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Subsection 1

Hall’s Marriage Theorem
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The Marriage Problem

There is a finite set of girls, each of whom knows several boys.

Under what conditions can all the girls marry the boys in such a way
that each girl marries a boy she knows?

Example: Suppose there are four girls {g1, g2, g3, g4} and five boys
{b1, b2, b3, b4, b5}, and the friendships are as shown below:

girl boys known by girl

g1 b1 b4 b5
g2 b1
g3 b2 b3 b4
g4 b2 b4

Then a possible solution is given by the following pairings: g1 7→ b4,

g2 7→ b1, g3 7→ b3 and g4 7→ b2.
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Marriage Problem and Bipartite Graphs

This problem can be represented by a bipartite graph G :
The vertex set is divided into two disjoint sets V1 and V2,
corresponding to the girls and boys;
Each edge joins a girl to a boy she knows.

girl boys known by girl

g1 b1 b4 b5
g2 b1
g3 b2 b3 b4
g4 b2 b4

A complete matching from V1 to V2 in a bipartite graph G (V1,V2)
is a one-one correspondence between the vertices in V1 and a subset
of the vertices in V2, such that corresponding vertices are joined.

The marriage problem: if G = G (V1,V2) is a bipartite graph, when
does there exist a complete matching from V1 to V2 in G?
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The Marriage Condition and Hall’s Theorem

For the marriage problem to have a solution, it must satisfy the
marriage condition:

Every k girls must know collectively at least k boys, for all integers k
satisfying 1 ≤ k ≤ m, where m denotes the total number of girls.

This is necessary since, if it were not true for a given set of k girls,
then we could not marry the girls in that set, let alone the others.

Hall’s “marriage” theorem asserts that the marriage condition is also
sufficient.

Theorem (Hall, 1935)

A necessary and sufficient condition for a solution of the marriage problem
is that each set of k girls collectively knows at least k boys, for 1 ≤ k ≤ m.

The theorem has many other applications.

For example, it gives a necessary and sufficient condition for the
solution of a job assignment problem in which applicants must be
assigned to jobs for which they are variously qualified.
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The Proof of Halmos and Vaughan

To prove sufficiency, we use induction on m.

The theorem is true if m = 1.

Assume that the theorem is true if the number of girls is less than m.

Suppose there are m girls. There are two cases:

(i) Suppose every k girls (k < m) collectively know at least k + 1 boys.
Take any girl and marry her to any boy she knows. The original
condition remains true for the other m − 1 girls. Thus, they can be
married by induction.

(ii) Suppose there is a set of k girls (k < m) who collectively know exactly
k boys. These k girls can be married by induction to the k boys. This
leaves m − k girls still to be married. But any collection of h of these
m− k girls, for h ≤ m − k , must know at least h of the remaining
boys, since otherwise these h girls, together with the above collection
of k girls, would collectively know fewer than h + k boys, contrary to
hypothesis. It follows that the original condition applies to the m− k

girls. Thus, they can also be married by induction.
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Hall’s Theorem for Bipartite Graphs

We can state Hall’s theorem in the language of complete matchings
in a bipartite graph.

Corollary

Let G = G (V1,V2) be a bipartite graph, and for each subset A of V1, let
ϕ(A) be the set of vertices of V2 that are adjacent to at least one vertex
of A. Then a complete matching from V1 to V2 exists if and only if
|A| ≤ |ϕ(A)|, for each subset A of V1.

The proof is just a translation into graph terminology of the preceding
proof.
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Subsection 2

Transversal Theory
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Matching Problem Revisited

Recall the sets of boys known by the four girls
were

girl boys known by girl

g1 b1 b4 b5
g2 b1
g3 b2 b3 b4
g4 b2 b4

Using set notation, the sets of boys that each of the four girls knows
are:

{b1, b4, b5}, {b1}, {b2, b3, b4}, {b2, b4}.

A solution of the marriage problem was obtained by finding four
distinct b’s, e.g. b4, b1, b3, b2, one from each of these sets of boys.
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Transversals and Partial Transversals

If E is a non-empty finite set, and if F = (S1, . . . ,Sm) is a family of
(not necessarily distinct) non-empty subsets of E , then a transversal

of F is a set of m distinct elements of E , one chosen from each set Si .

Example: Suppose that E = {1, 2, 3, 4, 5, 6}, and let
S1 = S2 = {1, 2}, S3 = S4 = {2, 3}, S5 = {1, 4, 5, 6}.

Then it is impossible to find five distinct elements of E , one from
each subset Si , in other words, the family F = (S1, . . . ,S5) has no
transversal.

However, the subfamily F ′ = (S1,S2,S3,S5) has a transversal, e.g.,
{1, 2, 3, 4}.

We call a transversal of a subfamily of F a partial transversal of F .

Example: In the example, F has several partial transversals, such as
{1, 2, 3, 6}, {2, 3, 6}, {1, 5}, and ∅.

Note that any subset of a partial transversal is a partial transversal.
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Hall’s Theorem for Transversals

To reveal conditions under which a given family of subsets of a set
has a transversal, we may connect the transversal to the marriage
problem:

Take E to be the set of boys;
Take Si to be the set of boys known by girl gi , for 1 ≤ i ≤ m.

A transversal in this case is simply a set of m boys, one corresponding
to, and known by, each girl.

Hall’s Theorem gives a necessary and sufficient condition for a given
family of sets to have a transversal.

Hall’s Theorem for Transversals

Let E be a non-empty finite set, and let F = (S1, . . . ,Sm) be a family of
non-empty subsets of E . Then F has a transversal if and only if the union
of any k of the subsets Si contains at least k elements, 1 ≤ k ≤ m.

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 12 / 43



Matching, Marriage and Menger’s Theorem Transversal Theory

Rado’s Proof of Hall’s Theorem

To prove the sufficiency, we show that, if one of the subsets (S1, say)
contains more than one element, then we can remove an element
from S1 without altering the condition. By repeating this procedure,
we eventually reduce the problem to the case in which each subset
contains only one element, and the proof is then trivial.

It remains only to show the validity of this “reduction procedure”.
Suppose that S1 contains elements x and y , the removal of either of
which invalidates the condition. Then there are subsets A and B of
{2, 3, . . . ,m} with the property that |P | ≤ |A| and |Q| ≤ |B |, where
P =

⋃

j∈A Sj ∪ (S1 − {x}) and Q =
⋃

j∈B Sj ∪ (S1 − {y}). Then
|P ∪Q| = |

⋃

j∈A∪B Sj ∪ S1| and |P ∩Q| ≥ |
⋃

j∈A∩B Sj |. The required
contradiction now follows:

|A|+ |B | ≥ |P |+ |Q| = |P ∪ Q|+ |P ∩ Q|
≥ |

⋃

j∈A∪B Sj ∪ S1|+ |
⋃

j∈A∩B Sj |

≥ (|A ∪ B |+ 1) + |A ∩ B | = |A|+ |B |+ 1.

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 13 / 43



Matching, Marriage and Menger’s Theorem Transversal Theory

Transversals of Specific Size

Corollary

If E and F are as before, then F has a partial transversal of size t if and
only if the union of any k of the subsets Si contains at least k + t −m

elements.

Sketch: The result follows on applying Hall’s Theorem to the family
F ′ = (S1 ∪ D, . . . ,Sm ∪ D), where D is any set disjoint from E and
containing m − t elements. Note that F has a partial transversal of
size t if and only if F has a transversal.

Corollary

If E and F are as before, and if X is any subset of E , then X contains a
partial transversal of F of size t if and only if, for each subset A of
{1, . . . ,m}, |(

⋃

j∈A Sj) ∩ X | ≥ |A|+ t −m.

Sketch: The result follows on applying the previous corollary to the
family FX = (S1 ∩ X , . . . ,Sm ∩ X ).
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Subsection 3

Applications of Hall’s Theorem
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Latin Rectangles and Latin Squares

An m × n latin rectangle is an m × n matrix M = (mij ) whose
entries are integers satisfying:

(i) 1 ≤ mij ≤ n;
(ii) no two entries in any row or in any column are equal.

Note that (i) and (ii) imply that m ≤ n.

If m = n, then the latin rectangle is a latin square.

Example: A 3× 5 latin rectangle





1 2 3 4 5
2 4 1 5 3
3 5 2 1 4



 and a 5× 5

latin square:













1 2 3 4 5
2 4 1 5 3
3 5 2 1 4
4 3 5 2 1
5 1 4 3 2













.
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Extending a Latin Rectangle to a Latin Square

Theorem

Let M be an m × n latin rectangle with m < n. Then M can he extended
to a latin square by the addition of n −m new rows.

We prove that M can be extended to an (m + 1)× n latin rectangle.
By repeating the procedure, we eventually obtain a latin square.

Let E = {1, 2, . . . , n} and F = (S1, . . . ,Sn), where Si is the set
consisting of those elements of E that do not occur in the ith column
of M. We prove that F has a transversal. Then, the elements in this
transversal form the additional row. By Hall’s Theorem, it is sufficient
to show that the union of any k of the Si contains at least k distinct
elements. Note such a union contains (n −m)k elements altogether,
including repetitions. Thus, if there were fewer than k distinct
elements, then at least one of them would have to appear more than
n−m times. Since each element occurs exactly n−m times, we have
the required contradiction.
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Incidence Matrices of Transversals and (0, 1)-Matrices

Consider a set E = {e1, . . . , en}.

Let F = (S1, . . . ,Sm) be a family of non-empty subsets of E .

The incidence matrix of the family F is the m × n matrix A = (aij)

in which aij =

{

1, if ej ∈ Si
0, otherwise

.

Such a matrix, in which each entry is 0 or 1, is called a (0, 1)-matrix.

The term rank of A is the largest number of 1s of A, no two of
which lie in the same row or column.

Clearly, F has a transversal if and only if the term rank of its
incidence matrix A is m.

Moreover, the term rank of A is precisely the number of elements in a
partial transversal of largest possible size.
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The König-Egerváry Theorem

Theorem (König-Egerváry, 1931)

The term rank of a (0, 1)-matrix A is equal to the minimum number µ of
rows and columns that together contain all the 1s of A.

Example: Consider the matrix A =













1 1 0 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

1 0 0 1 1 1













.

This is the incidence matrix of the following family of subsets of the
set E = {1, 2, 3, 4, 5, 6}:

F = (S1,S2,S3,S4,S5),
S1 = S2 = {1, 2}, S3 = S4 = {2, 3}, S5 = {1, 4, 5, 6}.

Clearly the term rank and µ are both 4.
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Proof of the König-Egerváry Theorem

It is clear that the term rank cannot exceed µ.

To prove equality, we can suppose that all the 1s
of A are contained in r rows and s columns, where
r + s = µ, and that the order of the rows and
columns is such that A contains, in the bottom
left-hand corner, an (m − r) × (n − s) submatrix
consisting entirely of 0s.
If i ≤ r , let Si be the set of integers j ≤ n − s, such that aij = 1. By
the minimality of µ, the union of any k of the Si contains at least k
integers. Hence the family F = (S1, . . . ,Sr ) has a transversal.

It follows that the submatrix M of A contains a set of r 1s, no two of
which lie in the same row or column.

Similarly, the matrix N contains a set of s 1s with the same property.

Hence A contains a set of r + s 1s, no two of which lie in the same
row or column. This shows that µ cannot exceed the term rank.
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Some Equivalences

We proved the König-Egerváry Theorem using Hall’s Theorem.

It is even easier to prove Hall’s Theorem using the König-Egerváry
Theorem.

It follows that these two theorems are, in some sense, equivalent.

Later we prove Menger’s Theorem and the Max-flow Min-cut
Theorem and, in fact, we have

Hall

König-Egerváry

✲

✛

Menger

✛

✲

Max-flow Min-cut

✲

✛

✛

✲
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Subsection 4

Menger’s Theorem
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Edge-Disjoint and Vertex-Disjoint Paths

A set of paths connecting two given vertices v and w in a graph G

are called edge-disjoint paths if no two of them have an edge in
common.

We are interested in the maximum number of edge-disjoint paths
from v to w in a given graph.

A set of paths from v to w in a graph G are called vertex-disjoint

paths if no two of them have a vertex in common, except, of course,
v ad w .

We may also ask for the maximum number of vertex-disjoint paths
from v to w .

Example: In the pictured graph
there are four edge-disjoint paths
and two vertex-disjoint ones.
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Disconnecting and Separating Sets

Assume that G is a connected graph and that v and w are distinct
vertices of G .

A vw -disconnecting set of G is a set E of edges of G such that each
path from v to w includes an edge of E .

Note that a vw -disconnecting set is a disconnecting set of G .

A vw -separating set of G is a set S of vertices, other than v or w ,
such that each path from v to w passes through a vertex of S .

Example: The sets E1 = {ps, qs, ty ,
tz} and E2 = {uw , xw , yw , zw} are
vw -disconnecting sets, and V1 =
{s, t} and V2 = {p, q, y , z} are vw -
separating sets.

If E is a vw -disconnecting set with k edges, then the number of
edge-disjoint paths cannot exceed k (otherwise some edge in E would
be included in more than one path).
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Menger’s Theorem

Menger’s Theorem (Ford and Fulkerson, 1955)

The maximum number of edge-disjoint paths connecting two distinct
vertices v and w of a connected graph is equal to the minimum number of
edges in a vw -disconnecting set.

We saw that the maximum number of edge-disjoint paths connecting
v and w cannot exceed the minimum number of edges in a
vw -disconnecting set.

We use induction on the number of edges of the graph G to prove
that these numbers are equal.

Suppose the theorem is true for all graphs with fewer than m edges.
Let G be a graph with m edges
(i) Suppose there exists a vw -disconnecting set E of minimum size k , such

that not all of its edges are incident to v , and not all are incident to w .
The removal from G of the edges in E leaves two disjoint subgraphs V
and W containing v and w , respectively.
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Menger’s Theorem: Case (i)

We now define two new graphs G1 and G2 as follows:
G1 is obtained from G by contracting every edge of V (that is, by
shrinking V down to v);
G2 is obtained by similarly contracting every edge of W .

The graphs G1 and G2 have fewer edges than G .

E is a vw -disconnecting set of minimum size for both G1 and G2.

Thus, the induction hypothesis gives us k edge-disjoint paths in G1

from v to w , and similarly for G2.

The required k edge-disjoint paths in G are obtained by combining
these paths in the obvious way.
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Menger’s Theorem: Case (ii)

(ii) Now suppose that each vw -disconnecting set of minimum size k

consists only of edges that are all incident to v or all incident to w .

We can assume that each edge
of G is contained in a vw -dis-
connecting set of size k , since
otherwise its removal would not
affect the value of k and the in-
duction hypothesis would suffice.

We could use the induction hypothesis to obtain k edge-disjoint
paths: If P is any path from v to w , then P must consist of either
one or two edges. It can thus contain at most one edge of any
vw -disconnecting set of size k . Remove from G the edges of P . By
the induction hypothesis, we obtain a graph with at least k − 1
edge-disjoint paths. These paths, together with P , give the required k

paths in G .
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Number of Vertex-Disjoint Paths

The original theorem of Menger actually gives the number of
vertex-disjoint paths from v to w .

Theorem (Menger, 1927)

The maximum number of vertex-disjoint paths connecting two distinct
non-adjacent vertices v and w of a graph is equal to the minimum number
of vertices in a vw -separating set.

We immediately deduce the following necessary and sufficient
conditions for a graph to be k-connected and k-edge-connected:

Corollary

A graph G is k-edge-connected if and only if any two distinct vertices of G
are connected by at least k edge-disjoint paths.

Corollary

A graph G with at least k + 1 vertices is k-connected if and only if any
two distinct vertices of G are connected by at least k vertex-disjoint paths.
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The Number of Arc-Disjoint Paths

For the number of arc-disjoint paths from a vertex v to a vertex w in
a digraph, we can take v to be a source and w to be a sink.

Note that, in a digraph, a vw -disconnecting set is a set A of arcs
such that each path from v to w includes an arc in A.

Theorem

The maximum number of arc-disjoint paths from a vertex v to a vertex w

in a digraph is equal to the minimum number of arcs in a
vw -disconnecting set.

Example: In the pictured digraph there
are six arc-disjoint paths from v to w .
A corresponding vw -disconnecting set
consists of the arcs vz , xz , yz (twice)
and xw (twice).
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Menger’s Theorem Implies Hall’s Theorem

Theorem

Menger’s Theorem implies Hall’s Theorem.

Let G = G (V1,V2) be a bipartite graph. We must prove that, if
|A| ≤ |ϕ(A)|, for each subset A of V1, then there is a complete
matching from V1 to V2.

To do this, we apply the vertex form of
Menger’s theorem to the graph obtained
by adjoining to G a vertex v adjacent to
every vertex in V1 and a vertex w adja-
cent to every vertex in V2.

Note that a complete matching from V1 to V2 exists if and only if the
number of vertex-disjoint paths from v to w is equal to the number
of vertices in V1 (= k , say). Therefore, it is enough to show that
every vw -separating set has at least k vertices.
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Menger’s Theorem Implies Hall’s Theorem

Claim: Every vw -separating set has at least k vertices.

Let S be a vw -separating set consisting of a subset A of V1 and a
subset B of V2. Since A ∪ B is a vw -separating set, no edge can join
a vertex of V1 − A to a vertex of V2 − B . Hence ϕ(V1 − A) ⊆ B . It
follows that |V1 − A| ≤ |ϕ(V1 − A)| ≤ |B |. So

|S | = |A|+ |B | ≥ |A|+ |V1 − A| = |V1| = k .
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Subsection 5

Network Flows
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Networks, Capacities and Degrees

A network N is be a weighted digraph, i.e., a digraph to each arc a of
which is assigned a non-negative real number c(a) called its capacity.

The out-degree outdeg(x) of a vertex x is the sum of the capacities
of the arcs of the form xz , and the in-degree indeg(x) is the sum of
the capacities of the arcs of the form zx .

Example: In the network of the figure

outdeg(v) = 8;
indeg(x) = 10.

The Handshaking Dilemma: The sum of the out-degrees of the
vertices of a network is equal to the sum of the in-degrees.
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Flows in Networks

A flow in a network is a function ϕ that assigns to each arc a a
non-negative real number ϕ(a), called the flow in a, so that:

(i) for each arc a, ϕ(a) ≤ c(a);
(ii) the out-degree and in-degree of each vertex, other than v or w , are

equal.

In terms of flows, these conditions say the following:

(i) The flow in any arc cannot exceed its capacity;
(ii) The “total flow” into each vertex, other than v or w , equals the “total

flow” out of it.
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An Example of a Flow

Consider the network shown on the left.

The right figure shows a flow in the network.

An arc a for which ϕ(a) = c(a) is called saturated.

Otherwise it is called unsaturated.

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 35 / 43



Matching, Marriage and Menger’s Theorem Network Flows

Value of a Flow and Maximum Flow

The Handshaking Dilemma implies that the sum of the flows in the
arcs out of v is equal to the sum of the flows in the arcs into w ; this
sum is called the value of the flow.

We are mainly interested in flows whose value is as large as possible -
the maximum flows.
Example: The flow of the figure on the right

is a maximum flow for the network on the left, and its value is 6.

A network can have several different maximum flows, but their values
must be equal.
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Cuts, Capacity of a Cut and Minimum Cuts

A cut in a network N is a set A of arcs such that each path from v to
w includes an arc in A.

Thus, a cut in a network is a vw -disconnecting set in the
corresponding digraph D.

The capacity of a cut is the sum of the capacities of the arcs in the
cut.

A minimum cut is a cut whose capacity is as small as possible.

Example: In the figure a minimum cut
consists of the arcs vz , xz , yz and xw ,
but not the arc zx ;
The capacity of this cut is

1 + 1 + 2 + 2 = 6.
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The Max-flow Min-cut Theorem

The value of any flow cannot exceed the capacity of any cut.

So the value of any maximum flow cannot exceed the capacity of any
minimum cut.

These last two numbers are always equal, a famous result known as
the max-flow min-cut theorem (Ford and Fulkerson, 1955):

Theorem (Max-flow Min-cut Theorem)

In any network, the value of any maximum flow is equal to the capacity of
any minimum cut.

When applying this theorem, it is often simplest to find a flow and a
cut such that the value of the flow equals the capacity of the cut.

It follows from the theorem that the flow must be a maximum flow
and that the cut must be a minimum cut.

If all the capacities are integers, then the value of a maximum flow is
also an integer.
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Equivalence of Max-Flow Min-Cut with Menger’s Theorem

Suppose first that the capacity of each arc is an integer. Then the
network can be regarded as a digraph D whose capacities represent
the number of arcs connecting the various vertices:

The value of a maximum flow is the total number of arc-disjoint paths
from v to w in D.
The capacity of a minimum cut is the minimum number of arcs in a
vw -disconnecting set of D.

Thus, in this case, the result follows from the directed version of
Menger’s Theorem.
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Extension to Rationals and Reals

The extension of this result to networks in which the capacities are
rational numbers is effected by:

Multiplying these capacities by a suitable integer d to make them
integers;
Exploiting the previous case;
Dividing by d .

Finally, if some capacities are irrational, then we approximate them as
closely as we please by rationals and use the above result.

By choosing these rationals carefully, we can ensure that the value of
any maximum flow and the capacity of any minimum cut are altered
by an amount that is as small as we wish.
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Direct Proof of the Max-Flow Min Cut Theorem

Since the value of any maximum flow cannot exceed the capacity of
any minimum cut, it is sufficient to prove the existence of a cut
whose capacity is equal to the value of a given maximum flow.

Let ϕ be a maximum flow. We define two sets V and W of vertices
of the network. If G is the underlying graph, then:

A vertex z is contained in V if and only if there exists in G a path
v = v0 → v1 → v2 → · · · → vm−1 → vm = z , such that each edge
vivi+1 corresponds either to an unsaturated arc vivi+1 or to an arc
vi+1vi that carries a non-zero flow;
The set W consists of all those vertices that do not lie in V .

Example: In the figure we have:

V = {v , x , y};
W = {z ,w}.
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Direct Proof of the Max-Flow Min Cut Theorem (Cont’d)

Clearly, v is contained in V .

Claim: W contains the vertex w .

If this is not so, then w lies in V . Hence there exists in G a path
v → v1 → v2 → · · · → vm−1 → w of the above type.

We now choose a positive number ε that does not exceed:
the amount needed to saturate any unsaturated arc vivi+1;
the flow in any arc vi+1vi that carries a non-zero flow.

If we increase by ε the flow in all arcs of the first type and decrease
by ε the flow in all arcs of the second type, then we increase the value
of ϕ by ε. This contradicts the maximality of ϕ. So w lies in W .

Finally, let E be the set of all arcs of the form xz , where x is in V and
z is in W . Clearly E is a cut. Moreover, each arc xz of E is saturated
and each arc zx carries a zero flow, since otherwise z would also be
an element of V . Thus, the capacity of E must equal the value of ϕ.
So E is the required minimum cut.
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Flow-Augmenting Paths

A flow-augmenting path from v to w , is a path consisting entirely
of unsaturated arcs xz and arcs zx that carry a non-zero flow.

Example: Consider the network on the left.

Starting with the zero flow, we construct flow-augmenting paths:
v → s → t → w along which value of flow can be increased by 2;
v → x → z → w along which value of flow can be increased by 2;
v → u → z → x → y → w along which value can be increased by 1.

The resulting flow of value 5 is shown on the right.

The network has a cut of capacity 5.

So the above flow is a maximum flow and the cut is a minimum cut.
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