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Rate Distortion Theory

Objective of Rate Distortion Theory

The description of a real number requires an infinite number of bits.

So a finite representation of a continuous random variable can never
be perfect.

To estimate how good a representation is, it is necessary to define a
“goodness” of a representation of a source.

We define a distortion measure which is a measure of distance
between the random variable and its representation.

The basic problem in rate distortion theory can then be stated as
follows:

Given a source distribution and a distortion measure, what is the
minimum expected distortion achievable at a particular rate?
Equivalently, what is the minimum rate description required to achieve
a particular distortion?
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Rate Distortion Theory

Results of Rate Distortion Theory

One of the most intriguing aspects of this theory is that joint
descriptions are more efficient than individual descriptions.

This is true even for independent random variables.

It is simpler to describe X1 and X2 together (at a given distortion for
each) than to describe each by itself.

The reason why independent problems do not have independent
solutions is found in the geometry.

Apparently, rectangular grid points (arising from independent
descriptions) do not fill up the space efficiently.
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Rate Distortion Theory Quantization

Subsection 1

Quantization
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Rate Distortion Theory Quantization

Problem and Notation

Consider the problem of representing a single sample from the source.

Let the random variable be represented be X .

Let the representation of X be denoted as X̂ (X ).

If we are given R bits to represent X , the function X̂ can take on 2R

values.

The problem is to find the optimum set of values for X̂ (called the
reproduction points or code points) and the regions that are
associated with each value X̂ .
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Rate Distortion Theory Quantization

Example

Let X ∼ N (0, σ2).

Assume a squared-error distortion measure.

In this case we wish to find the function X̂ (X ), that:
Takes on at most 2R values;
Minimizes E (X − X̂ (X ))2.

If we are given one bit to represent X , it is clear that the bit should
distinguish whether or not X > 0.

To minimize squared error, each
reproduced symbol should be the
conditional mean of its region.

Thus,

X̂ (x) =





√
2
π
σ, if x ≥ 0

−
√

2
π
σ, if x < 0
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Rate Distortion Theory Quantization

Desired Properties

Suppose we are given 2 bits to represent the sample.

We want to divide the real line into four regions;
We want to use a point within each region to represent the sample.

It is no longer immediately obvious what the representation regions
and the reconstruction points should be.

We give two simple properties of optimal regions and reconstruction
points for the quantization of a single random variable.

Given a set {X̂ (w)} of reconstruction points, the distortion is
minimized by mapping a source random variable X to the
representation X̂ (w) that is closest to it.
The set of regions of X defined by this mapping is called a Voronoi or
Dirichlet partition defined by the reconstruction points.
The reconstruction points should minimize the conditional expected
distortion over their respective assignment regions.
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Rate Distortion Theory Quantization

The Lloyd Algorithm

These two properties enable us to construct a simple algorithm to find
a “good” quantizer:

We start with a set of reconstruction points.
Find the optimal set of reconstruction regions (which are the
nearest-neighbor regions with respect to the distortion measure).
Find the optimal reconstruction points for these regions (the centroids
of these regions if the distortion is squared error).
Repeat the iteration for this new set of reconstruction points.

The expected distortion is decreased at each stage in the algorithm.

So the algorithm will converge to a local minimum of the distortion.

This is called the Lloyd algorithm (for real-valued random variables).

It is called the generalized Lloyd algorithm (for vector valued
random variables).

George Voutsadakis (LSSU) Information Theory February 2024 9 / 88



Rate Distortion Theory Quantization

Representing Multiple Variables

Assume that we are given a set of n i.i.d. random variables drawn
according to a Gaussian distribution.

These random variables are to be represented using nR bits.

Since the source is i.i.d., the symbols are independent.

So it may appear that the representation of each element is an
independent problem to be treated separately.

But this is not true, as the results on rate distortion theory will show.

We represent the entire sequence by a single index taking 2nR values.

We will see that this treatment of entire sequences at once achieves a
lower distortion for the same rate than independent quantization of
the individual samples.
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Rate Distortion Theory Definitions

Subsection 2

Definitions
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Rate Distortion Theory Definitions

Setup

Assume that we have a source that produces a sequence
X1,X2, . . . ,Xn i.i.d. ∼ p(x), x ∈ X .

For the proofs we assume that the alphabet is finite, but most of the
proofs can be extended to continuous random variables.

The encoder describes the source sequence X n by an index
fn(X

n) ∈ {1, 2, . . . , 2nR}.
The decoder represents X n by an estimate X̂ n ∈ X̂ .
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Rate Distortion Theory Definitions

Distortion

Definition

A distortion function or distortion measure is a mapping

d : X × X̂ → R
+

from the set of source alphabet-reproduction alphabet pairs into the set of
nonnegative real numbers. The distortion d(x , x̂) is a measure of the cost
of representing the symbol x by the symbol x̂ .

Definition

A distortion measure is said to be bounded if the maximum value of the
distortion is finite:

dmax = max
x∈X ,x̂∈X̂

d(x , x̂) < ∞.
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Rate Distortion Theory Definitions

The Hamming Distortion

In most cases, the reproduction alphabet X̂ is the same as the source
alphabet X .

Hamming (Probability of Error) Distortion

The Hamming distortion is given by

d(x , x̂) =

{
0, if x = x̂

1, if x 6= x̂
.

We have
Ed(X , X̂ ) = Pr(X 6= X̂ ).

So the Hamming distortion results in a probability of error distortion.
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Rate Distortion Theory Definitions

The Squared-Error Distortion

Squared-Error Distortion

The squared-error distortion is given by

d(x , x̂) = (x − x̂)2.

It is the most popular distortion measure used for continuous
alphabets.

Advantages:

Simplicity;
Relationship to least-squares prediction.

Drawbacks:

Inappropriate in applications such as image and speech coding as a
measure of distortion for human observers.
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Rate Distortion Theory Definitions

Distortion Between Sequences

For sequences, the distortion measure is defined on a
symbol-by-symbol basis.

Definition

The distortion between sequences xn and x̂n is defined by

d(xn, x̂n) =
1

n

n∑

i=1

d(xi , x̂i ).

So the distortion for a sequence is the average of the per symbol
distortion of the elements of the sequence.

George Voutsadakis (LSSU) Information Theory February 2024 16 / 88



Rate Distortion Theory Definitions

Distortion Codes

Definition

A (2nR , n)-rate distortion code consists of:

An encoding function fn : X n → {1, 2, . . . , 2nR};
A decoding (reproduction) function, gn : {1, 2, . . . , 2nR} → X̂ n.

The distortion associated with the (2nR , n) code is defined as

D = Ed(X n, gn(fn(X
n))),

the expectation being with respect to the probability distribution on X :

D =
∑

xn

p(xn)d(xn, gn(fn(x
n))).
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Rate Distortion Theory Definitions

Distortion Codes (Cont’d)

Definition (Cont’d)

The set of n-tuples gn(1), gn(2), . . . , gn(2
nR), denoted by

X̂ n(1), . . . , X̂ n(2nR),

constitutes the codebook.
The sequence

f −1
n (1), . . . , f −1

n (2nR)

consists of the associated assignment regions.

X̂ n is called the vector quantization, reproduction,
reconstruction, representation, source code, or estimate of X n.
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Rate Distortion Theory Definitions

Achievability and Rate Distortion Region

Definition

A rate distortion pair (R ,D) is said to be achievable if there exists a
sequence of (2nR , n)-rate distortion codes (fn, gn) with

lim
n→∞

Ed(X n, gn(fn(X
n))) ≤ D.

Definition

The rate distortion region for a source is the closure of the set of
achievable rate distortion pairs (R ,D).
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Rate Distortion Theory Definitions

Rate Distortion and Distortion Rate Functions

Definition

The rate distortion function R(D) is the infimum of rates R such that
(R ,D) is in the rate distortion region of the source for a given distortion D.

Definition

The distortion rate function D(R) is the infimum of all distortions D
such that (R ,D) is in the rate distortion region of the source for a given
rate R .
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Rate Distortion Theory Definitions

The Information Rate Distortion Function

We now define a mathematical function of the source, which we call
the information rate distortion function.

The main result of the chapter is the proof that the information rate
distortion function is equal to the rate distortion function.

Definition

The information rate distortion function R (I )(D) for a source X with
distortion measure d(x , x̂) is defined as

R (I )(D) = min
p(x̂ |x):

∑
(x,x̂) p(x)p(x̂ |x)d(x ,x̂)≤D

I (X ; X̂ ),

where the minimization is over all conditional distributions p(x̂ |x) for
which the joint distribution p(x , x̂) = p(x)p(x̂ |x) satisfies the expected
distortion constraint.
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Rate Distortion Theory Definitions

Preview of Developments

We consider the properties of the information rate distortion function.

We calculate it for some simple sources and distortion measures.

We then prove that we can actually achieve this function (i.e., there
exist codes with rate R (I )(D) with distortion D).

Finally, we prove a converse establishing that R ≤ R (I )(D) for any
code that achieves distortion D.

George Voutsadakis (LSSU) Information Theory February 2024 22 / 88



Rate Distortion Theory Definitions

The Main Theorem

The main theorem of rate distortion theory can be stated as follows:

Theorem

The rate distortion function for an i.i.d. source X with distribution p(x)
and bounded distortion function d(x , x̂) is equal to the associated
information rate distortion function:

R(D) = R (I )(D) = min
p(x̂ |x):

∑
(x,x̂) p(x)p(x̂ |x)d(x ,x̂)≤D

I (X ; X̂ )

is the minimum achievable rate at distortion D.

This theorem shows that the operational definition of the rate
distortion function is equal to the information definition.
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Rate Distortion Theory Calculation of the Rate Distortion Function

Subsection 3

Calculation of the Rate Distortion Function
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Rate Distortion Theory Calculation of the Rate Distortion Function

Binary Source

Theorem

The rate distortion function for a Bernoulli(p) source with Hamming
distortion is given by

R(D) =

{
H(p)− H(D), 0 ≤ D ≤ min {p, 1− p}
0, D > min {p, 1− p} .

Consider a binary source X ∼ Bernoulli(p).

Adopt a Hamming distortion measure.

Without loss of generality, we may assume that p < 1
2 .

We wish to calculate the rate distortion function,

R(D) = min
p(x̂ |x):

∑
(x,x̂) p(x)p(x̂ |x)d(x ,x̂)≤D

I (X ; X̂ ).

George Voutsadakis (LSSU) Information Theory February 2024 25 / 88



Rate Distortion Theory Calculation of the Rate Distortion Function

The Lower Bound

Let ⊕ denote modulo 2 addition.

Thus, X ⊕ X̂ = 1 is equivalent to X 6= X̂ .

Instead of minimizing I (X ; X̂ ) directly:
We find a lower bound;
We show that this lower bound is achievable.

For any joint distribution satisfying the distortion constraint, we have

I (X ; X̂ ) = H(X )− H(X |X̂ )

= H(p)− H(X ⊕ X̂ |X̂ )

≥ H(p)− H(X ⊕ X̂ )

≥ H(p)− H(D),

since Pr(X 6= X̂ ) ≤ D and H(D) increases with D for D ≤ 1
2 .

Thus,
R(D) ≥ H(p)− H(D).
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Rate Distortion Theory Calculation of the Rate Distortion Function

Achieving the Lower Bound

We now show that the lower bound is actually the rate distortion
function by finding a joint distribution that meets the distortion
constraint and has I (X ; X̂ ) = R(D).

For 0 ≤ D ≤ p, we can achieve the value of the rate distortion
function R(D) = H(p)− H(D) by choosing (X , X̂ ) to have the joint
distribution given by the binary symmetric channel shown below.
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Rate Distortion Theory Calculation of the Rate Distortion Function

Achieving the Lower Bound (Cont’d)

We choose the distribution of X̂ at the input of the channel so that
the output distribution of X is the specified distribution.

Let r = Pr(X̂ = 1).

Then choose r so that r(1− D) + (1− r)D = p.

This gives r = p−D
1−2D .

Suppose D ≤ p ≤ 1
2 . Then Pr(X̂ = 1) ≥ 0 and Pr(X̂ = 0) ≥ 0.

So I (X ; X̂ ) = H(X )− H(X |X̂ ) = H(p)− H(D).

Moreover, the expected distortion is Pr(X 6= X̂ ) = D.

Suppose D ≥ p. Let X̂ = 0 with probability 1.
Then R(D) = 0. In this case, I (X ; X̂ ) = 0 and D = p.

Suppose D ≥ 1− p. Let X̂ = 1 with probability 1.
Then R(D) = 0. In this case, I (X ; X̂ ) = 0 and D = 1− p.
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Rate Distortion Theory Calculation of the Rate Distortion Function

The Function R(D)

The rate distortion function for a binary source is

R(D) =

{
H(p)− H(D), 0 ≤ D ≤ min {p, 1− p}
0, D > min {p, 1− p} .
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Rate Distortion Theory Calculation of the Rate Distortion Function

Gaussian Source

Theorem

The rate distortion function for a N (0, σ2) source with squared-error
distortion is

R(D) =

{
1
2 log

σ2

D
, 0 ≤ D ≤ σ2

0, D > σ2

Let X be ∼ N (0, σ2). By the rate distortion theorem extended to
continuous alphabets, we have

R(D) = min
f (x̂ |x):E(X̂−X )2≤D

I (X ; X̂ ).

Following a similar strategy:

We first find a lower bound for the rate distortion function;
We then prove that it is achievable.
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Rate Distortion Theory Calculation of the Rate Distortion Function

Lower Bound

We observe that

I (X ; X̂ ) = h(X )− h(X |X̂ )

= 1
2 log (2πe)σ

2 − h(X − X̂ |X̂ )

≥ 1
2 log (2πe)σ

2 − h(X − X̂ )
(conditioning reduces entropy)

≥ 1
2 log (2πe)σ

2 − h(N (0,E (X − X̂ )2))
(normal distribution maximizes the entropy)

= 1
2 log (2πe)σ

2 − 1
2 log (2πe)E (X − X̂ )2

≥ 1
2 log (2πe)σ

2 − 1
2 log (2πe)D

= 1
2 log

σ2

D
.

Hence, R(D) ≥ 1
2 log

σ2

D
.
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Rate Distortion Theory Calculation of the Rate Distortion Function

Gaussian Source

We want to find f (x̂ |x) that achieves this lower bound.
It is usually more convenient to look instead at f (x |x̂).
This is sometimes called the test channel.

We construct f (x |x̂) to achieve equality in the bound.

Suppose D ≤ σ2. Choose X = X̂ + Z , with X̂ and Z independent,
such that:

X̂ ∼ N (0, σ2
−D);

Z ∼ N (0,D).

We have I (X ; X̂ ) = 1
2 log

(
1 + σ

2−D
D

)
= 1

2 log
σ
2

D
and E (X − X̂ )2 = D.

This achieves the bound.
Suppose D > σ2. We choose X̂ = 0 with probability 1.
This achieves R(D) = 0.
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Rate Distortion Theory Calculation of the Rate Distortion Function

Gaussian Source

Hence, the rate distortion function for the Gaussian source with
squared-error distortion is

R(D) =

{
1
2 log

σ2

D
, 0 ≤ D ≤ σ2

0, D > σ2 .
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Rate Distortion Theory Calculation of the Rate Distortion Function

Independent Gaussian Random Variables

Consider the case of representing m independent (but not identically
distributed) normal random sources X1, . . . ,Xm, where Xi are
∼ N (0, σ2

i ), with squared-error distortion.

Assume that we are given R bits with which to represent this random
vector.

Extending the definition of the information rate distortion function to
the vector case, we have

R(D) = min
f (x̂m|xm):Ed(Xm ,X̂m)≤D

I (Xm; X̂m),

where d(xm, x̂m) =
∑m

i=1(xi − x̂i)
2.
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Rate Distortion Theory Calculation of the Rate Distortion Function

Lower Bound

Let Di = E (Xi − X̂i)
2.

Now using the arguments in the preceding example, we have

I (Xm; X̂m) = h(Xm)− h(Xm|X̂m)

=
∑m

i=1 h(Xi)−
∑m

i=1 h(Xi |X i−1, X̂m)

≥ ∑m
i=1 h(Xi)−

∑m
i=1 h(Xi |X̂i)

(conditioning reduces entropy)

=
∑m

i=1 I (Xi ; X̂i )

≥ ∑m
i=1 R(Di)

=
∑m

i=1(
1
2 log

σ2
i

Di
)+.

For equality in the first inequality, choose f (xm|x̂m) = ∏m
i=1 f (xi |x̂i ).

For equality in the second inequality choose X̂i ∼ N (0, σ2
i −Di ).
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Rate Distortion Theory Calculation of the Rate Distortion Function

Rewriting and Minimization

The problem of finding the rate distortion function can be reduced to
the following optimization (using nats for convenience):

R(D) = min∑
Di=D

m∑

i=1

max

{
1

2
ln

σ2
i

Di

, 0

}
.

Using Lagrange multipliers, we construct the functional

J(D) =
m∑

i=1

1

2
ln

σ2
i

Di

+ λ

m∑

i=1

Di .

Differentiating with respect to Di and setting equal to 0, we have

∂J

∂Di

= −1

2

1

Di

+ λ = 0 or Di = λ′.

Hence, the optimum allotment of the bits to the various descriptions
results in an equal distortion for each random variable.

This is possible if the constant λ′ is less than σ2
i , for all i .
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Rate Distortion Theory Calculation of the Rate Distortion Function

Rewriting and Minimization (Large Distortion)

As the total allowable distortion D is increased, the constant λ′

increases until it exceeds σ2
i for some i .

At this point the solution is on the boundary of the allowable region
of distortions.

If we increase the total distortion, we must use the Kuhn-Tucker
conditions to find the minimum in J(D).

In this case the Kuhn-Tucker conditions yield

∂J

∂Di

= −1

2

1

Di

+ λ,

where λ is chosen so that

∂J

∂Di

{
= 0, if Di < σ2

i

≤ 0, if Di ≥ σ2
i

.
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Rate Distortion Theory Calculation of the Rate Distortion Function

Rewriting and Minimization (Solution Theorem)

The solution to the Kuhn-Tucker equations is given by

Theorem (Rate Distortion for a Parallel Gaussian Source)

Let Xi ∼ N (0, σ2
i ), i = 1, 2, . . . ,m, be independent Gaussian random

variables, and let the distortion measure be d(xm, x̂m) =
∑m

i=1(xi − x̂i)
2.

Then the rate distortion function is given by

R(D) =

m∑

i=1

1

2
log

σ2
i

Di

,

where

Di =

{
λ, if λ < σ2

i

σ2
i , if λ ≥ σ2

i

,

where λ is chosen so that
∑m

i=1Di = D.
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Rate Distortion Theory Calculation of the Rate Distortion Function

Reverse Water Filling

This gives rise to a kind of reverse water-filling.

We choose a constant λ and only
describe those random variables with
variances greater than λ.

No bits are used to describe random
variables with variance less than λ.

If X ∼ N


0,




σ2
1 · · · 0
...

. . .
...

0 · · · σ2
m





, then:

X̂ ∼ N


0,




σ̂2
1 · · · 0
...

. . .
...

0 · · · σ̂2
m





;

E (Xi − X̂i )
2 = Di , where Di = min {λ, σ2

i }.
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Rate Distortion Theory Converse to the Rate Distortion Theorem

Subsection 4

Converse to the Rate Distortion Theorem
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Rate Distortion Theory Converse to the Rate Distortion Theorem

Convexity of R(D)

Lemma (Convexity of R(D))

The rate distortion function

R(D) = min
p(x̂ |x):

∑
(x,x̂) p(x)p(x̂ |x)d(x ,x̂)≤D

I (X ; X̂ )

is a nonincreasing convex function of D.

R(D) is the minimum of the mutual information over increasingly
larger sets as D increases. Thus, R(D) is nonincreasing in D.

To prove that R(D) is convex, consider two rate distortion pairs,
(R1,D1) and (R2,D2), which lie on the rate distortion curve.

Let the joint distributions that achieve these pairs be, respectively:
p1(x , x̂) = p(x)p1(x̂ |x);
p2(x , x̂) = p(x)p2(x̂ |x).

Consider the distribution pλ = λp1 + (1− λ)p2.
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Rate Distortion Theory Converse to the Rate Distortion Theorem

Convexity of R(D) (Cont’d)

Since the distortion is a linear function of the distribution, we have

D(pλ) = λD1 + (1− λ)D2.

Mutual information, on the other hand, is a convex function of the
conditional distribution, whence

Ipλ(X ; X̂ ) ≤ λIp1(X ; X̂ ) + (1− λ)Ip2(X ; X̂ ).

Hence, by the definition of the rate distortion function,

R(Dλ) ≤ Ipλ(X ; X̂ )

≤ λIp1(X ; X̂ ) + (1− λ)Ip2(X ; X̂ )

= λR(D1) + (1− λ)R(D2).

This proves that R(D) is a convex function of D.
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Rate Distortion Theory Converse to the Rate Distortion Theorem

Converse to the Rate Distortion Theorem

We must show for any source X drawn i.i.d. ∼ p(x), with distortion
measure d(x , x̂), and any (2nR , n) rate distortion code, with distortion
≤ D, the rate R of the code satisfies R ≥ R(D).

In fact, we prove that R ≥ R(D) even for randomized mappings fn
and gn, as long as fn takes on at most 2nR values.

Consider any (2nR , n) rate distortion code defined by functions
fn : X n → {1, 2, . . . , 2nR} and gn : {1, 2, . . . , 2nR} → X̂ n.

Let
X̂ n = X̂ n(X n) = gn(fn(X

n))

be the reproduced sequence corresponding to X n.

Assume that Ed(X n, X̂ n) ≤ D for this code.
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Rate Distortion Theory Converse to the Rate Distortion Theorem

Converse to the Rate Distortion Theorem (Cont’d)

Then we have the following chain of inequalities:

nR ≥ H(fn(X
n))

(the range of fn is at most 2nR)
≥ H(fn(X

n))− H(fn(X
n)|X n)

(H(fn(X
n)|X n) ≥ 0)

= I (X n; fn(X
n))

≥ I (X n; X̂ n) (data-processing inequality)

= H(X n)− H(X n|X̂ n)

=
∑n

i=1H(Xi )− H(X n|X̂ n)
(the Xi are independent)

=
∑n

i=1H(Xi )−
∑n

i=1H(Xi |X̂ n,Xi−1, . . . ,X1)
(chain rule for entropy)

≥ ∑n
i=1H(Xi )−

∑n
i=1H(Xi |X̂i).

(conditioning reduces entropy)
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Rate Distortion Theory Converse to the Rate Distortion Theorem

Converse to the Rate Distortion Theorem (Cont’d)

We continue from

nR ≥ ∑n
i=1H(Xi )−

∑n
i=1H(Xi |X̂i )

=
∑n

i=1 I (Xi ; X̂i)

≥ ∑n
i=1 R(Ed(Xi , X̂i))

(definition of the rate distortion function)

= n( 1
n

∑n
i=1 R(Ed(Xi , X̂i )))

≥ nR( 1
n

∑n
i=1 Ed(Xi , X̂i ))

(convexity of the rate distortion function
and Jensen’s inequality)

= nR(Ed(X n, X̂ n)) (distortion for blocks of length n)

≥ nR(D). (R(D) nonincreasing and Ed(X n, X̂ n) ≤ D)

So the rate R of any rate distortion code exceeds the rate distortion
function R(D) at the level D = Ed(X n, X̂ n) achieved by that code.
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Source-Channel Separation Theorem with Distortion

A similar argument can be applied when the encoded source is passed
through a noisy channel, which gives the equivalent of the source
channel separation theorem with distortion.

Theorem (Source-Channel Separation Theorem with Distortion)

Let V1,V2, . . . ,Vn be a finite alphabet i.i.d. source which is encoded as a
sequence of n input symbols X n of a discrete memoryless channel with
capacity C . The output of the channel Y n is mapped onto the
reconstruction alphabet V̂ n = g(Y n).

Let D = Ed(V n, V̂ n) = 1
n

∑n
i=1 Ed(Vi , V̂i ) be the average distortion

achieved by this combined source and channel coding scheme. Then
distortion D is achievable if and only if C > R(D).
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Subsection 5

Achievability of the Rate Distortion Function
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Distortion Typical Sets

Definition

Let p(x , x̂) be a joint probability distribution on X × X̂ . Let d(x , x̂) be a
distortion measure on X × X̂ . For any ǫ > 0, a pair of sequences (xn, x̂n)
is said to be distortion ǫ-typical or simply distortion typical if

∣∣− 1
n
log p(xn)− H(X )

∣∣ < ǫ,∣∣∣− 1
n
log p(x̂n)− H(X̂ )

∣∣∣ < ǫ,
∣∣∣− 1

n
log p(xn, x̂n)− H(X , X̂ )

∣∣∣ < ǫ,

|d(xn, x̂n)− Ed(X , X̂ )| < ǫ.

The set of distortion typical sequences is called the distortion typical set

and is denoted A
(n)
d,ǫ.
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Distortion Typical versus Jointly Typical

The definition of distortion typical is the definition of the jointly
typical set with the additional constraint that the distortion be close
to the expected value.

So the distortion typical set is a subset of the jointly typical set,

A
(n)
d,ǫ ⊆ A(n)

ǫ .

If (Xi , X̂i) are drawn i.i.d ∼ p(x , x̂), the distortion between two
random sequences

d(X n, X̂ n) =
1

n

n∑

i=1

d(Xi , X̂i)

is an average of i.i.d. random variables.

By the Law of Large Numbers, it is close to its expected value with
high probability.
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Asymptotic Probability of Distortion Typicality

Lemma

Let (Xi , X̂i ) be drawn i.i.d. ∼ p(x , x̂). Then Pr(A
(n)
d,ǫ) → 1 as n → ∞.

The sums in the four conditions in the definition of A
(n)
d,ǫ are all

normalized sums of i.i.d random variables.

Hence, by the Law of Large Numbers, they tend to their respective
expected values with probability 1.

So the set of sequences satisfying all four conditions has probability
tending to 1 as n → ∞.
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Probabilities for Pairs in Distortion Typical Sets

Lemma

For all (xn, x̂n) ∈ A
(n)
d,ǫ,

p(x̂n) = p(x̂n|xn)2−n(I (X ;X̂ )+3ǫ).

Using the definition of A
(n)
d,ǫ, we can bound the probabilities p(xn),

p(x̂n) and p(xn, x̂n), for all (xn, x̂n) ∈ A
(n)
d,ǫ. Hence,

p(x̂n|xn) = p(xn,x̂n)
p(xn)

= p(x̂n) p(xn,x̂n)
p(xn)p(x̂n)

≤ p(x̂n) 2−n(H(X ,X̂ )−ǫ)

2−n(H(X )+ǫ)2−n(H(X̂ )+ǫ)

= p(x̂n)2n(I (X ;X̂ )+3ǫ).
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An Inequality

Lemma

For 0 ≤ x , y ≤ 1, n > 0,

(1− xy)n ≤ 1− x + e−yn.

Let f (y) = e−y − 1 + y . Then:

f (0) = 0;
f ′(y) = −e−y + 1 > 0 for y > 0.

Hence, f (y) > 0, for y > 0.

So, for 0 ≤ y ≤ 1, we have 1− y ≤ e−y .

Raising this to the n-th power, we obtain (1− y)n ≤ e−yn.

Thus, the lemma is satisfied for x = 1.

It is clear that the inequality is also satisfied for x = 0.

George Voutsadakis (LSSU) Information Theory February 2024 52 / 88



Rate Distortion Theory Achievability of the Rate Distortion Function

An Inequality (Cont’d)

Consider
gy (x) = (1− xy)n.

Differentiating, we get:
g ′
y(x) = −ny(1− xy)n−1;

g ′′
y (x) = n(n − 1)y2(1− xy)n−2.

So gy (x) = (1− xy)n is a convex function of x .

Hence, for 0 ≤ x ≤ 1, we have

(1− xy)n = gy (x)

= gy ((1 − x)0 + x1)

≤ (1− x)gy (0) + xgy (1)

= (1− x)1 + x(1− y)n

≤ 1− x + xe−yn

≤ 1− x + e−yn.
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Proof of Achievability

Let X1,X2, . . . ,Xn be drawn i.i.d. ∼ p(x).

Let d(x , x̂) be a bounded distortion measure for this source.

Let the rate distortion function for this source be R(D).

For any D, and any R > R(D), we show that the rate distortion pair
(R ,D) is achievable by proving the existence of a sequence of rate
distortion codes with rate R and asymptotic distortion D.

Fix p(x̂ |x), where p(x̂ |x) achieves equality in the definition of R(D).

Thus, we have I (X ; X̂ ) = R(D).

Calculate p(x̂) =
∑

x p(x)p(x̂ |x).
Choose δ > 0.

We demonstrte the existence of a rate distortion code with rate R

and distortion less than or equal to D + δ.
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Codebook, Encoding and Decoding

Generation of Codebook:

Randomly generate a rate distortion codebook C consisting of 2nR

sequences X̂ n drawn i.i.d. ∼ ∏n
i=1 p(x̂i).

Index these codewords by w ∈ {1, 2, . . . , 2nR}.
Reveal this codebook to the encoder and decoder.

Encoding:

Encode X n by w if there exists a w such that (X n, X̂ n(w)) ∈ A
(n)
d,ǫ,

the distortion typical set.

If there is more than one such w , send the least.

If there is no such w , let w = 1.

Thus, nR bits suffice to describe the index w of the jointly typical
codeword.

Decoding:

The reproduced sequence is X̂ n(w).
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Calculation of Distortion

We calculate the expected distortion over the random choice of
codebooks C as D = EX n,Cd(X

n, X̂ n), where the expectation is over
the random choice of codebooks and over X n.

For a fixed codebook C and choice of ǫ > 0, we divide the sequences
xn ∈ X n into two categories:

Sequences xn such that there exists a codeword X̂ n(w) that is
distortion typical with xn, i.e., d(xn, x̂n(w)) < D + ǫ.
The total probability of these sequences is at most 1.
So they contribute at most D + ǫ to the expected distortion.
Sequences xn such that there does not exist a codeword X̂ n(w) that is
distortion typical with xn.
Let Pe be the total probability of these sequences.
The distortion for any individual sequence is bounded by dmax.
So these contribute at most Pedmax to the expected distortion.

So the total distortion Ed(X n, X̂ n(X n)) ≤ D + ǫ+ Pedmax. This can
be made < D + δ for an appropriate choice of ǫ if Pe is small enough.
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Calculation of Pe (Setup)

We must bound the probability Pe that, for a random choice of
codebook C and a randomly chosen source sequence, there is no
codeword that is distortion typical with the source sequence.

Let J(C) denote the set of source sequences xn, such that at least one
codeword in C is distortion typical with xn. Then

Pe =
∑

C

P(C)
∑

xn:xn 6∈J(C)

p(xn).

This is the probability of all sequences not well represented by a code,
averaged over the randomly chosen code.

By changing the order of summation, we can also interpret this as the
probability of choosing a codebook that does not well represent
sequence xn, averaged with respect to p(xn). Thus,

Pe =
∑

xn

p(xn)
∑

C:xn 6∈J(C)

p(C).
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Calculation of Pe

Define

K (xn, x̂n) =

{
1, if (xn, x̂n) ∈ A

(n)
d,ǫ

0, if (xn, x̂n) 6∈ A
(n)
d,ǫ

.

The probability that a single randomly chosen codeword X̂ n does not
well represent a fixed xn is

Pr((xn, X̂ n) 6∈ A
(n)
d,ǫ) = Pr(K (xn, X̂ n) = 0)

= 1−∑
x̂n p(x̂

n)K (xn, x̂n).

Therefore, the probability that 2nR independently chosen codewords
do not represent xn, averaged over p(xn), is

Pe =
∑

xn p(x
n)

∑
C:xn 6∈J(C) p(C)

=
∑

xn p(x
n)[1 −∑

xn p(x̂
n)K (xn, x̂n)]2

nR

.
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Calculation of Pe (Cont’d)

By one of the preceding lemmas,
∑

x̂n

p(x̂n)K (xn, x̂n) ≥
∑

x̂n

p(x̂n|xn)2−n(I (X ;X̂ )+3ǫ)K (xn, x̂n).

Hence,

Pe ≤
∑

xn

p(xn)

[
1− 2−n(I (X ;X̂ )+3ǫ)

∑

x̂n

p(x̂n|xn)K (xnx̂n)

]2nR

.

By the preceding lemma, we get

(1− 2−n(I (X ;X̂ )+3ǫ)
∑

x̂n p(x̂
n|xn)K (xn x̂n))2

nR

≤ 1−∑
x̂n p(x̂

n|xn)K (xn, x̂n) + e−(2−n(I (X ;X̂)+3ǫ)2nR ).

So we obtain

Pe = 1−
∑

xn

∑

x̂n

p(xn)p(x̂n|xn)K (xn, x̂n) + e−2−n(I (X ;X̂)+3ǫ)2nR .
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Calculation of Pe (Cont’d)

We got

Pe = 1−
∑

xn

∑

x̂n

p(xn)p(x̂n|xn)K (xn, x̂n) + e−2−n(I (X ;X̂)+3ǫ)2nR .

The last term in the bound is equal to e−2n(R−I (X ;X̂ )−3ǫ).

This goes to zero exponentially fast with n if R > I (X ; X̂ ) + 3ǫ.

Hence, with our choice of p(x̂ |x), R > R(D) implies R > I (X ; X̂ ).

So we can choose ǫ small enough so that the last term goes to 0.
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Calculation of Pe (Conclusion)

The first two terms in

Pe = 1−
∑

xn

∑

x̂n

p(xn)p(x̂n|xn)K (xn, x̂n) + e−2−n(I (X ;X̂)+3ǫ)2nR

give the probability under the joint distribution p(xn, x̂n) that the pair
of sequences is not distortion typical.

Hence, by a previous lemma, we obtain, for n sufficiently large,

1−
∑

xn

∑

x̂n

p(xn, x̂n)K (xn, x̂n) = Pr((X n, X̂ n) 6∈ A
(n)
d,ǫ) < ǫ.

By choosing ǫ and n wisely, we can make Pe as small as we like.

In summary, for any choice of δ > 0, there exists an ǫ and n, such
that, over all randomly chosen rate R codes of block length n, the
expected distortion is less than D + δ.

Hence, there must exist at least one code C∗ with this rate and block
length with average distortion less than D + δ.
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Channel Coding for the Gaussian Channel

Consider a Gaussian channel, Yi = Xi + Zi , where the Zi are i.i.d.
∼ N (0,N) and there is a power constraint P on the power per
symbol of the transmitted codeword.

Consider a sequence of n transmissions.

The power constraint implies that the transmitted sequence lies
within a sphere of radius

√
nP in Rn.

The coding problem is equivalent to finding a set of 2nR sequences
within this sphere such that the probability of any of them being
mistaken for any other is small.

In other words, we would like the spheres of radius
√
nN around each

of the codewords to be almost disjoint.

This corresponds to filling a sphere of radius
√

n(P + N) with
spheres of radius

√
nN .
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Channel Coding for the Gaussian Channel (Cont’d)

One would expect that the largest number of spheres that could be fit
would be the ratio of their volumes, or, equivalently, the n-th power
of the ratio of their radii.

Thus, if M is the number of codewords that can be transmitted
efficiently, we have

M ≤ (
√

n(P + N))n

(
√
nN)n

=

(
P + N

N

) n
2

.

The results of the channel coding theorem show that it is possible to
do this efficiently for large n.

It is possible to find approximately 2nC =
(
P+N
N

) n
2 codewords, such

that the noise spheres around them are almost disjoint (i.e., the total
volume of their intersection is arbitrarily small).
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Rate Distortion for the Gaussian Source

Consider a Gaussian source of variance σ2.

A (2nR , n) rate distortion code for this source, with distortion D, is a
set of 2nR sequences in Rn, such that most source sequences of
length n (all those that lie within a sphere of radius

√
nσ2) are within

a distance
√
nD of some codeword.

By the sphere-packing argument, it is clear that the minimum number
of codewords required is

2nR(D) =

(
σ2

D

) n
2

.

The rate distortion theorem shows that this minimum rate is
asymptotically achievable.

That is, there exists a collection of spheres of radius
√
nD that cover

the space except for a set of arbitrarily small probability.
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Channel Transmission versus Rate Distortion

The above geometric arguments also enable us to transform a good
code for channel transmission into a good code for rate distortion.

In both cases, the essential idea is to fill the space of source
sequences.

In channel transmission, we want to find the largest set of codewords
that have a large minimum distance between codewords.
In rate distortion, we wish to find the smallest set of codewords that
covers the entire space.

If we have any set that meets the sphere packing bound for one, it
will meet the sphere packing bound for the other.

In the Gaussian case, choosing the codewords to be Gaussian with the
appropriate variance is asymptotically optimal for both rate distortion
and channel coding.
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Subsection 6

Strongly Typical Sequences and Rate Distortion
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Strongly Typical Sequences

Let N(a|xn) be the number of occurrences of the symbol a in the
sequence xn.

Definition

A sequence xn ∈ X n is said to be ǫ-strongly typical with respect to a
distribution p(x) on X if:

1. For all a ∈ X with p(a) > 0, we have

∣∣∣∣
1

n
N(a|xn)− p(a)

∣∣∣∣ <
ǫ

|X | ;

2. For all a ∈ X , with p(a) = 0, N(a|xn) = 0.

The set of sequences xn ∈ X n, such that xn is strongly typical is called the

strongly typical set and is denoted A
∗(n)
ǫ (X ) or A

∗(n)
ǫ , when the random

variable is understood from the context.
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Strongly Typical Pairs

Let N(a, b|xn, yn) be the number of occurrences of the pair (a, b) in
the pair of sequences (xn, yn).

Definition

A pair of sequences (xn, yn) ∈ X n × Yn is said to be ǫ-strongly typical
with respect to a distribution p(x , y) on X × Y if:

1. For all (a, b) ∈ X × Y with p(a, b) > 0, we have

∣∣∣∣
1

n
N(a, b|xn, yn)− p(a, b)

∣∣∣∣ <
ǫ

|X ||Y| ;

2. For all (a, b) ∈ X × Y, with p(a, b) = 0, N(a, b|xn, yn) = 0.

The set of sequences (xn, yn) ∈ X n × Yn, such that (xn, yn) is strongly

typical is called the strongly typical set and is denoted A
∗(n)
ǫ (X ,Y ) or

A
∗(n)
ǫ .
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Some Consequences

From the definition, it follows that if (xn, yn) ∈ A
∗(n)
ǫ (X ,Y ), then

xn ∈ A
∗(n)
ǫ (X ).

By the Strong Law of Large Numbers, we have the following

Lemma

Let (Xi ,Yi ) be drawn i.i.d. ∼ p(x , y). Then Pr(A
∗(n)
ǫ ) → 1 as n → ∞.

Lemma

Let Y1,Y2, . . . ,Yn be drawn i.i.d. ∼ p(y). For xn ∈ A
∗(n)
ǫ (X ), the

probability that (xn,Y n) ∈ A
∗(n)
ǫ is bounded by

2−n(I (X ;Y )+ǫ1) ≤ Pr((xn,Y n) ∈ A∗(n)
ǫ ) ≤ 2−n(I (X ;Y )−ǫ1),

where ǫ1 goes to 0 as ǫ → 0 and n → ∞.
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Achievability of the Rate Distortion Function

Fix p(x̂ |x). Calculate p(x̂) =
∑

x p(x)p(x̂ |x).
Fix ǫ > 0. Later we will choose ǫ appropriately to achieve an expected
distortion less than D + δ.

Generation of Codebook: Generate a rate distortion codebook C
consisting of 2nR sequences X̂ n drawn i.i.d. ∼ ∏

i p(x̂i). Denote the

sequences X̂ n(1), . . . , X̂ n(2nR ).

Encoding: Given a sequence X n, index it by w if there exists a w

such that (X n, X̂ n(w)) ∈ A
∗(n)
ǫ , the strongly jointly typical set.

If there is more than one such w , send the first in lexicographic order.

If there is no such w , let w = 1.

Decoding: Let the reproduced sequence be X̂ n(w).
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Calculation of Distortion

We calculate the expected distortion over the random choice of
codebook:

D = EX n,Cd(X
n, X̂ n)

= EC
∑

xn p(x
n)d(xn, X̂ n(xn))

=
∑

xn p(x
n)ECd(x

n, X̂ n),

where the expectation EC is over the random choice of codebook.

For a fixed codebook C, we divide the sequences xn ∈ X n into three
categories.

Nontypical sequences xn 6∈ A
∗(n)
ǫ . The total probability of these

sequences can be made less than ǫ by choosing n large enough.
The individual distortion between two sequences is bounded by dmax.
So the nontypical sequences can contribute at most ǫdmax to the
expected distortion.
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Calculation of Distortion (Cont’d)

Typical sequences xn ∈ A
∗(n)
ǫ , such that there exists a codeword

X̂ n(w) that is jointly typical with xn. In this case, the source
sequence and the codeword are strongly jointly typical.
Also, distortion is continuous as a function of the joint distribution.
So the source sequence and the codeword are also distortion typical.
Hence, the distortion between them is bounded by D + ǫdmax.
The total probability of these sequences is at most 1.
So they contribute at most D + ǫdmax to the expected distortion.

Typical sequences xn ∈ A
∗(n)
ǫ , such that there does not exist a

codeword X̂ n that is jointly typical with xn.
Let Pe be the total probability of these sequences.
The distortion for any individual sequence is bounded by dmax.
So these sequences contribute at most Pedmax to the expected
distortion.

The probability of the first category of sequences is less than ǫ for
sufficiently large n. The probability of the last category is Pe , which
we will show can be made small.

George Voutsadakis (LSSU) Information Theory February 2024 72 / 88



Rate Distortion Theory Strongly Typical Sequences and Rate Distortion

Calculation of Pe

We must bound the probability that there is no codeword that is
jointly typical with the given sequence X n.

From the joint AEP, we know that the probability that X n and any

X̂ n are jointly typical is
.
= 2−nI (X ;X̂ ).

Hence, the expected number of jointly typical X̂ n(w) is 2nR2−nI (X ;X̂ ).

This is exponentially large if R > I (X ; X̂ ).

But this is not sufficient to show that Pe → 0.

We must show that the probability that there is no codeword that is
jointly typical with X n goes to zero.

The fact that the expected number of jointly typical codewords is
exponentially large does not ensure that there will at least one with
high probability.
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Calculation of Pe (Cont’d)

We can expand the probability of error as

Pe =
∑

xn∈A
∗(n)
ǫ

p(xn)[1− Pr((xn, X̂ n) ∈ A∗(n)
ǫ )]2

nR

.

By a previous lemma, we have Pr((xn, X̂ n) ∈ A
∗(n)
ǫ ) ≥ 2−n(I (X ;X̂ )+ǫ1).

Substituting this in and using the inequality (1− x)n ≤ e−nx , we have

Pe ≤ e−(2nR2−n(I (X ;X̂)+ǫ1)).

This goes to 0 as n → ∞ if R > I (X ; X̂ ) + ǫ1.

Hence, for an appropriate choice of ǫ and n, we can get the total
probability of all badly represented sequences to be as small as we
want.

Not only is the expected distortion close to D, but with probability
going to 1, we will find a codeword whose distortion with respect to
the given sequence is less than D + δ.
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Subsection 7

Characterization of the Rate Distortion Function
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Minimization Problem

We have defined the information rate distortion function as

R(D) = min
q(x̂ |x):

∑
(x,x̂) p(x)q(x̂ |x)d(x ,x̂)≤D

I (X ; X̂ ),

where the minimization is over all conditional distributions q(x̂ |x) for
which the joint distribution p(x)q(x̂ |x) satisfies the expected
distortion constraint.

This is a standard minimization problem of a convex function over the
convex set of all q(x̂ |x) ≥ 0 satisfying

∑

x̂

q(x̂ |x) = 1, for all x ,

and ∑
q(x̂ |x)p(x)d(x , x̂) ≤ D.
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Lagrange Multipliers

We can use the method of Lagrange multipliers to find the solution.

We set up the functional

J(q) =
∑

x

∑
x̂ p(x)q(x̂ |x) log

q(x̂ |x)∑
x p(x)q(x̂ |x)

+λ
∑

x

∑
x̂ p(x)q(x̂ |x)d(x , x̂)

+
∑

x ν(x)
∑

x̂ q(x̂ |x),

where the last term corresponds to the constraint that q(x̂ |x) is a
conditional probability mass function.

If we let q(x̂) =
∑

x p(x)q(x̂ |x) be the distribution on X̂ induced by
q(x̂ |x), we can rewrite J(q) as

J(q) =
∑

x

∑
x̂ p(x)q(x̂ |x) log

q(x̂ |x)
q(x̂)

+λ
∑

x

∑
x̂ p(x)q(x̂ |x)d(x , x̂)

+
∑

x ν(x)
∑

x̂ q(x̂ |x).

George Voutsadakis (LSSU) Information Theory February 2024 77 / 88



Rate Distortion Theory Characterization of the Rate Distortion Function

Minimization

Differentiating with respect to q(x̂ |x), we have

∂J
∂q(x̂ |x) = p(x) log q(x̂ |x)

q(x̂) + p(x)−∑
x ′ p(x

′)q(x̂ |x ′) 1
q(x̂)p(x)

+λp(x)d(x , x̂) + ν(x) = 0.

Setting log µ(x) = ν(x)
p(x) , we obtain

p(x)

[
log

q(x̂ |x)
q(x̂)

+ λd(x , x̂) + log µ(x)

]
= 0.

So

q(x̂ |x) = q(x̂)e−λd(x ,x̂)

µ(x)
.
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Minimization (Cont’d)

We found q(x̂ |x) = q(x̂)e−λd(x,x̂)

µ(x) .

Now
∑

x̂ q(x̂ |x) = 1.

So we must have µ(x) =
∑

x̂ q(x̂)e
−λd(x ,x̂).

Therefore, q(x̂ |x) = q(x̂)e−λd(x,x̂)
∑

x̂ q(x̂)e
−λd(x,x̂) .

Multiply this by p(x) and sum over all x ,

q(x̂) = q(x̂)
∑

x

p(x)e−λd(x ,x̂)

∑
x̂ ′ q(x̂

′)e−λd(x ,x̂ ′)
.

If q(x̂) > 0, divide both sides by q(x̂) to get, for all x̂ ∈ X̂ ,

∑

x

p(x)e−λd(x ,x̂)

∑
x̂ ′ q(x̂

′)e−λd(x ,x̂ ′)
= 1.
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Minimization (Conclusion)

We can combine the |X̂ | equations

∑

x

p(x)e−λd(x ,x̂)

∑
x̂ ′ q(x̂

′)e−λd(x ,x̂ ′)
= 1, x̂ ∈ X̂ ,

with the equation defining the distortion and calculate λ and the |X̂ |
unknowns q(x̂).

We can use this and

q(x̂ |x) = q(x̂)e−λd(x ,x̂)

∑
x̂ q(x̂)e

−λd(x ,x̂)

to find the optimum conditional distribution.
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The Case q(x̂) = 0

The inequality condition q(x̂) > 0 is covered by the Kuhn-Tucker
conditions, which reduce to

∂J
∂q(x̂ |x) = 0 if q(x̂ |x) > 0

≥ 0 if q(x̂ |x) = 0.

Substituting the value of the derivative, we obtain the conditions for
the minimum as

∑
x

p(x)e−λd(x,x̂)
∑

x̂′ q(x̂
′)e−λd(x,x̂′)

= 1 if q(x̂) > 0

≤ 1 if q(x̂) = 0.

This characterization will enable us to check if a given q(x̂) is a
solution to the minimization problem.

However, it is not easy to solve for the optimum output distribution
from these equations.
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Subsection 8

Computation of Channel Capacity and Rate Distortion Function
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A Minimization Problem

Consider the problem: Given two convex sets A and B in Rn, find the
minimum distance between them: dmin = mina∈A,b∈B d(a, b), where
d(a, b) is the Euclidean distance between a and b.

An intuitively obvious algorithm to do this would be to:

Take any point x ∈ A, and find the y ∈ B that is closest to it.
Fix this y and find the closest point in A.
Repeating, it is clear that the distance decreases at each stage.

Csiszár and Tusnády have shown that if the sets are convex and if the
distance satisfies certain conditions, this alternating minimization
algorithm will indeed converge to the minimum.

In particular, if the sets are sets of probability distributions and the
distance measure is the relative entropy, the algorithm does converge
to the minimum relative entropy between the two sets of distributions.
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Distribution Minimizing Relative Entropy

Lemma

Let p(x)p(y |x) be a given joint distribution. Then the distribution r(y)
that minimizes the relative entropy D(p(x)p(y |x)||p(x)r(y)) is the
marginal distribution r∗(y) corresponding to p(y |x):

D(p(x)p(y |x)||p(x)r∗(y)) = min
r(y)

D(p(x)p(y |x)||p(x)r(y)),

where r∗(y) =
∑

x p(x)p(y |x). Also,

max
r(x |y)

∑

x ,y

p(x)p(y |x) log r(x |y)
p(x)

=
∑

x ,y

p(x)p(y |x) log r∗(x |y)
p(x)

,

where

r∗(x |y) = p(x)p(y |x)∑
x p(x)p(y |x)

.
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Proof of the Lemma

We have

D(p(x)p(y |x)||p(x)r(y)) − D(p(x)p(y |x)||p(x)r∗(y))

=
∑

x ,y p(x)p(y |x) log
p(x)p(y |x)
p(x)r(y)

−∑
x ,y p(x)p(y |x) log

p(x)p(y |x)
p(x)r∗(y)

=
∑

x ,y p(x)p(y |x) log
r∗(y)

r(y)

=
∑

y r
∗(y) log

r∗(y)

r(y)

= D(r∗||r) ≥ 0.

The proof of the second part of the lemma is similar.
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Rewriting Rate Distortion Function

We can use the lemma to rewrite the minimization in the definition of
the rate distortion function as a double minimization,

R(D) = min
r(x̂)

min
q(x̂ |x):

∑
p(x)q(x̂ |x)d(x ,x̂)≤D

∑

x

∑

x̂

p(x)q(x̂ |x) log q(x̂ |x)
r(x̂)

.

Now let:

A be the set of all joint distributions with marginal p(x) that satisfy
the distortion constraints;
B be the set of product distributions p(x)r(x̂) with arbitrary r(x̂).

Then we can write

R(D) = min
q∈B

min
p∈A

D(p‖q).
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Alternating Minimization (Blahut-Arimoto Algorithm)

We apply alternating minimization (Blahut-Arimoto algorithm):
We begin with a choice of λ and an initial output distribution r(x̂) and
calculate the q(x̂ |x) that minimizes the mutual information subject to
the distortion constraint.
Using Lagrange multipliers for this minimization, we obtain

q(x̂ |x) = r(x̂)e−λd(x,x̂)

∑
x̂ r(x̂)e

−λd(x,x̂)
.

For this conditional distribution q(x̂ |x), we calculate the output
distribution r(x̂) that minimizes the mutual information.
By the lemma, this is r(x̂) =

∑
x p(x)q(x̂ |x).

We use this distribution as the starting point of the next iteration.

Each step, minimizing over q(·|·) and then over r(·), reduces the
right-hand side of R(D). Thus, there is a limit.

This limit has been shown to be R(D) by Csiszár, where the value of
D and R(D) depends on λ.

Choosing λ appropriately sweeps out the R(D) curve.
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Alternate Minimization for Channel Capacity

We rewrite the definition of channel capacity,

C = maxr(x) I (X ;Y ) = maxr(x)
∑

x

∑
y r(x)p(y |x) log

r(x)p(y |x)
r(x)

∑
x′ r(x

′)p(y |x ′)

as a double maximization using the lemma

C = max
q(x |y)

max
r(x)

∑

x

∑

y

r(x)p(y |x) log q(x |y)
r(x)

.

The Csiszár-Tusnády algorithm is one of alternating maximization:

We start with a guess of the maximizing distribution r(x).

We find the best conditional distribution q(x |y) = r(x)p(y|x)∑
x
r(x)p(y|x) .

For this distribution, we find the best input distribution r(x) by solving
the constrained maximization problem with Lagrange multipliers.

The optimum input distribution is r(x) =
∏

y (q(x|y))
p(y|x)

∑
x

∏
y
(q(x|y))p(y|x)

.

This is used as the basis for the next iteration.
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