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Digraphs Definitions

Digraphs

A directed graph, or digraph, D consists of:

a non-empty finite set V (D) of elements called vertices;
a finite family A(D) of ordered pairs of elements of V (D) called arcs.

We call V (D) the vertex set and A(D) the arc family of D.

An arc (v ,w) is usually abbreviated to vw .

Example: V (D) = {u, v ,w , z}; A(D) consists
of the arcs uv , vv , vw (twice), wv ,wu and zw ,
the ordering of the vertices in an arc being in-
dicated by an arrow.

If D is a digraph, the graph obtained from D

by “removing the arrows” (that is, by replacing
each arc of the form vw by a corresponding edge
vw) is the underlying graph of D.
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Digraphs Definitions

Simple Digraphs, Isomorphism, Adjacency and Incidence

D is a simple digraph if the arcs of D are all distinct, and if there are
no loops (arcs of the form vv).

The underlying graph of a simple digraph need not be a simple graph!

Two digraphs are isomorphic if there is an isomorphism between
their underlying graphs that preserves the ordering of the vertices in
each arc. The digraphs on the right are not isomorphic.

Two vertices v and w of a digraph D are adjacent if there is an arc
in A(D) of the form vw or wv . v and w are incident to such an arc.

If D has vertex set {v1, . . . , vn}, the adjacency matrix of D is the
n × n matrix A = (aij), where aij is the number of arcs from vi to vj .
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Digraphs Definitions

Walks, Trails and Paths

A walk in a digraph D is a finite sequence of arcs of the form
v0v1, v1v2, . . . , vm−1vm.

We sometimes write this sequence as v0 → v1 → · · · → vm and speak
of a walk from v0 to vm.

In an analogous way, we can define directed trails, directed paths

and directed cycles or, simply, trails, paths and cycles, if there is
no possibility of confusion.

Example: Although a trail cannot contain
a given arc vw more than once, it can
contain both vw and wv .
In the figure z → w → v → w → u is a
trail.
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Digraphs Definitions

Connectedness and Strong Connectedness

A digraph D is connected if it cannot be expressed as the union of
two digraphs, defined in the obvious way.

This is equivalent to saying that the underlying graph of D is a
connected graph.

D is strongly connected if, for any two vertices v and w of D, there
is a path from v to w .

Every strongly connected digraph is connected, but not all connected
digraphs are strongly connected.

Example: The connected digraph on the
right is not strongly connected since there
is no path from v to z .
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Digraphs Definitions

Orientable Graphs

Define a graph G to be orientable if each edge of G can be directed
so that the resulting digraph is strongly connected.

Example: If G is the graph shown on the left,

then G is orientable, since its edges can be directed to give the
strongly connected digraph on the right.

Any Eulerian graph is orientable, since we simply follow any Eulerian
trail, directing the edges in the direction of the trail.
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Digraphs Definitions

Characterization of Orientable Graphs

Theorem

Let G be a connected graph. Then G is orientable if and only if each edge
of G is contained in at least one cycle.

The necessity of the condition is clear. To prove the sufficiency, we
choose any cycle C and direct its edges cyclically.

If each edge of G is contained in C , then the proof is complete.
If not, we choose any edge e that is not in C but which is adjacent to
an edge of C .
By hypothesis, e is contained in some cycle C ′.
Direct the edges of C ′ cyclically, except for those
edges that have already been directed, i.e., that
also lie in C . The resulting digraph is strongly
connected.

We proceed in this way, at each stage directing at least one new edge,
until all edges are directed. Since the digraph remains strongly
connected at each stage, the result follows.

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 9 / 35



Digraphs Definitions

Dividing a Job into a Number of Activities

Consider a “weighted digraph”, or activity network, in which each
arc represents the length of time taken for an activity.

The vertex A represents the beginning of the job, and the vertex L

represents its completion.

The entire job cannot be completed until each path from A to L has
been traversed.

Thus, we would like to find the longest path from A to L.

This is accomplished by using a technique known as program
evaluation and review technique (PERT).
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Digraphs Definitions

Applying PERT

PERT is similar to the technique used for the shortest path problem,
except that, as we move across the digraph from left to right, we
associate with each vertex V a number ℓ(V ) indicating the length of
the longest path from A to V .

vertex A: ℓ(A) = 0;
vertex B : ℓ(B) = ℓ(A) + 3 = 3;
vertex C : ℓ(C ) = ℓ(A) + 2 = 2;
vertex D: ℓ(D) = ℓ(B) + 2 = 5;
vertex E : ℓ(E ) = max {ℓ(A) + 9, ℓ(B) + 4, ℓ(C ) + 6} = 9;
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Digraphs Definitions

Applying PERT (Cont’d)

We have ℓ(A) = 0, ℓ(B) = 3, ℓ(C ) = 2, ℓ(D) = 5, ℓ(E ) = 9.

vertex F : ℓ(F ) = ℓ(C ) + 9 = 11;
vertex G : ℓ(G ) = max {ℓ(D) + 3, ℓ(E ) + 1} = 10;
vertex H: ℓ(H) = max {ℓ(E ) + 2, ℓ(F ) + 1} = 12;
vertex I : ℓ(I ) = ℓ(F ) + 2 = 13;
vertex J: ℓ(J) = max {ℓ(G ) + 5, ℓ(H) + 5} = 17;
vertex K : ℓ(K ) = max {ℓ(H) + 6, ℓ(I ) + 2} = 18;
vertex L: ℓ(L) = max {ℓ(H) + 9, ℓ(J) + 5, ℓ(K ) + 3} = 22.
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Digraphs Definitions

The Critical Path

Thus, the longest path has length 22 and the job cannot be
completed until time 22.

This longest path is called a critical path, since any delay in an
activity on this path creates a delay in the whole job.
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Digraphs Definitions

Latest Completion Times

We find the latest time by which any given operation must be
completed if the work is not to be delayed by working back from L.

For L to be completed by time 22:

K must be reached by time 22− 3 = 19;
I must be reached by time 19− 2 = 17;
H must be reached by time min {17− 5, 22− 9, 19− 6} − 12;
...
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Digraphs Eulerian Digraphs and Tournaments

Subsection 2

Eulerian Digraphs and Tournaments
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Digraphs Eulerian Digraphs and Tournaments

Eulerian Digraphs

A connected digraph D is Eulerian if there exists a closed trail
containing every arc of D. Such a trail is an Eulerian trail.

Example: The digraph shown

is not Eulerian, although its underlying graph is an Eulerian graph.

A necessary condition for a digraph to be Eulerian is that the digraph
is strongly connected.
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Digraphs Eulerian Digraphs and Tournaments

Out-degrees and In-degrees

The out-degree of a vertex v of D is the number of arcs of the form
vw , and is denoted by outdeg(v).

The in-degree of v is the number of arcs of D of the form wv , and is
denoted by indeg(v).

The Handshaking Dilemma: The sum of the out-degrees of all the
vertices of D is equal to the sum of their in-degrees (each arc of D
contributes exactly 1 to each sum).

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 17 / 35



Digraphs Eulerian Digraphs and Tournaments

Characterization of Eulerian Digraphs

A source of D is a vertex with in-degree 0.

A sink of D is a vertex with out-degree 0.

Example: In the digraph shown,

v is a source and w is a sink.

Any Eulerian digraph with at least one arc has no sources or sinks.

Theorem

A connected digraph is Eulerian if and only if for each vertex v of D,
outdeg(v) = indeg(v).
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Digraphs Eulerian Digraphs and Tournaments

Hamiltonicity

A digraph D is Hamiltonian if there is a cycle that includes every
vertex of D.

A non-Hamiltonian digraph that contains a path passing through
every vertex is semi-Hamiltonian.

Theorem (Ghouila-Houri)

Let D he a strongly connected digraph with n vertices. If outdeg(v) ≥ n
2

and indeg(v) ≥ n
2 , for each vertex v , then D is Hamiltonian.
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Digraphs Eulerian Digraphs and Tournaments

Tournaments

A tournament is a digraph in which any two vertices are joined by
exactly one arc.

Such a digraph can be used to record the result of a tennis
tournament, or any other game in which draws are not allowed.
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Digraphs Eulerian Digraphs and Tournaments

Tournaments and Hamiltonicity

Theorem (Rédei and Camion)

(i) Every non-Hamiltonian tournament is semi-Hamiltonian;

(ii) Every strongly connected tournament is Hamiltonian.

(i) We prove the result by induction on the number of vertices.

The statement is clearly true if the tournament has fewer than four
vertices.

Assume that every non-Hamiltonian tournament on n vertices is
semi-Hamiltonian.

Let T be a non-Hamiltonian tournament on n + 1 vertices. Let T ′ be
the tournament on n vertices obtained by removing from T a vertex v

and its incident arcs. By the induction hypothesis, T ′ has a
semi-Hamiltonian path v1 → v2 → · · · → vn.

We next consider three cases.
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Digraphs Eulerian Digraphs and Tournaments

Tournaments and Hamiltonicity (Cont’d)

(i) (1) Suppose vv1 is an arc in T . Then the required path is
v → v1 → v2 · · · → vn.

(2) Suppose vv1 is not an arc in T . Then v1v is an arc.

(a) Suppose there exists an i such that vvi is an arc in T . Then choosing i

to be the first such, the required path is

v1 → v2 → · · · → vi−1 → v → vi → · · · → vn.
(b) Suppose there is no arc in T of the form vvi . Then the required path is

v1 → v2 → · · · → vn → v .
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Digraphs Eulerian Digraphs and Tournaments

Tournaments and Hamiltonicity: Part (ii)

(ii) We prove that a strongly connected tournament T on n vertices
contains cycles of length 3, 4, . . . , n.

We show, first, that T contains a cycle of length 3: Let v be any
vertex of T , and set:

W be the set of all vertices w such that vw is an arc in T ;
Z be the set of all vertices z such that zv is an arc.

Since T is strongly connected, W and Z must both be non-empty,

and there must be an arc in T of the form
w ′z ′, where w ′ is in W and z ′ is in Z . The
required cycle of length 3 is then v → w ′ →
z ′ → v .
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Digraphs Eulerian Digraphs and Tournaments

Tournaments and Hamiltonicity: Part (ii) Cont’d
We show that, if there is a cycle of length k , where k < n, then there
is one of length k + 1. Let v1 → · · · → vk → v1 be such a cycle.

Suppose there exists a vertex v not contained
in this cycle, such that there exist arcs in T of
the form vvi and of the form vjv . Then there
must be a vertex vi , such that both vi−1v and
vvi are arcs in T . The cycle is v1 → v2 →
· · · → vi−1 → v → vi → · · · → vk → v1.

If no such vertex exists, then the set of vertices not contained in the
cycle may be divided into two disjoint sets W and Z , where:

W is the set of vertices w such that viw is an arc for each i ;
Z is the set of vertices z such that zvi is an arc for each i .

Since T is strongly connected, W and Z must
both be non-empty, and there must be an arc
in T of the form w ′z ′, where w ′ is in W and
z ′ is in Z . The required cycle is then v1 →
w ′ → z ′ → v3 → · · · → vk → v1.
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Digraphs Markov Chains

Subsection 3

Markov Chains
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Digraphs Markov Chains

One Dimensional Random Walk

Johnny is standing between
two pubs “The DT” and “The
Alpha”.

Every minute he either staggers four meters towards the first pub
(with probability 1

2) or towards the second pub (with probability 1
3) or

he stays where he is (with probability 1
6)

Such a procedure is called a one-dimensional random walk.

We assume that the two pubs are “absorbing”, in the sense that if he
arrives at either of them he stays there.
Given the distance between the two pubs and his initial position, we
would like to find out:

Which pub he is more likely to reach first;
How long he is likely to take getting there.
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Digraphs Markov Chains

Probability Vectors

Suppose the two pubs are 20 meters apart, and that Johnny is
initially 8 meters from “The Alpha”.

Denote the places at which he can stop by E1, . . . ,E6, where E1 and
E6 are the two pubs.

His initial position E4 can be described by the vector
x = (0, 0, 0, 1, 0, 0), in which the ith component is the probability
that he is initially at Ei .

The probabilities of his position after one minute are given by the
vector (0, 0, 12 ,

1
6 ,

1
3 , 0).

After two minutes, they are given by by (0, 14 ,
1
6 ,

13
36 ,

1
9 ,

1
9).

A convenient way to calculate the probability of his being at a given
place after k minutes is to introduce the transition matrix.
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Digraphs Markov Chains

The Transition Matrix

Let pij be the probability that he moves from Ei to Ej in one minute;

e.g., p23 =
1
3 and p24 = 0.

These probabilities pij are called the transition probabilities;

The 6× 6 matrix P = (pij ) is the transition matrix.

P =

















1 0 0 0 0 0
1
2

1
6

1
3

0 0 0
0 1

2
1
6

1
3

0 0
0 0 1

2
1
6

1
3

0
0 0 0 1

2
1
6

1
3

0 0 0 0 0 1

















.

Each entry of P is non-negative and the sum of the entries in each
row is 1.

If x is the initial row vector defined above, then the probabilities of his
position after one minute are given by the row vector xP, and after k
minutes by the vector xPk .

In other words, the ith component of xPk represents the probability
that he is at Ei after k minutes have elapsed.
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Digraphs Markov Chains

Probability Vectors, Transition Matrices and Chains

A probability vector is a row vector whose entries are all
non-negative and have sum 1.

A transition matrix is a square matrix, each of whose rows is a
probability vector.

A finite Markov chain (or simply, a chain) consistis of an n × n

transition matrix P and a 1× n row vector x.

The positions Ei are the states of the chain.
The Markov clain is represented by its associated digraph:

Its vertices correspond to the states;
Its arcs represent one-time-step transitions between states.

Thus, if each state Ei is represented by a vertex vi , then we obtain the
required digraph by drawing an arc from vi to vj if and only if pij 6= 0.
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Digraphs Markov Chains

Additional Example

If we are given a Markov chain with transition matrix

P =

















0 1
4

1
2

0 0 1
4

0 1 0 0 0 0
1
2

1
3

0 1
12

0 1
12

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

















, then

its associated adjacency matrix is
















0 1 1 0 0 1
0 1 0 0 0 0
1 1 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

















;

its associated digraph is:

We can get from a state Ei to a state Ej in a Markov chain if and
only if there is a path from vi to vj in the associated digraph.

The least possible time to do so is the length of the shortest path.

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 30 / 35



Digraphs Markov Chains

Irreducible Chains, Persistent and Transient States

A Markov chain in which we can get from any state to any other is
called an irreducible chain.

A Markov chain is irreducible if and only if its associated digraph is
strongly connected.
We distinguish between those states to which we keep on returning
however long we continue, and those that we visit a few times and
then never return to:

If on starting at Ei the probability of returning to Ei at some later
stage is 1, then Ei is a persistent state;
Otherwise Ei is transient.

Example: In the pub problem, E1 and E6 are persistent and the other
states are transient.

A state Ei is persistent if and only if the existence of a path from vi
to vj in the associated digraph implies the existence of a path from vj
to vi .

A state from which we can get to no other state is absorbing.
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Digraphs Markov Chains

Periodicity

A state Ei of a Markov chain is periodic of period t (t 6= 1) if it is
possible to return to Ei only after a period of time that is a multiple
of t.

If no such t exists, then Ej is aperiodic.

Every state Ei for which pii 6= 0 is aperiodic; e.g., every absorbing
state is aperiodic.

Example: In the pub problem, every state is aperiodic.

In digraph terms, a state Ei is periodic of period t if and only if in the
associated digraph the length of each closed trail containing vi is a
multiple of t.
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Digraphs Markov Chains

Example

Consider again the Markov chain whose transition matrix and
associated digraph are given below:

P =

















0 1
4

1
2

0 0 1
4

0 1 0 0 0 0
1
2

1
3

0 1
12

0 1
12

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

















States E1 and E3 are periodic of period 2.

States E4,E5 and E6 are periodic of period 3.

So, the absorbing state E2 is the only aperiodic state.
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Digraphs Markov Chains

Ergodicity

A state is ergodic if it is both persistent and aperiodic.

If every state is ergodic then the chain is an ergodic chain.
Example: A game is played with a die by five people around a circular
table. If the player with the die throws:

An odd number, he passes the die to the player on his left;
A 2 or 4, he passes it to the player on his right;
A 6, he keeps the die and throws again.

(i) The corresponding transition matrix and its associated digraph are
shown below:

P =















1
6

1
2 0 0 1

3
1
3

1
6

1
2 0 0

0 1
3

1
6

1
2 0

0 0 1
3

1
6

1
2

1
2 0 0 1

3
1
6














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Digraphs Markov Chains

Example (Cont’d)

We got transition matrix and associate digraph:

P =















1
6

1
2 0 0 1

3
1
3

1
6

1
2 0 0

0 1
3

1
6

1
2 0

0 0 1
3

1
6

1
2

1
2 0 0 1

3
1
6















(ii) Each state is:

Persistent, since whenever there is a path to some other state, there is
also a path leading from the other state to itself.
Aperiodic, since pii =

1
6 6= 0, for all i .

Therefore, the corresponding Markov chain is ergodic.
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