6 \leq 3 n-m$. So $m \leq 3 n-6$.
(ii) This part follows in a similar way, except that the inequality $3 f \leq 2 m$ is replaced by $4 f \leq 2 m$.

Second Proof of Non-Planarity of K_{5} and $K_{3,3}$

Corollary

K_{5} and $K_{3,3}$ are non-planar.

- Suppose K_{5} is planar. Recall that $n=5$ and $m=10$. Applying the inequality $m \leq 3 n-6$, we get $10 \leq 3 \cdot 5-6=9$. This is a contradiction.
- Suppose $K_{3,3}$ is planar. Recall that $n=6$ and $m=9$. Note that $K_{3,3}$ does not have any triangles. Applying the inequality $m \leq 2 n-4$, we get $9 \leq 2 \cdot 6-4=8$. This is a contradiction.

Planarity and Minimum Degree of a Vertex

Theorem

Every simple planar graph contains a vertex of degree at most 5 .

- Without loss of generality we can assume that the graph is connected and has at least three vertices.
Suppose each vertex has degree at least 6 .
With the above notation, we have the inequality

$$
6 n \leq 2 m .
$$

So $3 n \leq m$.
Thus, by the corollary,

$$
3 n \leq m \leq 3 n-6 \quad \Rightarrow \quad 0 \leq-6
$$

This yields a contradiction.

Thickness of a Graph

- We define the thickness $t(G)$ of a graph G to be the smallest number of planar graphs that can be superimposed to form G.
- Like the crossing number, the thickness is a measure of how "unplanar" a graph is.
Example: The thickness of a planar graph is 1 . The thickness of K_{5} and $K_{3,3}$ is 2.

The thickness of K_{6} is 2.

Lower Bounds on the Thickness of a Graph

Theorem

Let G be a simple graph with $n(\geq 3)$ vertices and m edges. Then the thickness $t(G)$ of G satisfies $t(G) \geq\left\lceil\frac{m}{3 n-6}\right\rceil$ and $t(G) \geq\left\lfloor\frac{m+3 n-7}{3 n-6}\right\rfloor$.

- Suppose G has n vertices and m edges.

Each of the $k=t(G)$ layers G_{1}, \ldots, G_{k} has n vertices and, say, m_{i} edges, with $m_{1}+m_{2}+\cdots+m_{k}=m$.
Since each layer is planar, we must have

$$
m_{1} \leq 3 n-6, m_{2} \leq 3 n-6, \ldots, m_{k} \leq 3 n-6
$$

So $m_{1}+\cdots+m_{k} \leq t(G)(3 n-6)$, i.e., $m \leq t(G)(3 n-6)$.
This gives $t(G) \geq \frac{m}{3 n-6}$. Since $t(G)$ is an integer, $t(G) \geq\left\lceil\frac{m}{3 n-6}\right\rceil$.
The second part follows from the first by using the relation $\left\lceil\frac{a}{b}\right\rceil=\left\lfloor\frac{a+b-1}{b}\right\rfloor$, where a and b are positive integers.

Subsection 3

Graphs on Other Surfaces

Surfaces Other than the Plane

- We considered graphs drawn in the plane or (equivalently) on the surface of a sphere.
- We may draw graphs on other surfaces, such as the torus.

Example: K_{5} and $K_{3,3}$ can be drawn without crossings on the surface of a torus.

The Genus of a Surface and the Genus of a Graph

- The torus can be thought of as a sphere with one "handle".

- A surface is of genus g if it is topologically homeomorphic to a sphere with g handles (intuitively the surface of a doughnut with g holes in it).
Example: The genus of a sphere is 0 , and that of a torus is 1 .
- A graph that can be drawn without crossings on a surface of genus g, but not on one of genus $g-1$, is a graph of genus g.
Example: K_{5} and $K_{3,3}$ are graphs of genus 1 (also called toroidal graphs).

Upper Bound on the Genus of a Graph

Theorem

The genus of a graph does not exceed the crossing number.

- We draw the graph on the surface of a sphere so that the number of crossings is as small as possible, and is therefore equal to the crossing number c.

At each crossing, we construct a "bridge" and run one edge over the bridge and the other under it.

Since each bridge can be thought of as a handle, we have drawn the graph on the surface of a sphere with c handles. It follows that the genus does not exceed c.

Kuratowski's and Euler's Theorems for Graphs of Genus g

- There is currently no complete analogue of Kuratowski's theorem for surfaces of genus g.
- Robertson and Seymour have proved that there exists a finite collection of "forbidden" subgraphs of genus g, for each value of g, corresponding to the forbidden subgraphs K_{5} and $K_{3,3}$ for graphs of genus 0 .
- In the case of Euler's formula, we define a face of a graph of genus g in the obvious way.

Theorem

Let G be a connected graph of genus g with n vertices, m edges and F faces. Then $n-m+f=2-2 g$.

Lower Bound on the Genus of a Graph

Corollary

The genus $g(G)$ of a simple graph G with $n(\geq 4)$ vertices and m edges satisfies the inequality $g(G) \geq\left\lceil\frac{m-3 n}{6}+1\right\rceil$.

- Since each face is bounded by at least three edges, we have $3 f \leq 2 m$. Thus, $f \leq \frac{2}{3} m$. Now we use $n-m+f=2-2 g$.

$$
\begin{gathered}
n-m+\frac{2}{3} m \geq 2-2 g \\
n-\frac{1}{3} m \geq 2-2 g \\
2 g \geq \frac{1}{3} m-n+2 \\
g \geq \frac{1}{6} m-\frac{1}{2} n+1 \\
g \geq \frac{m-3 n}{6}+1 .
\end{gathered}
$$

Since g is an integer, $g \geq\left\lceil\frac{m-3 n}{6}+1\right\rceil$.

Genus of Complete Graphs

- The complete graph K_{n} has n vertices and $\frac{n(n-1)}{2}$ edges. By the corollary, $g \geq\left\lceil\frac{m-3 n}{6}+1\right\rceil$:

$$
\begin{gathered}
g\left(K_{n}\right) \geq\left\lceil\frac{\frac{n(n-1)}{2}-3 n}{6}+1\right\rceil \\
g\left(K_{n}\right) \geq\left\lceil\frac{n^{2}-n-6 n}{12}+1\right\rceil \\
g\left(K_{n}\right) \geq\left\lceil\frac{n^{2}-7 n+12}{12}\right\rceil \\
g\left(K_{n}\right) \geq\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil .
\end{gathered}
$$

- Heawood asserted in 1890 that the inequality $g\left(K_{n}\right) \geq\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil$ is an equality.

Theorem (Ringel and Youngs, 1968)
$g\left(K_{n}\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil$.

Subsection 4

Dual Graphs

The Dual Graph of a Planar Graph

- Given a plane drawing of a planar graph G, we construct another graph G^{*}, called the (geometric) dual of G :
inside each face f of G we choose a point v^{*}; these points are the vertices of G^{*};
(ii) corresponding to each edge e of G we draw a line e^{*} that crosses e (but no other edge of G), and joins the vertices v^{*} in the faces f adjoining e; these lines are the edges of G^{*}.
Example: The vertices v^{*} of G^{*} are represented by small squares.
The edges e of G are shown as solid lines.
The edges e^{*} of G^{*} are shown as dotted lines.

- An end-vertex or a bridge of G gives rise to a loop of G^{*}.
- If two faces of G have more than one edge in common, then G^{*} has multiple edges.

Relations Between Duals

- Any two geometric duals of G must be isomorphic. This is why G^{*} is called "the dual of G " instead of "a dual of G ".
- On the other hand, if G is isomorphic to H, it does not necessarily follow that G^{*} is isomorphic to H^{*} :

- If G is both plane and connected, then G^{*} is plane and connected:

Lemma

Let G be a plane connected graph with n vertices, m edges and f faces, and let its geometric dual G^{*} have n^{*} vertices, m^{*} edges and f^{*} faces. Then $n^{*}=f, m^{*}=m$ and $f^{*}=n$.

- The first two relations are direct consequences of the definition of G^{*}. The third relation follows on substituting these two relations into Euler's formula, applied to both G and G^{*}.

The Dual of the Dual

- Since the dual G^{*} of a plane graph G is also a plane graph, we can repeat the above construction to form the dual $G^{* *}$ of G^{*}.
- If G is connected, then the relationship between $G^{* *}$ and G is particularly simple:

Theorem

If G is a plane connected graph, then $G^{* *}$ is isomorphic to G.

- The result follows immediately, since the construction that gives rise to G^{*} from G can be reversed to give G from G^{*}.
We need to check only that a face of G^{*} cannot contain more than one vertex of G. Letting $n^{* *}$ be the number of vertices of $G^{* *}$, we get:

$$
n^{* *}=f^{*}=n
$$

So each face of G^{*} contains exactly one vertex of G.

Example

- The graph G is the dual of the graph G^{*}.

Geometric Duals, Cycles and Cutsets

Theorem

Let G be a planar graph and let G^{*} be a geometric dual of G. Then a set of edges in G forms a cycle in G if and only if the corresponding set of edges of G^{*} forms a cutset in G^{*}.

- We can assume that G is a connected plane graph. If C is a cycle in G, then C encloses one or more finite faces of C. Thus, it contains in its interior a non-empty set S of vertices of G^{*}.

It follows that those edges of G^{*} that cross the edges of C form a cutset of G^{*} whose removal disconnects G^{*} into two subgraphs, one with vertex set S and the other containing those vertices that do not lie in S.
The converse implication is similar.

Geometric Duals, Cutsets and Cycles

Corollary

A set of edges of G forms a cutset in G if and only if the corresponding set of edges of G^{*} forms a cycle in G^{*}.

- The result follows on applying the preceding theorem to G^{*} :

A set of edges in G^{*} forms a cycle in G^{*} iff the corresponding set of edges of $G^{* *}$ forms a cutset in $G^{* *}$.

But $G^{* *}$ is isomorphic to G.
So, we get
A set of edges in G^{*} forms a cycle in G^{*} iff the corresponding set of edges of G forms a cutset in G.

Subsection 5

Infinite Graphs

Infinite Graphs

- An infinite graph G consists of:
- An infinite set $V(G)$ of elements called vertices;
- An infinite family $E(G)$ of unordered pairs of elements of $V(G)$ called edges.
- If $V(G)$ and $E(G)$ are both countably infinite, then G is a countable graph.
- We exclude the possibility of:
- $V(G)$ being infinite but $E(G)$ finite, as such objects are merely finite graphs together with infinitely many isolated vertices;
- $E(G)$ being infinite but $V(G)$ finite, as such objects are essentially finite graphs but with infinitely many loops or multiple edges.
- Many of our earlier definitions (adjacent, incident, isomorphic, subgraph, connected, planar, etc.) extend to infinite graphs.

Degrees in Infinite Graphs

- The degree of a vertex v of an infinite graph is the cardinality of the set of edges incident to v, and may be finite or infinite.
- An infinite graph, each of whose vertices has finite degree, is locally finite.
Examples: The infinite square lattice and the infinite triangular lattice are both locally finite infinite graphs.

- We similarly define a locally countable infinite graph to be one in which each vertex has countable degree.

Connected Locally Countable Infinite Graphs

Theorem

Every connected locally countable infinite graph is a countable graph.

- Let v be any vertex of such an infinite graph. Let A_{1} be the set of vertices adjacent to v, A_{2} be the set of all vertices adjacent to a vertex of A_{1}, and so on. By hypothesis, A_{1} is countable. Since the union of a countable collection of countable sets is countable, so are A_{2}, A_{3}, \ldots. Hence $\{v\}, A_{1}, A_{2}, \ldots$ is a sequence of sets whose union is countable and contains every vertex of the infinite graph, by connectedness. This yields the result.

Corollary

Every connected locally finite infinite graph is a countable graph.

Types of Paths in Infinite Graphs

- In an infinite graph G, there are three different types of walk:
(i) A finite walk is defined as for finite graphs;
(ii) A one-way infinite walk with initial vertex v_{0} is an infinite sequence of edges of the form $v_{0} v_{1}, v_{1} v_{2}, \ldots$;
(iii) A two-way infinite walk is an infinite sequence of edges of the form $\ldots, v_{-2} v_{-1}, v_{-1} v_{0}, v_{0} v_{1}, v_{1} v_{2}, \ldots$;
- One-way and two-way infinite trails and paths are defined analogously, as are the length of a path and the distance between vertices.

König's Lemma

Theorem (König's Lemma, 1927)

Let G be a connected locally finite infinite graph. Then, for any vertex v of G, there exists a one-way infinite path with initial vertex v.

- Eor each vertex z other than v, there is a non-trivial path from v to z. It follows that there are infinitely many paths in G with initial vertex v. Since the degree of v is finite, infinitely many of these paths must start with the same edge. If $v v_{1}$ is such an edge, then we can repeat this procedure for the vertex v_{1} and thus obtain a new vertex v_{2} and a corresponding edge $v_{1} v_{2}$. By carrying on in this way, we obtain the one-way infinite path $v \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots$.

Planarity and Infinite Graphs

Theorem

If G be a countable graph, every finite subgraph of which is planar, then G is planar.

- Since G is countable, its vertices may be listed as $v_{1}, v_{2}, v_{3}, \ldots$. Construct a strictly increasing sequence $G_{1} \subset G_{2} \subset G_{3} \subset \cdots$ of subgraphs of G, where G_{k} is the subgraph whose vertices are v_{1}, \ldots, v_{k} and whose edges those of G joining two of these vertices. Graph G_{i} can be drawn in the plane in only a finite number $m(i)$ of topologically distinct ways.
We use this to construct another infinite graph H.

Planarity and Infinite Graphs (Cont'd)

- We construct the infinite graph H as follows:
- The vertices $w_{i j}, i \geq 1,1 \leq j \leq m(i)$, of H correspond to the drawings of the graphs G_{i};
- The edges of H join those vertices $w_{i j}$ and $w_{k \ell}$, for which $k=i+1$ and the plane drawing corresponding to $w_{k \ell}$ extends the drawing corresponding to $w_{i j}$.
Since H is connected and locally finite, by König's Lemma, H contains a one-way infinite path.
Since G is countable, this infinite path gives a plane drawing of G.

Eulerian Infinite Graphs

- We call a connected infinite graph G Eulerian if there exists a two-way infinite trail that includes every edge of G.
Such an infinite trail is a two-way Eulerian trail.
- These definitions require G to be countable.
- The following theorems give additional necessary conditions for an infinite graph to be Eulerian:

Theorem

Let G be a connected countable graph which is Eulerian. Then:
G has no vertices of odd degree;
For each finite subgraph H of G, the infinite graph \bar{H} obtained by deleting from G the edges of H has at most two infinite connected components; If, in addition, each vertex of H has even degree, then \bar{H} has exactly one infinite connected component.

Eulerian Infinite Graphs: Proof of Necessary Conditions

(i) Suppose that P is an Eulerian trail. Then, by the argument given in the proof of the finite case, each vertex of G must have either even or infinite degree.
(ii) Let P be split up into three subtrails P_{-}, P_{0} and P_{+}in such a way that P_{0} is a finite trail containing every edge of H, and possibly other edges as well, and P_{-}and P_{+}are one-way infinite trails. Then the infinite graph K formed by the edges of P_{-}and P_{+}and the vertices incident to them, has at most two infinite components. Since \bar{H} is obtained by adding only a finite set of edges to K, the result follows. Let the initial and final vertices of P_{0} be v and w. We wish to show that v and w are connected in \bar{H}.

- If $v=w$, this is obvious.
- Suppose $v \neq w$. If we remove the edges of H from P_{0}, the resulting graph has exactly two vertices v and w of odd degree. Therefore, v and w must belong to the same component, i.e., they are connected.

Characterization of Eulerian Infinite Graphs

- It turns out the preceding three conditions are also sufficient.

Theorem

If G is a connected countable graph, then G is Eulerian if and only if Conditions (i), (ii) and (iii) of the preceding theorem are satisfied.

