Introduction to Graph Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

LSSU Math 351

- Definitions
- Eulerian Digraphs and Tournaments
- Markov Chains

Subsection 1

Definitions

Digraphs

- A directed graph, or digraph, D consists of:
- a non-empty finite set $V(D)$ of elements called vertices;
- a finite family $A(D)$ of ordered pairs of elements of $V(D)$ called arcs.

We call $V(D)$ the vertex set and $A(D)$ the arc family of D.

- An arc (v, w) is usually abbreviated to $v w$.

Example: $V(D)=\{u, v, w, z\} ; A(D)$ consists of the arcs $u v, v v, v w$ (twice), $w v, w u$ and $z w$, the ordering of the vertices in an arc being indicated by an arrow.

- If D is a digraph, the graph obtained from D by "removing the arrows" (that is, by replacing each arc of the form $v w$ by a corresponding edge $v w)$ is the underlying graph of D.

Simple Digraphs, Isomorphism, Adjacency and Incidence

- D is a simple digraph if the arcs of D are all distinct, and if there are no loops (arcs of the form vv).
- The underlying graph of a simple digraph need not be a simple graph!

- Two digraphs are isomorphic if there is an isomorphism between their underlying graphs that preserves the ordering of the vertices in each arc. The digraphs on the right are not isomorphic.
- Two vertices v and w of a digraph D are adjacent if there is an arc in $A(D)$ of the form $v w$ or $w v . v$ and w are incident to such an arc.
- If D has vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, the adjacency matrix of D is the $n \times n$ matrix $A=\left(a_{i j}\right)$, where $a_{i j}$ is the number of arcs from v_{i} to v_{j}.

Walks, Trails and Paths

- A walk in a digraph D is a finite sequence of arcs of the form $v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{m-1} v_{m}$.
- We sometimes write this sequence as $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{m}$ and speak of a walk from v_{0} to v_{m}.
- In an analogous way, we can define directed trails, directed paths and directed cycles or, simply, trails, paths and cycles, if there is no possibility of confusion.
Example: Although a trail cannot contain a given arc $v w$ more than once, it can contain both $v w$ and $w v$.
In the figure $z \rightarrow w \rightarrow v \rightarrow w \rightarrow u$ is a trail.

Connectedness and Strong Connectedness

- A digraph D is connected if it cannot be expressed as the union of two digraphs, defined in the obvious way.
- This is equivalent to saying that the underlying graph of D is a connected graph.
- D is strongly connected if, for any two vertices v and w of D, there is a path from v to w.
- Every strongly connected digraph is connected, but not all connected digraphs are strongly connected.
Example: The connected digraph on the right is not strongly connected since there is no path from v to z.

Orientable Graphs

- Define a graph G to be orientable if each edge of G can be directed so that the resulting digraph is strongly connected.
Example: If G is the graph shown on the left,

then G is orientable, since its edges can be directed to give the strongly connected digraph on the right.
- Any Eulerian graph is orientable, since we simply follow any Eulerian trail, directing the edges in the direction of the trail.

Characterization of Orientable Graphs

Theorem

Let G be a connected graph. Then G is orientable if and only if each edge of G is contained in at least one cycle.

- The necessity of the condition is clear. To prove the sufficiency, we choose any cycle C and direct its edges cyclically.
- If each edge of G is contained in C, then the proof is complete.
- If not, we choose any edge e that is not in C but which is adjacent to an edge of C.
By hypothesis, e is contained in some cycle C^{\prime}. Direct the edges of C^{\prime} cyclically, except for those edges that have already been directed, i.e., that also lie in C. The resulting digraph is strongly connected.

We proceed in this way, at each stage directing at least one new edge, until all edges are directed. Since the digraph remains strongly connected at each stage, the result follows.

Dividing a Job into a Number of Activities

- Consider a "weighted digraph", or activity network, in which each arc represents the length of time taken for an activity.

The vertex A represents the beginning of the job, and the vertex L represents its completion.

- The entire job cannot be completed until each path from A to L has been traversed.
- Thus, we would like to find the longest path from A to L.
- This is accomplished by using a technique known as program evaluation and review technique (PERT).

Applying PERT

- PERT is similar to the technique used for the shortest path problem, except that, as we move across the digraph from left to right, we associate with each vertex V a number $\ell(V)$ indicating the length of the longest path from A to V.

vertex $A: \ell(A)=0$;
vertex B : $\ell(B)=\ell(A)+3=3$;
vertex $C: \ell(C)=\ell(A)+2=2$;
vertex $D: \ell(D)=\ell(B)+2=5$;
vertex $E: \ell(E)=\max \{\ell(A)+9, \ell(B)+4, \ell(C)+6\}=9$;

Applying PERT (Cont'd)

- We have $\ell(A)=0, \ell(B)=3, \ell(C)=2, \ell(D)=5, \ell(E)=9$.

vertex $F: \ell(F)=\ell(C)+9=11$;
vertex $G: \ell(G)=\max \{\ell(D)+3, \ell(E)+1\}=10$;
vertex $H: \ell(H)=\max \{\ell(E)+2, \ell(F)+1\}=12$;
vertex $I: \ell(I)=\ell(F)+2=13$;
vertex $J: \ell(J)=\max \{\ell(G)+5, \ell(H)+5\}=17$;
vertex $K: \ell(K)=\max \{\ell(H)+6, \ell(I)+2\}=18$;
vertex $L: \ell(L)=\max \{\ell(H)+9, \ell(J)+5, \ell(K)+3\}=22$.

The Critical Path

- Thus, the longest path has length 22 and the job cannot be completed until time 22.

- This longest path is called a critical path, since any delay in an activity on this path creates a delay in the whole job.

Latest Completion Times

- We find the latest time by which any given operation must be completed if the work is not to be delayed by working back from L.
- For L to be completed by time 22:
- K must be reached by time $22-3=19$;
- I must be reached by time $19-2=17$;
- H must be reached by time $\min \{17-5,22-9,19-6\}-12$;

Subsection 2

Eulerian Digraphs and Tournaments

Eulerian Digraphs

- A connected digraph D is Eulerian if there exists a closed trail containing every arc of D. Such a trail is an Eulerian trail.
Example: The digraph shown

is not Eulerian, although its underlying graph is an Eulerian graph.
- A necessary condition for a digraph to be Eulerian is that the digraph is strongly connected.

Out-degrees and In-degrees

- The out-degree of a vertex v of D is the number of arcs of the form $v w$, and is denoted by outdeg (v).
- The in-degree of v is the number of arcs of D of the form $w v$, and is denoted by indeg (v).
- The Handshaking Dilemma: The sum of the out-degrees of all the vertices of D is equal to the sum of their in-degrees (each arc of D contributes exactly 1 to each sum).

Characterization of Eulerian Digraphs

- A source of D is a vertex with in-degree 0 .
- A sink of D is a vertex with out-degree 0 .

Example: In the digraph shown,

v is a source and w is a sink.

- Any Eulerian digraph with at least one arc has no sources or sinks.

Theorem

A connected digraph is Eulerian if and only if for each vertex v of D, $\operatorname{outdeg}(v)=\operatorname{indeg}(v)$.

Hamiltonicity

- A digraph D is Hamiltonian if there is a cycle that includes every vertex of D.
- A non-Hamiltonian digraph that contains a path passing through every vertex is semi-Hamiltonian.

Theorem (Ghouila-Houri)

Let D he a strongly connected digraph with n vertices. If $\operatorname{outdeg}(v) \geq \frac{n}{2}$ and indeg $(v) \geq \frac{n}{2}$, for each vertex v, then D is Hamiltonian.

Tournaments

- A tournament is a digraph in which any two vertices are joined by exactly one arc.

- Such a digraph can be used to record the result of a tennis tournament, or any other game in which draws are not allowed.

Tournaments and Hamiltonicity

Theorem (Rédei and Camion)

Every non-Hamiltonian tournament is semi-Hamiltonian;
Every strongly connected tournament is Hamiltonian.
(i) We prove the result by induction on the number of vertices.

The statement is clearly true if the tournament has fewer than four vertices.

Assume that every non-Hamiltonian tournament on n vertices is semi-Hamiltonian.

Let T be a non-Hamiltonian tournament on $n+1$ vertices. Let T^{\prime} be the tournament on n vertices obtained by removing from T a vertex v and its incident arcs. By the induction hypothesis, T^{\prime} has a
semi-Hamiltonian path $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}$.
We next consider three cases.

Tournaments and Hamiltonicity (Cont'd)

(1) Suppose $v v_{1}$ is an arc in T. Then the required path is $v \rightarrow v_{1} \rightarrow v_{2} \cdots \rightarrow v_{n}$.
(2) Suppose $v v_{1}$ is not an arc in T. Then $v_{1} v$ is an arc.
(a) Suppose there exists an i such that $v v_{i}$ is an arc in T. Then choosing i to be the first such, the required path is

$$
v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{i-1} \rightarrow v \rightarrow v_{i} \rightarrow \cdots \rightarrow v_{n}
$$

(b) Suppose there is no arc in T of the form $v v_{i}$. Then the required path is $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n} \rightarrow v$.

Tournaments and Hamiltonicity: Part (ii)

(ii) We prove that a strongly connected tournament T on n vertices contains cycles of length $3,4, \ldots, n$.

- We show, first, that T contains a cycle of length 3: Let v be any vertex of T, and set:
- W be the set of all vertices w such that $v w$ is an arc in T;
- Z be the set of all vertices z such that $z v$ is an arc.

Since T is strongly connected, W and Z must both be non-empty, and there must be an arc in T of the form $w^{\prime} z^{\prime}$, where w^{\prime} is in W and z^{\prime} is in Z. The required cycle of length 3 is then $v \rightarrow w^{\prime} \rightarrow$ $z^{\prime} \rightarrow v$.

Tournaments and Hamiltonicity: Part (ii) Cont'd

- We show that, if there is a cycle of length k, where $k<n$, then there is one of length $k+1$. Let $v_{1} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{1}$ be such a cycle.
- Suppose there exists a vertex v not contained in this cycle, such that there exist arcs in T of the form $v v_{i}$ and of the form $v_{j} v$. Then there must be a vertex v_{i}, such that both $v_{i-1} v$ and $v v_{i}$ are arcs in T. The cycle is $v_{1} \rightarrow v_{2} \rightarrow$ $\cdots \rightarrow v_{i-1} \rightarrow v \rightarrow v_{i} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{1}$.

- If no such vertex exists, then the set of vertices not contained in the cycle may be divided into two disjoint sets W and Z, where:
- W is the set of vertices w such that $v_{i} w$ is an arc for each i;
- Z is the set of vertices z such that $z v_{i}$ is an arc for each i.

Since T is strongly connected, W and Z must both be non-empty, and there must be an arc in T of the form $w^{\prime} z^{\prime}$, where w^{\prime} is in W and z^{\prime} is in Z. The required cycle is then $v_{1} \rightarrow$ $w^{\prime} \rightarrow z^{\prime} \rightarrow v_{3} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{1}$.

Subsection 3

Markov Chains

One Dimensional Random Walk

- Johnny is standing between two pubs "The DT" and "The Alpha".

- Every minute he either staggers four meters towards the first pub (with probability $\frac{1}{2}$) or towards the second pub (with probability $\frac{1}{3}$) or he stays where he is (with probability $\frac{1}{6}$)
- Such a procedure is called a one-dimensional random walk.
- We assume that the two pubs are "absorbing", in the sense that if he arrives at either of them he stays there.
- Given the distance between the two pubs and his initial position, we would like to find out:
- Which pub he is more likely to reach first;
- How long he is likely to take getting there.

Probability Vectors

- Suppose the two pubs are 20 meters apart, and that Johnny is initially 8 meters from "The Alpha".
- Denote the places at which he can stop by E_{1}, \ldots, E_{6}, where E_{1} and E_{6} are the two pubs.
- His initial position E_{4} can be described by the vector $\mathbf{x}=(0,0,0,1,0,0)$, in which the i th component is the probability that he is initially at E_{i}.
- The probabilities of his position after one minute are given by the vector $\left(0,0, \frac{1}{2}, \frac{1}{6}, \frac{1}{3}, 0\right)$.
- After two minutes, they are given by by ($0, \frac{1}{4}, \frac{1}{6}, \frac{13}{36}, \frac{1}{9}, \frac{1}{9}$).
- A convenient way to calculate the probability of his being at a given place after k minutes is to introduce the transition matrix.

The Transition Matrix

- Let $p_{i j}$ be the probability that he moves from E_{i} to E_{j} in one minute; e.g., $p_{23}=\frac{1}{3}$ and $p_{24}=0$.
- These probabilities $p_{i j}$ are called the transition probabilities;
- The 6×6 matrix $\mathbf{P}=\left(p_{i j}\right)$ is the transition matrix.
$\mathbf{P}=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{3} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{6} & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{6} & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{6} & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$.
- Each entry of \mathbf{P} is non-negative and the sum of the entries in each row is 1 .
- If \mathbf{x} is the initial row vector defined above, then the probabilities of his position after one minute are given by the row vector $\mathbf{x P}$, and after k minutes by the vector $\mathbf{x} \mathbf{P}^{k}$.
In other words, the ith component of $\mathbf{x P}^{k}$ represents the probability that he is at E_{i} after k minutes have elapsed.

Probability Vectors, Transition Matrices and Chains

- A probability vector is a row vector whose entries are all non-negative and have sum 1 .
- A transition matrix is a square matrix, each of whose rows is a probability vector.
- A finite Markov chain (or simply, a chain) consistis of an $n \times n$ transition matrix \mathbf{P} and a $1 \times n$ row vector \mathbf{x}.
- The positions E_{i} are the states of the chain.
- The Markov clain is represented by its associated digraph:
- Its vertices correspond to the states;
- Its arcs represent one-time-step transitions between states.

Thus, if each state E_{i} is represented by a vertex v_{i}, then we obtain the required digraph by drawing an arc from v_{i} to v_{j} if and only if $p_{i j} \neq 0$.

Additional Example

- If we are given a Markov chain with transition matrix

$$
\mathbf{P}=\left(\begin{array}{cccccc}
0 & \frac{1}{4} & \frac{1}{2} & 0 & 0 & \frac{1}{4} \\
0 & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{3} & 0 & \frac{1}{12} & 0 & \frac{1}{12} \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \text {, then }
$$

- its associated adjacency matrix is

$$
\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) ;
$$

- its associated digraph is:
- We can get from a state E_{i} to a state E_{j} in a Markov chain if and only if there is a path from v_{i} to v_{j} in the associated digraph.
- The least possible time to do so is the length of the shortest path.

Irreducible Chains, Persistent and Transient States

- A Markov chain in which we can get from any state to any other is called an irreducible chain.
- A Markov chain is irreducible if and only if its associated digraph is strongly connected.
- We distinguish between those states to which we keep on returning however long we continue, and those that we visit a few times and then never return to:
- If on starting at E_{i} the probability of returning to E_{i} at some later stage is 1 , then E_{i} is a persistent state;
- Otherwise E_{i} is transient.

Example: In the pub problem, E_{1} and E_{6} are persistent and the other states are transient.

- A state E_{i} is persistent if and only if the existence of a path from v_{i} to v_{j} in the associated digraph implies the existence of a path from v_{j} to v_{i}.
- A state from which we can get to no other state is absorbing.

Periodicity

- A state E_{i} of a Markov chain is periodic of period $t(t \neq 1)$ if it is possible to return to E_{i} only after a period of time that is a multiple of t.

If no such t exists, then E_{j} is aperiodic.

- Every state E_{i} for which $p_{i i} \neq 0$ is aperiodic; e.g., every absorbing state is aperiodic.
Example: In the pub problem, every state is aperiodic.
- In digraph terms, a state E_{i} is periodic of period t if and only if in the associated digraph the length of each closed trail containing v_{i} is a multiple of t.

Example

- Consider again the Markov chain whose transition matrix and associated digraph are given below:

$$
\mathbf{P}=\left(\begin{array}{cccccc}
0 & \frac{1}{4} & \frac{1}{2} & 0 & 0 & \frac{1}{4} \\
0 & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{3} & 0 & \frac{1}{12} & 0 & \frac{1}{12} \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

- States E_{1} and E_{3} are periodic of period 2.
- States E_{4}, E_{5} and E_{6} are periodic of period 3.
- So, the absorbing state E_{2} is the only aperiodic state.

Ergodicity

- A state is ergodic if it is both persistent and aperiodic.
- If every state is ergodic then the chain is an ergodic chain.

Example: A game is played with a die by five people around a circular table. If the player with the die throws:

- An odd number, he passes the die to the player on his left;
- A 2 or 4 , he passes it to the player on his right;
- A 6, he keeps the die and throws again.
(i) The corresponding transition matrix and its associated digraph are shown below:

$$
\mathbf{P}=\left(\begin{array}{ccccc}
\frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{6} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3} & \frac{1}{6} & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & \frac{1}{3} & \frac{1}{6}
\end{array}\right)
$$

Example (Cont'd)

- We got transition matrix and associate digraph:

$$
\mathbf{P}=\left(\begin{array}{ccccc}
\frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{6} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3} & \frac{1}{6} & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & \frac{1}{3} & \frac{1}{6}
\end{array}\right)
$$

(ii) Each state is:

- Persistent, since whenever there is a path to some other state, there is also a path leading from the other state to itself.
- Aperiodic, since $p_{i i}=\frac{1}{6} \neq 0$, for all i.

Therefore, the corresponding Markov chain is ergodic.

