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Matroids Introducing Matroids

Spanning Trees, Bases and Transversals

Recall that a spanning tree in a connected graph G is a connected
subgraph of G containing no cycles and including every vertex of G .

Note that a spanning tree cannot contain another spanning tree as a
proper subgraph.
Moreover, if B1 and B2 are spanning trees of G and e is an edge of B1,
then there is an edge f in B2, such that (B1 − {e}) ∪ {f } (the graph
obtained from B1 on replacing e by f ) is also a spanning tree of G .

Analogous results hold in the theory of vector spaces and in
transversal theory:

If V is a vector space and if B1 and B2 are bases of V and e is an
element of B1, then we can find an element f of B2 such that
(B1 − {e}) ∪ {f } is also a basis of V .
If E is a set of points and F a collection of subsets of E , T1 and T2

are transversals of F and x an element of T1, there exists an element y
of T2, such that (T1 − {x}) ∪ {y} is also a transversal of F .
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Matroids Introducing Matroids

Matroids

A matroid M consists of:

A non-empty finite set E ;
A non-empty collection B of subsets of E , called bases,

satisfying the following properties:

B(i) No base properly contains another base;
B(ii) If B1 and B2 are bases and if e is any element of B1, then there is an

element f of B2, such that (B1 − {e}) ∪ {f } is also a base.

By repeatedly using property B(ii), we can easily show that any two
bases of a matroid M have the same number of elements.

This number is called the rank of M.
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Matroids Introducing Matroids

Cycle Matroids and Vector Matroids

A matroid can be associated with any graph G by letting:

E be the set of edges of G ;
B consist of the sets of edges of the spanning forests of G .

This matroid is called the cycle matroid of G and is denoted by
M(G ).

Let E be a finite set of vectors in a vector space V .

We can define a matroid on E by taking as bases all linearly
independent subsets of E that span the same subspace as E .

A matroid obtained in this way is called a vector matroid.
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Matroids Introducing Matroids

Independent Subsets in a Matroid

A subset of E is independent if it is contained in some base of the
matroid M.

Example:

For a vector matroid, a subset of E is independent whenever its
elements are linearly independent as vectors in the vector space.
For the cycle matroid M(G) of a graph G , the independent sets are
those sets of edges of G that contain no cycle.
In other words, the independent sets are the edge sets of the forests
contained in G .

The bases of M are the maximal independent sets (that is, those
independent sets contained in no larger independent set).

So a matroid is uniquely defined by specifying its independent sets.
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Matroids Introducing Matroids

Matroids in terms of Independent Sets

A matroid M consists of:
A non-empty finite set E ;
A non-empty collection I of subsets of E , called independent sets,

satisfying the following properties:
I(i) Any subset of an independent set is independent;
I(ii) If I and J are independent sets with |J| > |I |, then there is an element

e, contained in J but not in I , such that I ∪ {e} is independent.

With this definition, a base is a maximal independent set.

Property I(ii) can then be used repeatedly to show that any
independent set can be extended to a base.
If M = (E ,I) is a matroid defined in terms of its independent sets,
then:

A subset of E is dependent if it is not independent;
A minimal dependent set is called a cycle.

Example: If M(G ) is the cycle matroid of a graph G , then the cycles
of M(G ) are precisely the cycles of G .
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Matroids Introducing Matroids

Matroids in terms of Cycles

Let M be a matroid over a set E .

A subset of E is independent if and only if it contains no cycles.

It follows that a matroid can also be defined in terms of its cycles.

A matroid M consists of:

A nonempty finite set E ;
A collection C of non-empty subsets of E , called cycles,

satisfying the following properties:

C(i) No cycle properly contains another cycle;
C(ii) If C1 and C2 are two distinct cycles each containing an element e, then

there exists a cycle in C1 ∪ C2 that does not contain e.
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Matroids Introducing Matroids

Matroids in terms of Rank

If M = (E ,I) is a matroid defined in terms of its independent sets,
and if A is a subset of E , then the rank of A, denoted by r(A), is the
size of the largest independent set contained in A.

The previously defined rank of M is equal to r(E ).

Since a subset A of E is independent if and only if r(A) = |A|, we can
define a matroid in terms of its rank function:

Theorem

A matroid consists of:

A non-empty finite set E ;

An integer valued function r defined on the set of subsets of E ,

satisfying:

r(i) 0 ≤ r(A) ≤ |A|, for each subset A of E ;

r(ii) if A ⊆ B ⊆ E , then r(A) ≤ r(B);

r(iii) for any A,B ⊆ E , r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B).
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Matroids Introducing Matroids

The Rank of a Matroid (Cont’d)

Assume M is a matroid defined in terms of its independent sets.
r(i) Since the rank of A is the number of the largest independent set in A,

we have 0 ≤ r(A) ≤ |A|.
r(ii) Suppose A ⊆ B. The rank of A is the number of the largest

independent set in A. But that set is also an independent set in B. So
the number of its elements is at most equal to the rank of B. We get
r(A) ≤ r(B).

r(iii) Let X be a base (a maximal independent subset) of A ∩ B.
Since X is an independent subset of A, X can be extended to a base Y

of A.
Since Y is an independent subset of A, it can be extended to a base Z

of A ∪ B.
But, then, X ∪ (Z − Y ) is an independent subset of B.
Thus, we have

r(B) ≥ r(X ∪ (Z −Y )) = |X |+ |Z |− |Y | = r(A∩B)+ r(A∪B)− r(A).
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Matroids Introducing Matroids

The Rank of a Matroid (Cont’d)

Let M = (E , r) be a matroid defined in terms of a rank function r .
Define a subset A of E to be independent if and only if r(A) = |A|.

To prove property I(i), suppose A is independent and B ⊆ A. By
definition, r(A) = |A|. Assume r(B) < |B|. Then we have

r(B ∪ (A− B)) + r(B ∩ (A− B)) ≤ r(B) + r(A − B)
r(A) + 0 < |B|+ |A− B|

r(A) < |A|.

This contradicts the hypothesis. So r(B) = |B|.
For I(ii), let I and J be independent sets with |J| > |I | = k . Suppose
that r(I ∪ {e}) = k , for each element e that lies in J but not in I . If e
and f are two such elements, then r(I ∪ {e} ∪ {f }) ≤ r(I ∪ {e}) +
r(I ∪ {f })− r(I ) = k . It follows that r(I ∪ {e} ∪ {f }) = k . We now
continue this procedure, adding one new element of J at a time. Since
at each stage the rank is k , we conclude that r(I ∪ J) = k . Hence, (by
r(ii)) r(J) ≤ k , which is a contradiction. It follows that there exists an
element f that lies in J but not in I , such that r(I ∪ {f }) = k + 1.
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Matroids Introducing Matroids

Loops and Parallel Elements in a Matroid

Let M be a matroid.

A loop of M is an element e of E satisfying r({e}) = 0.
A pair of parallel elements of M is a pair {e, f } of elements of E that
satisfy r({e, f }) = 1 and are not loops.

Example: Suppose M(G ) is the cycle matroid of a graph G .

The loops of M(G) correspond to loops in G .
The parallel elements of M(G) correspond to multiple edges of G .
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Subsection 2

Examples of Matroids
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Matroids Examples of Matroids

Trivial, Discrete and Uniform Matroids

Trivial matroids: Given any non-empty finite set E , we can define on
it a matroid whose only independent set is the empty set ∅.

This matroid is the trivial matroid on E . It has rank 0.

Discrete matroids: At the other extreme is the discrete matroid on
E , in which every subset of E is independent.

The discrete matroid on E has only one base, E itself.

The rank of any subset A is the number of elements in A.
Uniform matroids: The previous examples are special cases of the
k-uniform matroid on E , whose bases are those subsets of E with
exactly k elements.

The trivial matroid on E is 0-uniform;
The discrete matroid is |E |-uniform.

Note that the independent sets are those subsets of E with not more
than k elements.

The rank of any subset A is either |A| or k , whichever is smaller.
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Matroids Examples of Matroids

Isomorphic Matroids

Two matroids M1 and M2 are isomorphic if there is a one-one
correspondence between their underlying sets E1 and E2 that
preserves independence.

Thus, a set of elements of E1 is independent in M1 if and only if the
corresponding set of elements of E2 is independent in M2.

Example: The cycle matroids of the three graphs shown below are all
isomorphic.

Matroid isomorphism preserves cycles, cutsets and number of edges,

but not necessarily connectedness, the number of vertices, or degrees.
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Matroids Examples of Matroids

Graphic Matroids

Let G be a graph.

We can define a matroid M(G ) (in terms of cycles):

E is the set of edges of G ;
The cycles of M(G) are the cycles of G .

M(G ) is the cycle matroid of G .

Its rank function is the cutset rank ξ.

A matroid M is a graphic matroid if it is the cycle matroid of some
graph, i.e., if there exists a graph G such that M is isomorphic to
M(G ).
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Matroids Examples of Matroids

Example of a Graphic Matroid

The matroid M on the set {1, 2, 3} whose bases are {1, 2}, and {1, 3}
is a graphic matroid.

It is isomorphic to the cycle matroid of the graph G shown below.

The only cycle of M(G ) is {2, 3};

Thus, the independent sets (sets not containing a cycle) of M(G ) are

∅, {1}, {2}, {3}, {1, 2}, {1, 3};

So the bases (maximal independent sets) are

{1, 2} and {1, 3}.
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Matroids Examples of Matroids

Example of a Non-Graphic Matroid

Consider the set E = {a, b, c , d}.

The 2-uniform matroid M on E has bases

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c , d}.

Claim: M is not a graphic matroid, i.e., there is no graph G with M

as its cycle matroid.

The cycles (minimal dependent sets) of M are

{a, b, c}, {a, b, d}, {a, c , d}, {b, c , d}.

Suppose M were graphic. The first two cycles
force the structure shown on the right.
But this graph has only three cycles:

{a, b, c}, {a, b, d}, {c , d}.

This, however, is a contradiction.
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Matroids Examples of Matroids

Cographic and Planar Matroids

Let G be a graph.

We can define a matroid M∗(G ) (in terms of cycles):

E is the set of edges of G ;
The cycles of M∗(G) are the cutsets of G .

M∗(G ) is the cutset matroid of G .

A set of edges of G is independent in M∗(G ) if and only if it contains
no cutset of G .

A matroid M is a cographic matroid if it is the cutset matroid of
some graph, i.e., if there exists a graph G such that M is isomorphic
to M∗(G ).

A matroid that is both graphic and cographic is a planar matroid.
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Matroids Examples of Matroids

Bipartite and Eulerian Matroids

A bipartite matroid is a matroid in which each cycle has an even
number of elements.

A matroid on a set E is an Eulerian matroid if E can be written as a
union of disjoint cycles.

Eulerian matroids and bipartite matroids are dual concepts, in a sense
to be made precise later.
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Matroids Examples of Matroids

Representable Matroids

Given a matroid M on a set E , we say that M is representable over
a field F if there exist:

A vector space V over F ;
A map ϕ from E to V , such that

a subset A of E is independent in M if and only if ϕ is one-one on A

and ϕ(A) is linearly independent in V .

This amounts to saying that, if we ignore loops and parallel elements,
then M is isomorphic to a vector matroid defined in some vector
space over F .

We say that M is a representable matroid if there exists some field
F such that M is representable over F .

It turns out that some matroids are representable over every field (the
regular matroids), some are representable over no field, and some
are representable only over a restricted class of fields.
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Matroids Examples of Matroids

Binary Matroids

A matroid is a binary matroid if it is representable over the field of
integers modulo 2.

Example: If G is any graph, then its cycle matroid M(G ) is a binary
matroid.

To see this, associate with each edge of G the corresponding column
of the incidence matrix of G (rows labeled by vertices and columns by
edges), regarded as a vector with components 0 or 1.

If a set of edges of G forms a cycle, then the sum (modulo 2) of the
corresponding vectors is 0.
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Matroids Examples of Matroids

Transversal Matroids

Let E be a non-empty finite set.

Let F = (S1, . . . ,Sm) be a family of non-empty subsets of E .

The transversal matroid associated with F , denoted M(F) or
M(S1, . . . ,Sm), is the matroid on E whose independent sets are the
partial transversals of F .

Any matroid obtained in this way (for suitable choices of E and F) is
a transversal matroid.

Example: Consider the graphic matroid M, with E = {1, 2, 3} and
bases {1, 2} and {1, 3}.

This is a transversal matroid on the set {1, 2, 3}.

In fact, its independent sets are the partial transversals of the family
F = (S1,S2), where S1 = {1} and S2 = {2, 3}.

Note that the rank of a subset A of E is the size of the largest partial
transversal contained in A.
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Matroids Examples of Matroids

The Fano Matroid

The Fano matroid F is a matroid defined on E = {1, 2, 3, 4, 5, 6, 7}.

Its bases are all those subsets of E with three elements, except
{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2} and {7, 1, 3}.

This matroid can be represented geometri-
cally, as in the figure, where the bases are
precisely those sets of three elements that
do not lie on a line.

F is binary and Eulerian.

F is not graphic, cographic, transversal or regular.
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Matroids Examples of Matroids

Restrictions and Contractions

If M is a matroid defined on a set E , and if A is a subset of E , then
the restriction of M to A, denoted by M × A, is the matroid whose
cycles are precisely those cycles of M that are contained in A.

Similarly, the contraction of M to A, denoted by M · A, is the
matroid whose cycles are the minimal members of the collection
{Ci ∩ A}, where Ci is a cycle of M.

One can verify that these are indeed matroids, and that they
correspond to the deletion and contraction of edges in a graph.

A matroid obtained from M by restrictions and/or contractions is
called a minor of M.

It turns out that if M is graphic, cographic, binary and/or regular,
then so is any minor of M, i.e., restrictions and contractions preserve
these properties of matroids.
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Subsection 3

Matroids and Graphs
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Matroids Matroids and Graphs

The Dual Matroid

Recall that we can form a matroid M∗(G ) on the set of edges of a
graph G by taking as cycles of M∗(G ) the cutsets of G .

Let M be a matroid on a set E , defined in terms of its rank function.

Define the dual matroid M∗ of M to be the matroid on E whose
rank function r∗ is given by the expression

r∗(A) = |A|+ r(E − A)− r(E ), for A ⊆ E .
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The Dual Matroid is a Matroid

Theorem

M∗ = (E , r∗) is a matroid on E .

We must verify the properties r(i)-r(iii) for the function r∗.
r∗(i) By r(i), r(E − A) ≤ r(E ). So r(E − A)− r(E ) ≤ 0. Thus,

r∗(A) = |A|+ r(E − A)− r(E ) ≤ |A|.
On the other hand, by r(iii), r(E ) + r(∅) ≤ r(A) + r(E − A). So we
obtain 0 ≤ r(A) + r(E − A)− r(E ) ≤ |A|+ r(E − A)− r(E ) = r∗(A).

r∗(ii) Let A ⊆ B ⊆ E . By r(iii), r(E − A) + r(∅) ≤ r(B − A) + r(E − B).
Thus, r(E − A)− r(E − B) ≤ r(B − A) ≤ |B − A| = |B| − |A|. So
r∗(A) = |A|+ r(E − A)− r(E ) ≤ |B|+ r(E − B)− r(E ) ≤ r∗(B).

r∗(iii) For any A,B ⊆ E ,
r∗(A ∪ B) + r∗(A ∩ B)
= |A ∪ B|+ |A ∩ B|+ r(E − (A ∪ B)) + r(E − (A ∩ B))− 2r(E )
= |A|+ |B|+ r((E − A) ∩ (E − B)) + r((E − A) ∪ (E − B))− 2r(E )
≤ |A|+ |B|+ r(E − A) + r(E − B)− 2r(E )
= r∗(A) + r∗(B).

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 29 / 41



Matroids Matroids and Graphs

The Bases of the Dual Matroid

Theorem

The bases of M∗ are precisely the complements of the bases of M.

We show that, if B∗ is a base of M∗, then E − B∗ is a base of M:
Since B∗ is independent in M∗, |B∗| = r∗(B∗)
(= |B∗|+ r(E − B∗)− r(E )). Hence r(E − B∗) = r(E ). It remains
only to prove that E − B∗ is independent in M. Since B∗ is a base of
M∗, r∗(B∗) = r∗(E ). Thus, |B∗|+ r(E − B∗)− r(E ) = |E | − r(E ).
So r(E − B∗) = |E | − |B∗| = |E − B∗|. This shows that E − B∗ is
independent in M.

The converse result is obtained by reversing the argument.

From this definition we obtain that:

Every matroid has a dual and this dual is unique.
The double-dual M∗∗ is equal to M .
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Duality of Cutset and Cycle Matroids of a Graph

The cutset matroid M∗(G ) of a graph G is the dual of the cycle
matroid M(G ).

Theorem

If G is a connected graph, then M∗(G ) = (M(G ))∗.

Since the cycles of M∗(G ) are the cutsets of G , we must check that
C ∗ is a cycle of (M(G ))∗ if and only if C ∗ is a cutset of G .

Suppose first that C∗ is a cutset of G . Assume C∗ is independent in
(M(G))∗. Then C∗ can be extended to a base B∗ of (M(G))∗. So
C∗ ∩ (E − B∗) is empty. But, since E − B∗ is a spanning forest. this is
a contradiction. Thus, C∗ is a dependent set in (M(G))∗. So it
contains a cycle of (M(G))∗.
Suppose, conversely, that D∗ is a cycle of (M(G))∗. Then D∗ is not
contained in any base of (M(G))∗. It follows that D∗ intersects every
base of M(G), i.e., every spanning forest of G . Thus, D∗ contains a
cutset.
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The “Co-Notation”

We say that elements of a matroid M form a cocycle of M if they
form a cycle of M∗.

In view of the preceding theorem, the cocycles of the cycle matroid of
a graph G are precisely the cutsets of G .

We similarly define a cobase of M to be a base of M∗.

Corresponding definitions apply for corank, co-independent set, etc.

We also say that a matroid M is cographic if and only if its dual M∗

is graphic.

In view of the preceding theorem, this definition of “cographic” agrees
with the one given in the previous section.
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Illustrating the “Co-Notation”

The “co-notation” allows to restrict to a single matroid M, without
having to bring in M∗:

Theorem

Every cocycle of a matroid intersects every base.

Let C ∗ be a cocycle of a matroid M. Suppose that there exists a base
B of M with the property that C ∗ ∩ B is empty. Then C ∗ is
contained in E − B . So C ∗ is a cycle of M∗ which is contained in a
base of M∗. This is a contradiction.

Corollary

Every cycle of a matroid intersects every cobase.

Apply the result of the theorem to the matroid M∗.
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Subsection 4

Matroids and Transversals
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Transversal Matroids

Let E be a non-empty finite set and F = (S1, . . . ,Sm) a family of
nonempty subsets of E .

The transversal matroid M(F) = M(S1, . . . ,Sm) is the matroid on
E with independent sets the partial transversals of F

In this matroid, the rank of a subset A of E is the size of the largest
partial transversal of F contained in A.
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Transversals Containing a Given Subset

Proposition

A family F of subsets of E has a transversal containing a given subset A if
and only if:

(i) F has a transversal;

(ii) A is a partial transversal of F .

These conditions are necessary.

For sufficiency, observe that, since A is a partial transversal of F , A is
an independent set in the transversal matroid M determined by F .
So, it can be extended to a base of M. Since F has a transversal,
every base of M must be a transversal of F . The result follows
immediately.
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Rado’s Theorem

If F is a family of subsets of E , then Hall’s theorem gives a necessary
and sufficient condition for F to have a transversal.

If we also have a matroid structure on E , there is a corresponding
condition for the existence of an independent transversal, i.e., a
transversal of F that is also an independent set in the matroid:

Theorem (Rado, 1942)

Let M be a matroid on a set E and let F = (S1, . . . ,Sm) be a family of
non-empty subsets of E . Then F has an independent transversal if and
only if the union of any k of the subsets Si contains an independent set of
size at least k , for 1 ≤ k ≤ m.

The necessity is clear. For sufficiency, we show that if one of the
subsets (S1, say) contains more than one element, then we can
remove an element from S1 without altering the condition.

By repeating this procedure, we eventually reduce the problem to the
trivial case in which each subset contains only one element.
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Rado’s Theorem (Cont’d)

We show the validity of the “reduction procedure”:

Suppose that S1 contains elements x and y , the removal of either of
which invalidates the condition. Then, there are subsets A and B of
{2, 3, . . . ,m} such that, if

P =
⋃

j∈A

Sj ∪ (S1 − {x}) and Q =
⋃

j∈B

Sj ∪ (S1 − {y}),

then r(P) ≤ |A| and r(Q) ≤ |B |. It follows that

r(P ∪ Q) = r(
⋃

j∈A∪B Sj ∪ S1);

r(P ∩ Q) ≥ r(
⋃

j∈A∩B Sj).

The required contradiction now follows, since

|A|+ |B | ≥ r(P) + r(Q) ≥ r(P ∪ Q) + r(P ∩Q)
≥ |

⋃
j∈A∪B Sj ∪ S1|+ |

⋃
j∈A∩B Sj |

≥ (|A ∪ B |+ 1) + |A ∩ B | = |A|+ |B |+ 1.
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The Union of Matroids

If M1,M2, . . . ,Mk are matroids on the same set E , then we can
define a new matroid M1 ∪ · · · ∪Mk , called their union, by taking as
independent sets all possible unions of an independent set in M1, an
independent set in M2, . . ., and an independent set in Mk .

Theorem

If M1, . . . ,Mk are matroids on a set E with rank functions r1, . . . , rk , then
the rank function r of M1 ∪ · · · ∪Mk is given by

r(X ) = min
A⊆X

{r1(A) + · · ·+ rk(A) + |X − A|}.
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More on the Union of Matroids

Corollary

Let M be a matroid. Then M contains k disjoint bases if and only if for
each subset A of E , kr(A) + |E − A| ≥ kr(E ).

M contains k disjoint bases if and only if the union of k copies of the
matroid M has rank at least kr(E ). By the theorem, we must have

min
A⊆E

{r(A) + · · ·+ r(A) + |E − A|} ≥ kr(E ).

So kr(A) + |E − A| ≥ kr(E ), for all A ⊆ E .

Corollary

Let M be a matroid. Then E can be expressed as the union of k
independent sets if and only if, for each subset A of E , kr(A) ≥ |A|.

In this case, the union of k copies of the matroid M has rank |E |. lt
follows from the theorem that kr(A) + |E − A| ≥ |E |.
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Application to Graphs using the Cycle Matrtoids

By applying the corollaries to the cycle matroid M(G ) of a graph G ,
we easily obtain the following necessary and sufficient conditions for:

G to contain k edge-disjoint spanning forests;
G to split into k forests.

Recall that the rank of a set of edges H in M(G ) is the cutset rank
(number of edges in a spanning forest) of H, i.e., r(H) = ξ(H).

Theorem

A graph G contains k edge-disjoint spanning forests if and only if, for each
subgraph H of G , k(ξ(G )− ξ(H)) ≤ m(G )−m(H), where m(H) and
m(G ) denote the number of edges of H and G , respectively.

Theorem

A graph G splits into k forests if and only if, for each subgraph H of G ,
kξ(H) ≥ m(H).

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 41 / 41


	Matroids
	Introducing Matroids
	Examples of Matroids
	Matroids and Graphs
	Matroids and Transversals


