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Information Theory and Statistics Method of Types

Subsection 1

Method of Types
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Information Theory and Statistics Method of Types

Types

Let X1,X2, . . . ,Xn be a sequence of n symbols from an alphabet
X = {a1, a2, . . . , a|X |}.
We use the notation xn and x interchangeably to denote a sequence
x1, x2, . . . , xn.

Definition

The type Px (or empirical probability distribution) of a sequence
x1, x2, . . . , xn is the relative proportion of occurrences of each symbol of
X , i.e.,

Px (a) =
N(a|x)

n
, for all a ∈ X ,

where N(a|x) is the number of times the symbol a occurs in the sequence
x ∈ X n.

The type of a sequence x is denoted as Px .

The type Px is a probability mass function on X .
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Information Theory and Statistics Method of Types

The Probability Simplex

Definition

The probability simplex in Rm is the set of points

x = (x1, x2, . . . , xm) ∈ Rm, such that xi ≥ 0,
m∑

i=1

xi = 1.

The probability simplex is an (m − 1)-dimensional manifold in
m-dimensional space.

When m = 3, the probability simplex is the
set of points

{(x1, x2, x3) : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,
x1 + x2 + x3 = 1}.

Since this is a triangular two-dimensional flat in R3, we use a triangle
to represent the probability simplex in later sections.
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Information Theory and Statistics Method of Types

Type Classes

Definition

Let Pn denote the set of types with denominator n.

Example: If X = {0, 1}, the set of possible types with denominator n
is

Pn =

{
(P(0),P(1)) :

(
0

n
,
n

n

)
,

(
1

n
,
n − 1

n

)
, . . . ,

(
n

n
,
0

n

)}
.

Definition

If P ∈ Pn, the set of sequences of length n and type P is called the type

class of P , denoted T (P):

T (P) = {x ∈ X n : Px = P}.

The type class is sometimes called the composition class of P .
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Information Theory and Statistics Method of Types

Example

Let X = {1, 2, 3}, a ternary alphabet.

Let x = 11321.

Then the type Px is

Px (1) =
3

5
, Px (2) =

1

5
, Px (3) =

1

5
.

The type class of Px is the set of all sequences of length 5 with three
1’s, one 2, and one 3,

T (Px ) = {11123, 11132, 11213, . . . , 32111}.

The number of elements in T (P) is

|T (P)| =
(

5

3, 1, 1

)
=

5!

3!1!1!
= 20.
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Information Theory and Statistics Method of Types

The Number of Types

Theorem

|Pn| ≤ (n + 1)|X |.

There are |X | components in the vector that specifies Px .

The numerator in each component can take on only n+ 1 values.

So there are at most (n + 1)|X | choices for the type vector.

Of course, these choices are not independent, e.g., the last choice is
fixed by the others.

The crucial point is that this is a polynomial as a function of n.

The number of sequences is exponential in n.

So at least one type has exponentially many sequences in its type
class.

In fact, the largest type class has essentially the same number of
elements as the entire set of sequences, to first order in the exponent.
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Information Theory and Statistics Method of Types

Product Distribution of i.i.d. Sequence

Assume that the sequence X1,X2, . . . ,Xn is drawn i.i.d. according to
a distribution Q(x).

Let

Qn(xn) =
n∏

i=1

Q(xi )

denote the product distribution associated with Q.

Theorem

If X1,X2, . . . ,Xn are drawn i.i.d. according to Q(x), the probability of x

depends only on its type and is given by

Qn(x) = 2−n(H(Px )+D(Px ‖Q)).
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Information Theory and Statistics Method of Types

Product Distribution of i.i.d. Sequence (Cont’d)

We compute

Qn(x) =
∏n

i=1Q(xi )

=
∏

a∈X Q(a)N(a|x )

=
∏

a∈X Q(a)nPx (a)

=
∏

a∈X 2nPx (a) logQ(a)

=
∏

a∈X 2n(Px (a) logQ(a)−Px (a) log Px (a)+Px (a) log Px (a))

= 2
n
∑

a∈X (−Px (a) log
P
x

(a)

Q(a)
+Px (a) logPx (a))

= 2n(−D(Px ‖Q)−H(Px )).

= 2−n(H(Px )+D(Px ‖Q)).
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Information Theory and Statistics Method of Types

A Consequence

Corollary

If x is in the type class of Q, then

Qn(x) = 2−nH(Q).

Suppose x ∈ T (Q).

Then, we get

Qn(x) = 2−n(H(Px )+D(Px ‖Q))

= 2−n(H(Q)+D(Q‖Q))

= 2−nH(Q).
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Information Theory and Statistics Method of Types

Example

Consider rolling a fair die n (multiple of 6) times.

It produces a particular sequence of length n, with probability

2−nH( 1
6
, 1
6
,..., 1

6) =

(
1

6

)n

.

Suppose, next, that the die has a probability mass function

(
1

3
,
1

3
,
1

6
,
1

12
,
1

12
, 0

)
.

Then the probability of observing a particular sequence of length n

(with n a multiple of 12) is precisely

2−nH( 1
3
, 1
3
, 1
6
, 1
12
, 1
12
,0).

This is a more interesting result.
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Information Theory and Statistics Method of Types

The Size of a Type Class

The exact size of T (P) is a simple combinatorial problem.

The size coincides with the number of ways of arranging
nP(a1), nP(a2), . . . , nP(a|X |) objects in a sequence.

This number is

|T (P)| =
(

n

nP(a1), nP(a2), . . . , nP(a|X |)

)
.

This value is hard to manipulate, so we derive simple exponential
bounds on its value next.
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Information Theory and Statistics Method of Types

Estimates of the Size of a Type Class

Theorem (Size of a Type Class T (P))

For any type P ∈ Pn,

1

(n + 1)|X | 2
nH(P) ≤ |T (P)| ≤ 2nH(P).

We first prove the upper bound.

A type class must have probability ≤ 1.

So we get

1 ≥ Pn(T (P)) =
∑

x∈T (P)

Pn(x) =
∑

x∈T (P)

2−nH(P) = |T (P)|2−nH(P).

Thus, |T (P)| ≤ 2nH(P).
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Information Theory and Statistics Method of Types

Estimate of the Size of a Type Class (Lower Bound)

We next work to establish the lower bound.

We first prove that the type class T (P) has the highest probability
among all type classes under the probability distribution P ,

Pn(T (P)) ≥ Pn(T (P̂)), for all P̂ ∈ Pn.

We lower bound the ratio of probabilities,

Pn(T (P))

Pn(T (P̂))
=

|T (P)|∏a∈X P(a)nP(a)

|T (P̂)|∏a∈X P(a)nP̂(a)

=

(
n

nP(a1),nP(a2),...,nP(a|X|)

)∏
a∈X P(a)nP(a)

(
n

nP̂(a1),nP̂(a2),...,nP̂(a|X|)

)∏
a∈X P(a)nP̂(a)

=
∏

a∈X
(nP̂(a))!

(nP(a))!
P(a)n(P(a)−P̂(a)).
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Information Theory and Statistics Method of Types

Estimate of the Size of a Type Class (Lower Bound Cont’d)

We got

Pn(T (P))

Pn(T (P̂))
=
∏

a∈X

(nP̂(a))!

(nP(a))!
P(a)n(P(a)−P̂(a)).

We use the simple bound m!
n! ≥ nm−n.

We obtain

Pn(T (P))

Pn(T (P̂))
≥ ∏

a∈X (nP(a))
nP̂(a)−nP(a)P(a)n(P(a)−P̂(a))

=
∏

a∈X nn(P̂(a)−P(a))

= nn(
∑

a∈X P̂(a)−
∑

a∈X P(a))

= nn(1−1) = 1.

Hence, Pn(T (P)) ≥ Pn(T (P̂)).
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Information Theory and Statistics Method of Types

Estimate of the Size of a Type Class (Lower Bound Cont’d)

The lower bound now follows easily from this result:

1 =
∑

Q∈Pn
Pn(T (Q))

≤ ∑
Q∈Pn

maxQ Pn(T (Q))

=
∑

Q∈Pn
Pn(T (P))

≤ (n + 1)|X |Pn(T (P))
(by a previous theorem)

= (n + 1)|X |∑
x∈T (P) P

n(x)

= (n + 1)|X |∑
x∈T (P) 2

−nH(P)

(by a previous theorem)

= (n + 1)|X ||T (P)|2−nH(P).
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Information Theory and Statistics Method of Types

Binary Alphabet (Upper Bound)

In the binary case, the type is defined by the number k of 1’s in the
sequence, and the size of the type class is

(
n
k

)
.

Claim: 1
n+12

nH( k
n ) ≤

(
n
k

)
≤ 2nH(

k
n ).

We first prove the upper bound.

By the binomial formula, for any 0 ≤ p ≤ 1,

n∑

k=0

(
n

k

)
pk(1− p)n−k = 1.

All the terms of the sum are positive and sum up to 1.

Thus, each of the terms is less than 1.
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Information Theory and Statistics Method of Types

Binary Alphabet (Upper Bound Cont’d)

Set p = k
n
and consider the k-th term

1 ≥
(
n
k

)
(k
n
)k(1− k

n
)n−k

=
(
n
k

)
2k log k

n
+(n−k) log n−k

n

=
(
n
k

)
2n(

k
n
log k

n
+ n−k

n
log n−k

n
)

=
(
n
k

)
2−nH( k

n ).

Hence (
n

k

)
≤ 2nH(

k
n ).
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Information Theory and Statistics Method of Types

Binary Alphabet (Lower Bound)

For the lower bound, let S be a random variable with a binomial
distribution with parameters n and p.

The most likely value of S is S = 〈np〉.
To see this, compute

P(S = i + 1)

P(S = i)
=

(
n

i+1

)
pi+1(1− p)n−i−1

(
n
i

)
pi(1− p)n−i

=
n − i

i + 1

p

1− p
.

Suppose, first, that i < np.

Then i − ip < np − ip + p. Hence, i(1− p) < (n − (i − 1))p.

This gives P(S=i)
P(S=i−1) =

(n−(i−1))p
i(1−p) > 1.

Therefore, P(S = i − 1) < P(S = i).

Suppose, next, that np < i .

Then np − ip < i + 1− ip − p. Hence, (n − i)p < (i + 1)(1 − p).

This gives P(S=i+1)
P(S=i) = (n−i)p

(i+1)(1−p) < 1.

Therefore, P(S = i + 1) < P(S = i).
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Information Theory and Statistics Method of Types

Binary Alphabet (Lower Bound Cont’d)

Since there are n + 1 terms in the binomial sum,

1 =
∑n

k=0

(
n
k

)
pk(1− p)n−k

≤ (n + 1)maxk
(
n
k

)
pk(1− p)n−k

= (n + 1)
(

n
〈np〉
)
p〈np〉(1− p)n−〈np〉.

Now let p = k
n
. Then we have 1 ≤ (n + 1)

(
n
k

)
(k
n
)k(1− k

n
)n−k .

By the previous arguments this is equivalent to 1
n+1 ≤

(
n
k

)
2−nH( k

n ).

Rewriting, (
n

k

)
≥ 1

n + 1
2nH(

k
n ).

Combining the two results,
(
n
k

) .
= 2nH(

k
n ).
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Information Theory and Statistics Method of Types

Probability of Type Class

Theorem (Probability of Type Class)

For any P ∈ Pn and any distribution Q, the probability of the type class
T (P) under Qn is 2−nD(P‖Q) to first order in the exponent. More precisely,

1

(n + 1)|X | 2
−nD(P‖Q) ≤ Qn(T (P)) ≤ 2−nD(P‖Q).

We have

Qn(T (P)) =
∑

x∈T (P) Q
n(x)

=
∑

x∈T (P) 2
−n(D(P‖Q)+H(P))

(by a previous theorem)

= |T (P)|2−n(D(P‖Q)+H(P)) .

Now, we ue the bounds on |T (P)| derived previously.
We get 1

(n+1)|X| 2
−nD(P‖Q) ≤ Qn(T (P)) ≤ 2−nD(P‖Q).
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Information Theory and Statistics Method of Types

Summary of Results

We can summarize the basic theorems concerning types in four
equations.

|Pn| ≤ (n + 1)|X |;

Qn(x) = 2−n(D(Px ‖Q)+H(Px ));

|T (P)| .
= 2nH(P);

Qn(T (P))
.
= 2−nD(P‖Q).

These equations state that:

There are only a polynomial number of types;
There are an exponential number of sequences of each type.

We also have:

An exact formula for the probability of any sequence of type P under
distribution Q;
An approximate formula for the probability of a type class.
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Information Theory and Statistics Law of Large Numbers

Subsection 2

Law of Large Numbers
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Information Theory and Statistics Law of Large Numbers

Typical Sequences

Given an ǫ > 0, we define a typical set T ǫ
Q of sequences for the

distribution Qn by

T ǫ
Q = {xn : D(Pxn‖Q) ≤ ǫ}.

Theorem

Let X1,X2, . . . ,Xn be i.i.d. ∼ P(x). Then

Pr{D(Pxn‖P) > ǫ} ≤ 2
−n
(
ǫ−|X | log (n+1)

n

)

.

Consequently, D(Pxn‖P) → 0 with probability 1.
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Information Theory and Statistics Law of Large Numbers

Typical Sequences (Cont’d)

The probability that xn is not typical is

1− Qn(T ǫ
Q) =

∑
P:D(P‖Q)>ǫ Q

n(T (P))

≤ ∑
P:D(P‖Q)>ǫ 2

−nD(P‖Q)

≤ ∑
P:D(P‖Q)>ǫ 2

−nǫ

≤ (n + 1)|X |2−nǫ

= 2
−n
(
ǫ−|X | log (n+1)

n

)

.
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Information Theory and Statistics Law of Large Numbers

Typical Sequences (Cont’d)

Summing over n, we get

∞∑

n=1

Pr{D(Pxn‖P) > ǫ} <∞.

Thus, the expected number of occurrences of the event

{D(Pxn‖P) > ǫ}

for all n is finite.

By the Borel-Cantelli Lemma, this implies that the actual number of
such occurrences is also finite with probability 1.

Hence, D(Pxn‖P) → 0 with probability 1.
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Information Theory and Statistics Law of Large Numbers

Strongly Typical Sequences

Definition

We define the strongly typical set A
∗(n)
ǫ to be the set of sequences in X n

for which the sample frequencies are close to the true values:

A∗(n) =

{
x ∈ X n :

∣∣ 1
n
N(a|x)− P(a)

∣∣ < ǫ
|X | , if P(a) > 0

N(a|x) = 0, if P(a) = 0

}
.

Hence, the typical set consists of sequences whose type does not
differ from the true probabilities by more than ǫ

|X | in any component.

By the Strong Law of Large Numbers, the probability of the strongly
typical set goes to 1 as n → ∞.
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Information Theory and Statistics Universal Source Coding

Subsection 3

Universal Source Coding
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Information Theory and Statistics Universal Source Coding

Unknown Source Distributions

Huffman coding compresses an i.i.d. source with a known distribution
p(x) to its entropy limit H(X ).

If the code is designed for some incorrect distribution q(x), a penalty
of D(p‖q) is incurred.
Thus, Huffman coding is sensitive to the assumed distribution.

Suppose, now, the true distribution p(x) is unknown.

We describe a universal code of rate R that suffices to describe every
i.i.d. source with entropy H(X ) < R .

The idea is based on the method of types.
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Information Theory and Statistics Universal Source Coding

The Idea Behind the Universal Coding

There are 2nH(P) sequences of type P .

There are only a polynomial number of types with denominator n.

So an enumeration of all sequences xn with type Pxn , such that
H(Pxn) < R , will require roughly nR bits.

By describing all such sequences, we are prepared to describe any
sequence that is likely to arise from any distribution Q having entropy
H(Q) < R .
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Information Theory and Statistics Universal Source Coding

Universal Codes

Definition

A fixed-rate block code of rate R for a source X1,X2, . . . ,Xn, which has
an unknown distribution Q, consists of two mappings.

The encoder fn : X n → {1, 2, . . . , 2nR};
The decoder φn : {1, 2, . . . , 2nR} → X n.

The probability of error for the code with respect to the distribution Q is

P
(n)
e = Qn(X n : φn(fn(X

n)) 6= X n).

Definition

A rate R block code for a source will be called universal if the functions fn
and φn do not depend on the distribution Q and if P

(n)
e → 0 as n → ∞, if

R > H(Q).
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Information Theory and Statistics Universal Source Coding

Universal Encoding Scheme

Theorem

There exists a sequence of (2nR , n) universal source codes, such that

P
(n)
e → 0, for every source Q such that H(Q) < R .

Fix the rate R for the code. Let Rn = R − |X | log (n+1)
n

.

Consider the set of sequences A = {x ∈ X n : H(Px ) ≤ Rn}. Then
|A| =

∑
P∈Pn :H(P)≤Rn

|T (P)|
≤ ∑

P∈Pn :H(P)≤Rn
2nH(P)

≤ ∑
P∈Pn :H(P)≤Rn

2nRn

≤ (n + 1)|X |2nRn

= 2
n
(
Rn+|X | log (n+1)

n

)

= 2nR .
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Information Theory and Statistics Universal Source Coding

Universal Encoding Scheme (Encoding and Decoding)

By indexing the elements of A, we define the encoding function fn as

fn(x) =

{
index of x in A, if x ∈ A

0, otherwise
.

The decoding function maps each index onto the corresponding
element of A.

All the elements of A are recovered
correctly;
All the remaining sequences result in an
error.

The set of sequences that are recovered
correctly is illustrated in the figure.
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Information Theory and Statistics Universal Source Coding

Universality

We now show that this encoding scheme is universal.

Assume that the distribution of X1,X2, . . . ,Xn is Q and H(Q) < R .

Then the probability of decoding error is given by

P
(n)
e = 1− Qn(A)

=
∑

P:H(P)>Rn
Qn(T (P))

≤ (n + 1)|X |maxP:H(P)>Rn
Qn(T (P))

≤ (n + 1)|X |2−nminP:H(P)>Rn D(P‖Q).

Now, Rn ↑ R and H(Q) < R .

So, there exists n0, such that, for all n ≥ n0, Rn > H(Q).

Then, for n ≥ n0, minP:H(P)>Rn
D(P‖Q) must be greater than 0.

So the probability of error P
(n)
e

n→∞−→ 0 exponentially fast.
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Information Theory and Statistics Universal Source Coding

Universal Encoding Scheme (Conclusion)

Suppose the distribution Q is such that H(Q) > R .

Then with high probability the sequence will have a type outside A.

Hence, in such cases the probability of error is close to 1.

The exponent in the probability of error is

D∗
R,Q = min

P:H(P)>R
D(P‖Q).

It is illustrated in the figure.
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Information Theory and Statistics Universal Source Coding

Huffman Codes versus Universal Codes

Why it is ever necessary to use Huffman codes, which are specific to a
probability distribution?

What do we lose in using a universal code?

Universal codes need a longer block length to obtain the same
performance as a code designed specifically for the probability
distribution.

The penalty for this increase in block length is the increased
complexity of the encoder and decoder.

Hence, a distribution specific code is best if one knows the
distribution of the source.
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Information Theory and Statistics Large Deviation Theory

Subsection 4

Large Deviation Theory
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Information Theory and Statistics Large Deviation Theory

Subject of Large Deviation Theory

Suppose X1,X2, . . . ,Xn are drawn i.i.d. ∼ Bernoulli
(
1
3

)
.

We want to find the probability that 1
n

∑
Xi is near

1
3 .

This is a small deviation (from the expected outcome) and the
probability is near 1.

How about the probability that 1
n

∑
Xi is greater than

3
4?

This is a large deviation, and the probability is exponentially small.

One estimate of the exponent uses the central limit theorem.

But this is a poor approximation for more than a few standard
deviations.

Note that 1
n

∑
Xi =

3
4 is equivalent to Px = (14 ,

3
4).

Thus, the probability that X n is near 3
4 is the probability that type PX

is near (34 ,
1
4 ).

The probability of this large deviation is ≈ 2−nD(( 3
4
, 1
4)‖(

1
3
, 2
3)).
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Information Theory and Statistics Large Deviation Theory

The Setup and the Goal

Let E be a subset of the set of probability mass functions.

Example: E may be the set of probability mass functions with mean
µ.

With a slight abuse of notation, we write

Qn(E ) = Qn(E ∩ Pn) =
∑

x :Px∈E∩Pn

Qn(x).

If E contains a relative entropy neighborhood of Q, then by the weak
law of large numbers, Qn(E ) → 1.

If E does not contain Q or a neighborhood of Q, then by the weak
law of large numbers, Qn(E ) → 0 exponentially fast.

We use the method of types to calculate the exponent.
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Information Theory and Statistics Large Deviation Theory

Example

Assume that, by observation, we find that the sample average of
g(X ) is greater than or equal to α, i.e., 1

n

∑
i g(xi ) ≥ α.

This event is equivalent to the event PX ∈ E ∩ Pn, where

E =

{
P :

∑

a∈X
g(a)P(a) ≥ α

}
.

Indeed, we have
1
n

∑n
i=1 g(xi ) ≥ α ⇔ ∑

a∈X PX (a)g(a) ≥ α

⇔ PX ∈ E ∩ Pn.

Thus,

Pr( 1
n

∑n
i=1 g(Xi ) ≥ α) = Qn(E ∩ Pn)

= Qn(E ).

Here E is a half space in the space of prob-
ability vectors, as shown in the figure.

George Voutsadakis (LSSU) Information Theory February 2024 41 / 130



Information Theory and Statistics Large Deviation Theory

Sanov’s Theorem

Theorem (Sanov’s Theorem)

Let X1,X2, . . . ,Xn be i.i.d. ∼ Q(x). Let E ⊆ P be a set of probability
distributions. Then

Qn(E ) = Qn(E ∩ Pn) ≤ (n + 1)|X |2−nD(P∗‖Q),

where P∗ = argminP∈ED(P‖Q) is the distribution in E that is closest to
Q in relative entropy.
If, in addition, the set E is the closure of its interior, then

1

n
logQn(E ) → −D(P∗‖Q).
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Proof of Sanov’s Theorem (Upper Bound)

We first prove the upper bound:

Qn(E ) =
∑

P∈E∩Pn
Qn(T (P))

≤ ∑
P∈E∩Pn

2−nD(P‖Q)

≤ ∑
P∈E∩Pn

maxP∈E∩Pn
2−nD(P‖Q)

=
∑

P∈E∩Pn
2−nminP∈E∩Pn D(P‖Q)

≤ ∑
P∈E∩Pn

2−nminP∈E D(P‖Q)

=
∑

P∈E∩Pn
2−nD(P∗‖Q)

≤ (n + 1)|X |2−nD(P∗‖Q),

where the last inequality follows from a previous theorem.

Note that P∗ need not be a member of Pn.
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Proof of Sanov’s Theorem (Asymptotic Bahavior)

We now look for a “nice” set E , so that, for all large n, there is a
distribution in E ∩ Pn close to P∗.
Assume E is the closure of its interior (so the interior is nonempty).⋃

n Pn is dense in the set of all distributions.

Hence, E ∩ Pn is nonempty, for all n ≥ n0, for some n0.

Find a sequence Pn ∈ E ∩ Pn, such that D(Pn‖Q) → D(P∗‖Q).

Then, for each n ≥ n0,

Qn(E ) =
∑

P∈E∩Pn

Qn(T (P)) ≥ Qn(T (Pn)) ≥
1

(n + 1)|X | 2
−nD(Pn‖Q).

Consequently,

lim inf 1
n
logQn(E ) ≥ lim inf

(
− |X | log (n+1)

n
− D(Pn‖Q)

)

= − D(P∗‖Q).

Combining this with the upper bound establishes the theorem.
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Subsection 5

Examples of Sanov’s Theorem
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Minimizing the Relative Entropy

Suppose that we wish to find

Pr

{
1

n

n∑

i=1

gj (Xi) ≥ αj , j = 1, 2, . . . , k

}
.

The set E is defined as

E =

{
P :
∑

a

P(a)gj (a) ≥ αj , j = 1, 2, . . . , k

}
.

To find the closest distribution in E to Q, we minimize D(P‖Q)
subject to the constraints above.

Using Lagrange multipliers, we construct the functional

J(P) =
∑

x

P(x) log
P(x)

Q(x)
+
∑

i

λi
∑

x

P(x)gi (x) + ν
∑

x

P(x).
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Minimizing the Relative Entropy

We obtained the functional

J(P) =
∑

x

P(x) log
P(x)

Q(x)
+
∑

i

λi
∑

x

P(x)gi (x) + ν
∑

x

P(x).

We then differentiate and calculate the closest distribution to Q to be
of the form

P∗(x) =
Q(x)e

∑
i λigi (x)

∑
a∈X Q(a)e

∑
i λigi (a)

,

where the constants λi are chosen to satisfy the constraints.

Note that if Q is uniform, P∗ is the maximum entropy distribution.
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Example: Dice

Suppose that we toss a fair die n times.

We compute the probability that the average of the throws is greater
than or equal to 4.

Let P∗ be the distribution that minimizes D(P‖Q) over all
distributions P that satisfy

∑6
i=1 iP(i) ≥ 4.

By Sanov’s theorem, it follows that

Qn(E )
.
= 2−nD(P∗‖Q).

From the minimization formula it follows that P∗ has the form

P∗(x) =
2λx

∑6
i=1 2

λi
,

with λ chosen so that
∑

iP∗(i) = 4.
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Example: Dice (Cont’d)

We got

P∗(x) =
2λx

∑6
i=1 2

λi
,

with λ chosen so that
∑

iP∗(i) = 4.

Solving numerically, we obtain:

λ = 0.2519;
P∗ = (0.1031, 0.1227, 0.1461, 0.1740, 0.2072, 0.2468).

Therefore,
D(P∗‖Q) = 0.0624 bit.

Thus, the probability that the average of 10000 throws is greater than
or equal to 4 is ≈ 2−624.
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Example: Coins

Suppose that we have a fair coin and want to estimate the probability
of observing more than 700 heads in a series of 1000 tosses.

The problem is like in the preceding example.

The probability is

P(X n ≥ 0.7)
.
= 2−nD(P‖Q),

where:

P∗ is the (0.7, 0.3) distribution;
Q is the (0.5, 0.5) distribution.

So we get

D(P‖Q) = 1− H(P∗) = 1− H(0.7) = 0.119.

Thus, the probability of 700 or more heads in 1000 trials is
approximately 2−119.
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Example: Mutual Dependence

Let Q(x , y) be a given joint distribution.

Let Q0(x , y) = Q(x)Q(y) be the associated product distribution
formed from the marginals of Q.

We wish to know the likelihood that a sample drawn according to Q0

will “appear” to be jointly distributed according to Q.

Let (Xi ,Yi ) be i.i.d. ∼ Q0(x , y) = Q(x)Q(y).

We define joint typicality as we did before.

I.e., (xn, yn) is jointly typical with respect to a joint distribution

Q(x , y) iff the sample entropies are close to their true values:

∣∣− 1
n
logQ(xn)− H(X )

∣∣ ≤ ǫ,
∣∣− 1

n
logQ(yn)− H(Y )

∣∣ ≤ ǫ,
∣∣− 1

n
logQ(xn, yn)− H(X ,Y )

∣∣ ≤ ǫ.
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Example: Mutual Dependence (Cont’d)

We wish to calculate the probability (under the product distribution)
of seeing a pair (xn, yn) that looks jointly typical of Q.

Thus, (xn, yn) are jointly typical with respect to Q(x , y) if
Pxn,yn ∈ E ∩ Pn(X ,Y ), where

E = {P(x , y) : | −∑x ,y P(x , y) logQ(x)− H(X )| ≤ ǫ,

| −∑x ,y P(x , y) logQ(y)− H(Y )| ≤ ǫ,

| −∑x ,y P(x , y) logQ(x , y)− H(X ,Y )| ≤ ǫ}.

Using Sanov’s Theorem, the probability is Qn
0 (E )

.
= 2−nD(P‖Q0),

where P∗ is the distribution satisfying the constraints that is closest
to Q0 in relative entropy.

In this case, as ǫ→ 0, it can be verified that P∗ is the joint
distribution Q, and Q0 is the product distribution.

So the probability is 2−nD(Q(x ,y)‖Q(x)Q(y)) = 2−nI (X ;Y ).

This coincides with the result derived previously for the joint AEP.
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Subsection 6

Conditional Limit Theorem
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Information Theory and Statistics Conditional Limit Theorem

Review

It has been shown that the probability of a set of types under a
distribution Q is determined essentially by the probability of the
closest element of the set to Q.

This probability is
2−nD∗

to first order in the exponent, where D∗ = minP∈E D(P‖Q).

This follows from the following considerations.

The probability of the set of types is the sum of the probabilities of each
type, which is bounded by the largest term times the number of terms.
The number of terms is polynomial in the length of the sequences.
So the sum is equal to the largest term to first order in the exponent.
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Information Theory and Statistics Conditional Limit Theorem

A New Goal

We strengthen the argument to show that, not only is the probability
of the set E essentially the same as the probability of the closest type
P∗, but also that the total probability of other types that are far away
from P∗ is negligible.

This implies that with very high probability, the type observed is close
to P∗.

This fact is referred to as a conditional limit theorem.

George Voutsadakis (LSSU) Information Theory February 2024 55 / 130



Information Theory and Statistics Conditional Limit Theorem

A “Pythagorean” Theorem

Since D(P‖Q) is not a metric, many of the intuitive properties of
distance are not valid for D(P‖Q).

The next theorem shows a sense in which D(P‖Q) behaves like the
square of the Euclidean metric.

Theorem

For a closed convex set E ⊆ P and distribution Q 6∈ E , let P∗ ∈ E be the
distribution that achieves the minimum distance to Q, i.e.,
D(P∗‖Q) = minP∈E D(P‖Q). Then, for all P ∈ E ,

D(P‖Q) ≥ D(P‖P∗) + D(P∗‖Q).

Note: The main use of this theorem is as follows.

Suppose a sequence Pn ∈ E satisfies D(Pn‖Q) → D(P∗‖Q).

Then, by the Pythagorean Theorem, D(Pn‖P∗) → 0 as well.
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Proof of the Theorem

Consider any P ∈ E . Let

Pλ = λP + (1− λ)P∗.

Then Pλ → P∗ as λ→ 0.

Also, since E is convex, Pλ ∈ E , for 0 ≤ λ ≤ 1.

D(P∗‖Q) is the minimum of D(Pλ‖Q) along the path P∗ → P .

So the derivative of D(Pλ‖Q) as a function of λ is nonnegative at
λ = 0.

To take advantage of this observation, compute:

Dλ = D(Pλ‖Q) =
∑

Pλ(x) log
Pλ(x)

Q(x)
;

dDλ

dλ
=
∑(

(P(x)− P∗(x)) log
Pλ(x)

Q(x)
+ (P(x)− P∗(x))

)
.
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Proof of the Theorem (Cont’d)

We have

dDλ

dλ
=
∑(

(P(x)− P∗(x)) log
Pλ(x)

Q(x)
+ (P(x)− P∗(x))

)
.

Set λ = 0. Then Pλ = P∗. Moreover,
∑

P(x) =
∑

P∗(x) = 1.

Now we get

0 ≤ (dDλ

dλ )λ=0

=
∑

(P(x) − P∗(x)) log P∗(x)
Q(x)

=
∑

P(x) log P∗(x)
Q(x) −∑P∗(x) log P∗(x)

Q(x)

=
∑

P(x) log P(x)
Q(x)

P∗(x)
P(x) −∑P∗(x) log P∗(x)

Q(x)

= D(P‖Q)−D(P‖P∗)− D(P∗‖Q).
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Illustration

The relative entropy D(P‖Q) behaves like the square of the
Euclidean distance.

Suppose we have a convex set E in Rn.

Let:

A be a point outside the set;
B be the point in the set closest to A;
C be any other point in the set.

The angle between the lines BA and BC must be obtuse.

This implies that
ℓ2AC ≥ ℓ2AB + ℓ2BC .
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The L1 Norm

Definition

The L1 distance between any two distributions is defined as

‖P1 − P2‖1 =
∑

a∈X
|P1(a)− P2(a)|.

Let A be the set on which P1(x) > P2(x). Then

‖P1 − P2‖1 =
∑

x∈X |P1(x)− P2(x)|
=

∑
x∈A(P1(x)− P2(x)) +

∑
x∈Ac (P2(x)− P1(x))

= P1(A)− P2(A) + P2(A
c)− P1(A

c)

= P1(A)− P2(A) + 1− P2(A)− 1 + P1(A)

= 2(P1(A)− P2(A)).
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The Variational Distance

Let, again, P1, P2 be distributions.

The variational distance between P1 and P2 is defined by

max
B⊆X

(P1(B)− P2(B)).

We have

maxB⊆X (P1(B)− P2(B)) = P1(A)− P2(A)

=
‖P1 − P2‖1

2
.
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Convergence in Relative Entropy and in L1 Norm

Lemma

We have

D(P1‖P2) ≥
1

2 ln 2
‖P1 − P2‖21.

We first prove it for the binary case.

Consider two binary distributions with parameters p and q, p ≥ q.

We show

p log
p

q
+ (1− p) log

1− p

1− q
≥ 4

2 ln 2
(p − q)2.

The difference g(p, q) between the two sides is

g(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
− 4

2 ln 2
(p − q)2.
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Convergence in Relative Entropy and in L1 Norm (Cont’d)

We defined g(p, q) = p log p
q
+ (1− p) log 1−p

1−q
− 4

2 ln 2(p − q)2.

Then

dg(p, q)

dq
= − p

q ln 2
+

1− p

(1− q) ln 2
− 4

2 ln 2
2(q − p)

=
q − p

q(1− q) ln 2
− 4

ln 2
(q − p)

≤ 0.

(
q(1− q) ≤ 1

4
, q ≤ p

)

For q = p, g(p, q) = 0.

Hence, for q ≤ p, g(p, q) ≥ 0.

This proves the lemma for the binary case.
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Convergence in Relative Entropy and in L1 Norm (Cont’d)

For the general case, for any two distributions P1 and P2, let

A = {x : P1(x) > P2(x)}.

Define a binary random variable Y = φ(X ), the indicator of A.

Let P̂1 and P̂2 be the distributions of Y .

Thus, P̂1, P̂2 correspond to the quantized versions of P1, P2.

By the Data-Processing Inequality applied to relative entropies (which
is proved in the same way as the Data-Processing Inequality for
mutual information), we have

D(P1‖P2) ≥ D(P̂1‖P̂2)

≥ 4
2 ln 2(P1(A)− P2(A))

2

= 1
2 ln 2‖P1 − P2‖21.
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Outline of Proof of Conditional Limit Theorem

The essential idea is that the probability of a type under Q depends
exponentially on the distance of the type from Q.

Hence types that are farther away are exponentially less likely to
occur.

We divide the set of types in E into two categories.

Those at about the same distance from Q as P∗;
Those a distance 2δ farther away.

The second set has exponentially less probability than the first.

Hence, the first set has a conditional probability tending to 1.

We then use the Pythagorean theorem to establish that all the
elements in the first set are close to P∗, which will establish the
theorem.
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Conditional Limit Theorem

Theorem (Conditional Limit Theorem)

Let E be a closed convex subset of P and let Q be a distribution not in E .
Let X1,X2, . . . ,Xn be discrete random variables drawn i.i.d. ∼ Q. Let P∗

achieve minP∈E D(P‖Q). Then

Pr(X1 = a|PX n ∈ E ) → P∗(a) in probability as n → ∞,

i.e., the conditional distribution of X1, given that the type of the sequence
is in E , is close to P∗ for large n.
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Example of Conditional Limit Theorem

Suppose Xi i.i.d. ∼ Q.

Let P∗(a) minimize D(P‖Q), over P satisfying
∑

P(a)a2 ≥ α.

Then

Pr

{
X1 = a :

1

n

∑
X 2
i ≥ α

}
→ P∗(a).

This minimization results in

P∗(a) = Q(a)
eλa

2

∑
aQ(a)eλa2

,

where λ is chosen to satisfy
∑

P∗(a)a2 = α.

Thus, the conditional distribution on X1 given a constraint on the
sum of the squares is a (normalized) product of the original
probability mass function and the maximum entropy probability mass
function (which in this case is Gaussian).
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Proof of the Conditional Limit Theorem

Define the sets
St = {P ∈ P : D(P‖Q) ≤ t}.

The set St is convex, since D(P‖Q) is a convex function of P .

Let
D∗ = D(P∗‖Q) = min

P∈E
D(P‖Q).

Then P∗ is unique, since D(P‖Q) is strictly convex in P .

Now define the sets:

A = SD∗+2δ ∩ E ;
B = E − (SD∗+2δ ∩ E ).

Thus, A ∪ B = E .

George Voutsadakis (LSSU) Information Theory February 2024 68 / 130



Information Theory and Statistics Conditional Limit Theorem

Proof of the Conditional Limit Theorem (Cont’d)

Then we have

Qn(B) =
∑

P∈E∩Pn:D(P‖Q)>D∗+2δ Q
n(T (P))

≤ ∑
P∈E∩Pn:D(P‖Q)>D∗+2δ 2

−nD(P‖Q)

≤ ∑
P∈E∩Pn:D(P‖Q)>D∗+2δ 2

−n(D∗+2δ)

≤ (n + 1)|X |2−n(D∗+2δ).
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Proof of the Conditional Limit Theorem (Cont’d)

We also have

Qn(A) ≥ Qn(SD∗+δ ∩ E )

=
∑

P∈E∩Pn:D(P‖Q)≤D∗+δ Q
n(T (P))

≥ ∑
P∈E∩Pn:D(P‖Q)≤D∗+δ

1
(n+1)|X| 2

−nD(P‖Q)

≥ 1
(n+1)|X| 2

−n(D∗+δ), for n sufficiently large,

since the sum is greater than one of the terms, and for sufficiently
large n, there exists at least one type in SD∗+δ ∩ E ∩ Pn.

George Voutsadakis (LSSU) Information Theory February 2024 70 / 130



Information Theory and Statistics Conditional Limit Theorem

Proof of the Conditional Limit Theorem (Cont’d)

Then, for n sufficiently large,

Pr(PX n ∈ B |PX n ∈ E ) =
Qn(B ∩ E )

Qn(E )

≤ Qn(B)

Qn(A)

≤ (n + 1)|X |2−n(D∗+2δ)

1
(n+1)|X| 2

−n(D∗+δ)

= (n + 1)2|X |2−nδ

n → ∞→ 0.

Hence, the conditional probability of B goes to 0 as n → ∞.

So the conditional probability of A goes to 1.
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Proof of the Conditional Limit Theorem (Cont’d)

We show that all members of A are close to P∗ in relative entropy.

For all members of A, D(P‖Q) ≤ D∗ + 2δ.

Hence by the “Pythagorean” Theorem,

D(P‖P∗) + D(P∗‖Q) ≤ D(P‖Q) ≤ D∗ + 2δ.

Since D(P∗‖Q) = D∗,

D(P‖P∗) ≤ 2δ.

We know that Px ∈ A implies that D(Px‖Q) ≤ D∗ + 2δ.

By what was just shown, D(Px‖P∗) ≤ 2δ.
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Proof of the Conditional Limit Theorem (Conclusion)

Since Pr{PX n ∈ A|PX n ∈ E} → 1, it follows that, as n → ∞,

Pr(D(PX n‖P∗) ≤ 2δ|PX n ∈ E ) → 1.

By a previous lemma, the fact that the relative entropy is small
implies that the L1 distance is small.

This, in turn, implies that

max
a∈X

|PX n(a)− P∗(a)|

is small.

Thus, as n → ∞,

Pr(|PX n(a)− P∗(a)| ≥ ǫ|PX n ∈ E ) → 0.

Alternatively, this can be written as Pr(X1 = a|PX n ∈ E ) → P∗(a) in
probability, a ∈ X .
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A Strengthening of the Theorem

In this theorem we have only proved that the marginal distribution
goes to P∗ as n → ∞.

Using a similar argument, we can prove the stronger statement

Pr(X1 = a1,X2 = a2, . . . ,Xm = am|PX n ∈ E ) →
m∏

i=1

P∗(ai)

in probability.

This holds for fixed m as n → ∞.

The result is not true for m = n, since there are end effects.

Given that the type of the sequence is in E , the last elements of the
sequence can be determined from the remaining elements, and the
elements are no longer independent.

The Conditional Limit Theorem states that the first few elements are
asymptotically independent with common distribution P∗.
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Example

Consider the case when n fair dice are rolled.

Suppose that the sum of the outcomes exceeds 4n.

By the Conditional Limit Theorem, the probability that the first die
shows a number a ∈ {1, 2, . . . , 6} is approximately P∗(a), where
P∗(a) is the distribution in E that is closest to the uniform
distribution, where E = {P :

∑
P(a)a ≥ 4}.

This is the maximum entropy distribution given by

P∗(x) =
2λx

∑6
i=1 2

λi
,

with λ chosen so that
∑

iP∗(i) = 4.

Here P∗ is the conditional distribution on the first (or any other) die.

Apparently, the first few dice inspected will behave as if they are
drawn independently according to an exponential distribution.
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Subsection 7

Hypothesis Testing
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The Hypothesis Testing Problem

The hypothesis testing problem in statistics is to decide between
two alternative explanations for the data observed.

In the simplest case, we have to decide between two i.i.d.
distributions.

Problem

Let X1,X2, . . . ,Xn be i.i.d. ∼ Q(x). We consider two hypotheses:

H1: Q = P1.

H2: Q = P2.
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The Setup

Consider the general decision function g(x1, x2, . . . , xn), where:

g(x1, x2, . . . , xn) = 1 means that H1 is accepted;
g(x1, x2, . . . , xn) = 2 means that H2 is accepted.

Since the function takes on only two values, the test can also be
specified by specifying the set A over which g(x1, x2, . . . , xn) is 1.

The complement of A is the set where g(x1, x2, . . . , xn) = 2.

We define the two probabilities of error.

α = Pr(g(X1,X2, . . . ,Xn) = 2|H1 true) = Pn
1 (A

c);

β = Pr(g(X1,X2, . . . ,Xn) = 1|H2 true) = Pn
2 (A).

We wish to minimize both probabilities, but there is a tradeoff.

Thus, we minimize one of the probabilities of error subject to a
constraint on the other probability of error.
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Neyman-Pearson Lemma for Optimum Test

Theorem (Neyman-Pearson Lemma)

Let X1,X2, . . . ,Xn be drawn i.i.d. according to probability mass function
Q. Consider the decision problem corresponding to hypotheses Q = P1 vs.
Q = P2. For T ≥ 0, define a region

An(T ) =

{
xn :

P1(x1, x2, . . . , xn)

P2(x1, x2, . . . , xn)
> T

}
.

Let
α∗ = Pn

1 (A
c
n(T )), β∗ = Pn

2 (An(T ))

be the corresponding probabilities of error corresponding to decision region
An. Let Bn be any other decision region with associated probabilities of
error α and β. If α ≤ α∗, then β ≥ β∗.
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Proof of the Neyman-Pearson Lemma

Let A = An(T ) be the region defined in the statement.

Let B ⊆ X n be any other acceptance region.

Let φA and φB be the indicator functions of A and B , respectively.

Claim: For all x = (x1, x2, . . . , xn) ∈ X n,

(φA(x)− φB(x))(P1(x)− TP2(x)) ≥ 0.

Suppose, first, that x ∈ A.
Then we have:

If x ∈ B, then (φA(x)− φB (x))(P1(x)− TP2(x)) = 0.
If x 6∈ B, then (φA(x)− φB (x))(P1(x)− TP2(x)) =
P1(x)− TP2(x) ≥ 0.

Suppose, next, that x 6∈ A.
Then we have:

If x 6∈ B, then (φA(x)− φB (x))(P1(x)− TP2(x)) = 0.
If x ∈ B, then (φA(x)− φB (x))(P1(x)− TP2(x)) =
− (P1(x)− TP2(x)) ≥ 0.
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Proof of the Neyman-Pearson Lemma (Cont’d)

We showed that

(φA(x)− φB(x))(P1(x)− TP2(x)) ≥ 0.

Multiplying out and summing this over the entire space, we obtain

0 ≤ ∑
(φAP1 − TφAP2 − P1φB + TP2φB)

=
∑

A(P1 − TP2)−
∑

B(P1 − TP2)

= (1− α∗)− Tβ∗ − (1− α) + Tβ

= T (β − β∗)− (α∗ − α).

Since T ≥ 0, we have proved the theorem.
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Likelihood Ratio Test

The Neyman-Pearson Lemma indicates that the optimum test for two
hypotheses is of the form

P1(X1,X2, . . . ,Xn)

P2(X1,X2, . . . ,Xn)
> T .

This is the likelihood ratio test.

The ratio is called the likelihood ratio.
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Example

Suppose we want to test between two Gaussian distributions,

f1 = N (1, σ2);
f2 = N (−1, σ2).

The likelihood ratio becomes

f1(X1,X2, . . . ,Xn)

f2(X1,X2, . . . ,Xn)
=

∏n
i=1

1√
2πσ2

e
− (Xi−1)2

2σ2

∏n
i=1

1√
2πσ2

e
− (Xi+1)2

2σ2

= e
+

2
∑n

i=1 Xi

σ2

= e
+ 2nXn

σ2 .

Hence, the likelihood ratio test consists of comparing the sample
mean X n with a threshold.

If we want the two probabilities of error to be equal, we set T = 1.
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Log-Likelihood Ratio Test in terms of Distances

We can rewrite the log-likelihood ratio as

L(X1,X2, . . . ,Xn) = log P1(X1,X2,...,Xn)
P2(X1,X2,...,Xn)

=
∑n

i=1 log
P1(Xi )
P2(Xi )

=
∑

a∈X nPX n(a) log P1(a)
P2(a)

=
∑

a∈X nPX n(a) log P1(a)
P2(a)

PXn (a)
PXn (a)

=
∑

a∈X nPX n(a) log PXn (a)
P2(a)

−∑a∈X nPX n(a) log PXn (a)
P1(a)

= nD(PX n‖P2)− nD(PX n‖P1).

Hence, the likelihood ratio test is equivalent to

D(PX n‖P2)− D(PX n‖P1) >
1

n
logT .

George Voutsadakis (LSSU) Information Theory February 2024 84 / 130



Information Theory and Statistics Hypothesis Testing

Informal Argument for Choosing Threshold

We offer some informal arguments based on Sanov’s Theorem to show
how to choose the threshold to obtain different probabilities of error.

Let B denote the set on which hypothesis 1 is accepted.

The probability of error of the first kind is αn = Pn
1 (PX n ∈ Bc).

The set Bc is convex.

By Sanov’s Theorem, the probability of error is determined essentially
by the relative entropy of the closest member of Bc to P1.

Therefore,
αn

.
= 2−nD(P∗

1 ‖P1),

where P∗
1 is the closest element of Bc to distribution P1.

Similarly,
βn

.
= 2−nD(P∗

2 ‖P2),

where P∗
2 is the closest element in B to the distribution P2.
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Informal Argument for Choosing Threshold (Cont’d)

To obtain the type in B that is closest to P2, we minimize D(P‖P2)
subject to the constraint D(P‖P2)− D(P‖P1) ≥ 1

n
logT .

Setting up the minimization using Lagrange multipliers, we have

J(P) =
∑

P(x) log
P(x)

P2(x)
+ λ

∑
P(x) log

P1(x)

P2(x)
+ ν

∑
P(x).

Differentiating with respect to P(x) and setting to 0, we have

log
P(x)

P2(x)
+ 1 + λ log

P1(x)

P2(x)
+ ν = 0.

Solving this set of equations, we obtain the minimizing P

P∗
2 = Pλ∗ =

Pλ
1 (x)P

1−λ
2 (x)

∑
a∈X Pλ

1 (a)P
1−λ
2 (a)

,

where λ is chosen so that D(Pλ∗‖P1)−D(Pλ∗‖P2) =
1
n
logT .
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Informal Argument for Choosing Threshold (Conclusion)

From the symmetry of the expression giving P∗
2 :

P∗
1 = P∗

2 ;
The probabilities of error behave exponentially with exponents given by
the relative entropies D(P∗‖P1) and D(P∗‖P2).

Moreover, we get:

Pλ

λ→1−→ P1;

Pλ

λ→0−→ P2.

The curve that Pλ traces out as λ
varies is a geodesic in the simplex.

Pλ is a normalized convex combination,
where the combination is in the
exponent.

George Voutsadakis (LSSU) Information Theory February 2024 87 / 130



Information Theory and Statistics Chernoff-Stein Lemma

Subsection 8

Chernoff-Stein Lemma
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AEP for Relative Entropy

Theorem (AEP for Relative Entropy)

Let X1,X2, . . . ,Xn be a sequence of random variables drawn i.i.d.
according to P1(x), and let P2(x) be any other distribution on X . Then

1

n
log

P1(X1,X2, . . . ,Xn)

P2(X1,X2, . . . ,Xn)
→ D(P1‖P2) in probability.

We apply the Weak Law of Large Numbers.

1
n
log P1(X1,X2,...,Xn)

P2(X1,X2,...,Xn)
= 1

n
log

∏n
i=1 P1(Xi )∏n
i=1 P2(Xi )

= 1
n

∑n
i=1 log

P1(Xi )
P2(Xi )

→ EP1 log
P1(X )
P2(X ) in probability

= D(P1‖P2).
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Relative Entropy Typical Sets

Definition

For a fixed n and ǫ > 0, a sequence (x1, x2, . . . , xn) ∈ X n is said to be
relative entropy typical if and only if

D(P1‖P2)− ǫ ≤ 1

n
log

P1(x1, x2, . . . , xn)

P2(x1, x2, . . . , xn)
≤ D(P1‖P2) + ǫ.

The set of relative entropy typical sequences is called the relative

entropy typical set A
(n)
ǫ (P1‖P2).
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Properties of Relative Entropy Typical Sets

Theorem

1. For (x1, x2, . . . , xn) ∈ A
(n)
ǫ (P1‖P2),

P1(x1, x2, . . . , xn)2
−n(D(P1‖P2)+ǫ) ≤ P2(x1, x2, . . . , xn)

≤ P1(x1, x2, . . . , xn)2
−n(D(P1‖P2)−ǫ).

2. P1(A
(n)
ǫ (P1‖P2)) > 1− ǫ, for n sufficiently large.

3. P2(A
(n)
ǫ (P1‖P2)) < 2−n(D(P1‖P2)−ǫ).

4. P2(A
(n)
ǫ (P1‖P2)) > (1− ǫ)2−n(D(P1‖P2)+ǫ), for n sufficiently large.

1. Property 1 follows directly from the definition of the relative entropy
typical set.

2. Property 2 follows from the preceding theorem.
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Property 3

3. Write

P2(A
(n)
ǫ (P1‖P2))

=
∑

xn∈A(n)
ǫ (P1‖P2)

P2(x1, x2, . . . , xn)

≤∑
xn∈A(n)

ǫ (P1‖P2)
P1(x1, x2, . . . , xn)2

−n(D(P1‖P2)−ǫ)

(by Property 1)

= 2−n(D(P1‖P2)−ǫ)
∑

xn∈A(n)
ǫ (P1‖P2)

P1(x1, x2, . . . , xn)

= 2−n(D(P1‖P2)−ǫ)P1(A
(n)
ǫ (P1‖P2))

≤ 2−n(D(P1‖P2)−ǫ).

(the probability of any set under P1 is less than 1)
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Property 4

4. To prove the lower bound on the probability of the relative entropy
typical set, we use a parallel argument with a lower bound on the
probability.

P2(A
(n)
ǫ (P1‖P2))

=
∑

xn∈A(n)
ǫ (P1‖P2)

P2(x1, x2, . . . , xn)

≥∑
xn∈A(n)

ǫ (P1‖P2)
P1(x1, x2, . . . , xn)2

−n(D(P1‖P2)+ǫ)

= 2−n(D(P1‖P2)+ǫ)
∑

xn∈A(n)
ǫ (P1‖P2)

P1(x1, x2, . . . , xn)

= 2−n(D(P1‖P2)+ǫ)P1(A
(n)
ǫ (P1‖P2))

≥ (1− ǫ)2−n(D(P1‖P2)+ǫ).

(by Property 2 of A
(n)
ǫ (P1‖P2))
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Sets of High Probability and Typical Sets

Lemma

Let Bn ⊆ X n be any set of sequences x1, x2, . . . , xn, such that
P1(Bn) > 1− ǫ. Let P2 be any other distribution such that
D(P1‖P2) <∞. Then P2(Bn) > (1− 2ǫ)2−n(D(P1‖P2)+ǫ).

For simplicity, we will denote A
(n)
ǫ (P1‖P2) by An.

By the preceding theorem, P(An) > 1− ǫ.

By hypothesis, P1(Bn) > 1− ǫ.

By the union bound, P1(A
c
n ∪ Bc

n ) < 2ǫ.

Equivalently, P1(An ∩ Bn) > 1− 2ǫ.
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Sets of High Probability and Typical Sets

Now we calculate

P2(Bn) ≥ P2(An ∩ Bn)

=
∑

xn∈An∩Bn
P2(x

n)

≥ ∑
xn∈An∩Bn

P1(x
n)2−n(D(P1‖P2)+ǫ)

(properties of typical sequences)

= 2−n(D(P1‖P2)+ǫ)
∑

xn∈An∩Bn
P1(x

n)

= 2−n(D(P1‖P2)+ǫ)P1(An ∩ Bn)

≥ 2−n(D(P1‖P2)+ǫ)(1− 2ǫ).
(by the union bound)
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The Chernoff-Stein Lemma

We consider the problem of testing two hypotheses, P1 vs. P2.

We hold one of the probabilities of error fixed.

We attempt to minimize the other probability of error.

The relative entropy is the best exponent in probability of error.

Theorem (Chernoff-Stein Lemma)

Let X1,X2, . . . ,Xn be i.i.d. ∼ Q. Consider the hypothesis test between two
alternatives, Q = P1 and Q = P2, where D(P1‖P2) <∞. Let An ⊆ X n be
an acceptance region for hypothesis H1. Let the probabilities of error be
αn = Pn

1 (A
c
n), βn = Pn

2 (An). For 0 < ǫ < 1
2 , define β

ǫ
n = min

An⊆X n

αn<ǫ

βn. Then

lim
n→∞

1

n
log βǫn = −D(P1‖P2).
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Proof of the Chernoff-Stein Lemma

We prove this theorem in two parts.

In the first part, we exhibit a sequence of sets An for which the
probability of error βn goes exponentially to zero as D(P1‖P2).
In the second part, we show that no other sequence of sets can have a
lower exponent in the probability of error.

For the first part, we choose as the sets An = A
(n)
ǫ (P1‖P2).

By the preceding theorem, P1(A
c
n) < ǫ for n large enough.

By Property 3 of Relative Entropy Typical Sets,

lim
n→∞

1

n
logP2(An) ≤ −(D(P1‖P2)− ǫ).

Thus, the relative entropy typical set satisfies the bounds of the
lemma.
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Proof of the Chernoff-Stein Lemma (Cont’d)

To show that no other sequence of sets can do better, consider any
sequence of sets Bn with P1(Bn) > 1− ǫ.

By the preceding lemma, P2(Bn) > (1− 2ǫ)2−n(D(P1‖P2)+ǫ).

Therefore

limn→∞ 1
n
logP2(Bn)

> −(D(P1‖P2) + ǫ) + limn→∞
1
n
log (1− 2ǫ)

= − (D(P1‖P2) + ǫ).

Thus, no other sequence of sets has a probability of error exponent

better than D(P1‖P2). Thus, the set sequence An = A
(n)
ǫ (P1‖P2) is

asymptotically optimal in terms of the exponent in the probability.

Note: The relative entropy typical set is asymptotically optimal, but is
not the optimal set for any fixed hypothesis testing problem.

The optimal set that minimizes the probabilities of error is that given
by the Neyman-Pearson lemma.
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Subsection 9

Chernoff Information
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The Setup

Instead of treating the two probabilities of error separately, as in the
Chernoff-Stein Lemma, we can follow a Bayesian approach, in which
we assign prior probabilities to both hypotheses.

In this case we wish to minimize the overall probability of error given
by the weighted sum of the individual probabilities of error.

The resulting error exponent is the Chernoff information.

Let X1,X2, . . . ,Xn be i.i.d. ∼ Q.

We have two hypotheses:

Q = P1 with prior probability π1;
Q = P2 with prior probability π2.

The overall probability of error is P
(n)
e = π1αn + π2βn.

Let

D∗ = lim
n→∞

(
−1

n
log min

An⊆X n
P
(n)
e

)
.
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Chernoff’s Theorem

Theorem (Chernoff)

The best achievable exponent in the Bayesian probability of error is D∗,
where

D∗ = D(Pλ∗‖P1) = D(Pλ∗‖P2),

with

Pλ =
Pλ
1 (x)P

1−λ
2 (x)

∑
a∈X Pλ

1 (a)P
1−λ
2 (a)

and λ∗ the value of λ such that

D(Pλ∗‖P1) = D(Pλ∗‖P2).
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Chernoff’s Theorem (Cont’d)

We have shown that the optimum test is a likelihood ratio test, which
can be considered to be of the form

D(PX n‖P2)− D(PX n‖P1) >
1

n
logT .

The test divides the probability simplex into regions corresponding to
Hypothesis 1 and Hypothesis 2, respectively.
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Chernoff’s Theorem (Cont’d)

Let A be the set of types associated with Hypothesis 1.

By previous work, the closest point in the set Ac to P1 is on the
boundary of A and is of the form given by

Pλ =
Pλ
1 (x)P

1−λ
2 (x)

∑
a∈X Pλ

1 (a)P
1−λ
2 (a)

.

From the discussion in the preceding section, Pλ is:

The distribution in A that is closest to P2;
The distribution in Ac that is closest to P1.

By Sanov’s Theorem, the associated probabilities of error are:

αn = Pn
1 (A

c)
.
= 2−nD(Pλ∗‖P1);

βn = Pn
2 (A)

.
= 2−nD(Pλ∗‖P2).

George Voutsadakis (LSSU) Information Theory February 2024 103 / 130



Information Theory and Statistics Chernoff Information

Chernoff’s Theorem (Cont’d)

In the Bayesian case, the overall probability of error is the weighted
sum of the two probabilities of error,

Pe
.
= π12

−nD(Pλ∗‖P1) + π22
−nD(Pλ∗‖P2)

.
= 2−nmin {D(Pλ∗‖P1),D(Pλ∗‖P2)},

since the exponential rate is determined by the worst exponent.

Now note that:

D(Pλ‖P1) increases with λ;
D(Pλ‖P2) decreases with λ.
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Chernoff’s Theorem (Conclusion)

D(Pλ‖P1) increases with λ and
D(Pλ‖P2) decreases with λ.

So the maximum value of the
minimum of

{D(Pλ‖P1),D(Pλ‖P2)}

is attained when they are equal.

Hence, we choose λ so that

D(Pλ‖P1) = D(Pλ‖P2).

This is the highest achievable exponent for the probability of error
and is called the Chernoff information.
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The Chernoff Information

The definition
D∗ = D(Pλ∗‖P1) = D(Pλ∗‖P2)

is equivalent to the standard definition of Chernoff information,

C (P1,P2) := − min
0≤λ≤1

log

(
∑

x

Pλ
1 (x)P

1−λ
2 (x)

)
.
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Sketching the Derivation of the Chernoff Bound

The maximum a posteriori probability decision rule minimizes the
Bayesian probability of error.

The decision region A for hypothesis H1 for this rule is

A =

{
x :

π1P1(x)

π2P2(x)
> 1

}
.

It comprises the set of outcomes where the a posteriori probability of
H1 is greater than that of H2.

The probability of error for this rule is

Pe = π1αn + π2βn

=
∑

Ac π1P1 +
∑

A π2P2

=
∑

min {π1P1, π2P2}.
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Derivation of the Chernoff Bound (Cont’d)

For any a, b > 0, we have, for all 0 ≤ λ ≤ 1,

min {a, b} ≤ aλb1−λ.

Using this to continue the chain, we have

Pe =
∑

min {π1P1, π2P2}
≤ ∑

(π1P1)
λ(π2P2)

1−λ

≤ ∑
Pλ
1 P

1−λ
2 .
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Derivation of the Chernoff Bound (Cont’d)

For a sequence of i.i.d. observations, Pk(x) =
∏n

i=1 Pk(xi ), and

P
(n)
e ≤ ∑

πλ1π
1−λ
2

∏
i P

λ
1 (xi )P

1−λ
2 (xi )

= πλ1π
1−λ
2

∏
i

∑
Pλ
1 (xi )P

1−λ
2 (xi )

≤ ∏
xi

∑
Pλ
1 P

1−λ
2

(π1 ≤ 1, π2 ≤ 1)

= (
∑

x P
λ
1 P

1−λ
2 )n.

Hence, we have

1

n
logP

(n)
e ≤ log

∑
Pλ
1 (x)P

1−λ
2 (x).

Since this is true for all λ, we can take the minimum over 0 ≤ λ ≤ 1,
resulting in the Chernoff information bound.

This also proves that the exponent is no better than C (P1,P2).

Achievability of the bound follows by Chernoff’s Theorem.
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Remarks on the Error Exponent

The Bayesian error exponent does not depend on the actual value of
π1 and π2, as long as they are nonzero.

The optimum decision rule is to choose the hypothesis with the
maximum a posteriori probability, which corresponds to the test

π1P1(X1,X2, . . . ,Xn)

π2P2(X1,X2, . . . ,Xn)
≷ 1.

Taking the log and dividing by n, this test can be rewritten as

1

n
log

π1

π2
+

1

n

∑

i

log
P1(Xi )

P2(Xi )
≷ 0,

where the second term tends to D(P1‖P2) or −D(P2‖P1) accordingly
as P1 or P2 is the true distribution.

As the first term tends to 0, the effect of the priors washes out.
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Example

Assume the following data:

Major league baseball players have a batting average of 260 with a
standard deviation of 15;
Minor league ballplayers have a batting average of 240 with a standard
deviation of 15.

A group of 100 ballplayers from one of the leagues, chosen at
random, are found to have a group batting average greater than 250.

They are, therefore, judged to be major leaguers.

We are now told that we are mistaken; they are minor leaguers.

What conclusion can be drawn about the distribution of batting
averages among these 100 players?

The Conditional Limit Theorem can be used to show that the
distribution of batting averages among these players will have a mean
of 250 and a standard deviation of 15.
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Abstracting from the Example

Consider an example of testing between two Gaussian distributions,
f1 = N (1, σ2) and f2 = N (−1, σ2), with different means and the
same variance.

We saw that the likelihood ratio test in this case is equivalent to
comparing the sample mean with a threshold.

The Bayes test is

“Accept the hypothesis f = f1 if 1
n

∑n
i=1 Xi > 0”.

Now assume that we make an error of the first kind (we say that
f = f1 when indeed f = f2) in this test.

What is the conditional distribution of the samples given that we have
made an error?
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The Conditional Distribution

Suppose the true distribution is f2 and the sample type is in the set A.

Let f ∗ denote the distribution in A closest to f2.

The conditional distribution is close to f ∗.

By symmetry, this corresponds to λ = 1
2 in

Pλ =
Pλ
1 (x)P

1−λ
2 (x)

∑
a∈X Pλ

1 (a)P
1−λ
2 (a)

.
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The Conditional Distribution (Cont’d)

Calculating the distribution, we get

f ∗(x) =



 1√
2πσ2

e
−

(x−1)2

2σ2





1
2


 1√
2πσ2

e
−

(x+1)2

2σ2





1
2

∫ (
1√
2πσ2

e
−

(x−1)2

2σ2

) 1
2
(

1√
2πσ2

e
−

(x+1)2

2σ2

) 1
2

dx

=
1√
2πσ2

e
− x2+1

2σ2

∫
1√
2πσ2

e
− x2+1

2σ2 dx

= 1√
2πσ2

e
− x2

2σ2

= N (0, σ2).

So the conditional distribution is normal with mean 0 and with the
same variance as the original distributions.
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Markov’s Inequality

Theorem (Markov’s Inequality)

For any nonnegative random variable X and any t > 0, show that

Pr{X ≥ t} ≤ EX

t
.

We have
EX =

∫∞
0 xf (x)x

=
∫ t

0 xf (x)dx +
∫∞
t

xf (x)dx

≥
∫∞
t

xf (x)dx

≥ t
∫∞
t

f (x)dx

= tPr{X ≥ t}.

So Pr{X ≥ t} ≤ EX
t
.
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The Chernoff Bound

The Chernoff bound is a special version of Markov’s inequality.

Lemma (Chernoff Bound)

Let Y be any random variable and let ψ(s) be the moment generating
function of Y , ψ(s) = EesY . Then, for all s ≥ 0,

Pr(Y ≥ a) ≤ e−saψ(s).

Thus,
Pr(Y ≥ a) ≤ min

s≥0
e−saψ(s).

Apply Markov’s inequality to the nonnegative random variable esY .

Pr(Y ≥ a) = Pr(esY ≥ esa) ≤ E sY

esa
= ψ(s)e−sa.
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Subsection 10

Fisher Information and the Cramér-Rao Inequality
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The Problem of Parameter Estimation

A standard problem in statistical estimation is to determine the
parameters of a distribution from a sample of data drawn from that
distribution.

Example: Let X1,X2, . . . ,Xn be drawn i.i.d. ∼ N (θ, 1).

Suppose that we wish to estimate θ from a sample of size n.

We can use a number of functions of the data to estimate θ.

For example, we can use the first sample X1.

Although the expected value of X1 is θ, it is clear that we can do
better by using more of the data.

We guess that the best estimate of θ is the sample mean

X n =
1

n

∑
Xi .

Indeed, it can be shown that X n is the minimum mean-squared-error
unbiased estimator.
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Estimators

Let
{f (x ; θ)}, θ ∈ Θ,

denote an indexed family of densities.

f (x ; θ) ≥ 0;∫
f (x ; θ)dx = 1, for all θ ∈ Θ.

Θ is called the parameter set.

Definition

An estimator for θ for sample size n is a function T : X n → Θ.

Since an estimator is meant to approximate the value of the
parameter, we need to have some idea of the goodness of the
approximation.

We call the random variable T − θ the error of the estimator.
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Bias of an Estimator

Definition

The bias of an estimator T (X1,X2, . . . ,Xn) for the parameter θ is the
expected value of the error of the estimator, i.e., the bias is

EθT (x1, x2, . . . , xn)− θ.

Eθ is the expectation is with respect to the density f (·; θ).
The estimator is said to be unbiased if the bias is zero, for all θ ∈ Θ, i.e.,
the expected value of the estimator is equal to the parameter.
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Example

Let X1,X2, . . . ,Xn drawn i.i.d. according to

f (x) =
1

λ
e−x/λ ≥ 0

be a sequence of exponentially distributed random variables.

Estimators of λ include X1 and X n.

We have

EλX1 − λ =

∫ ∞

0
x1

1

λ
e−

x1
λ dx1 − λ = λ− λ = 0.

So X1 is an unbiased estimator.

Similarly,

EλX n − λ =
∫∞
0 · · ·

∫∞
0

1
n

∑n
i=1 xi

∏n
i=1

1
λe

− xi
λ dx1 · · · dxn − λ

= λ− λ = 0.

So X n is also an unbiased estimator.
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Consistency of an Estimator in Probability

The bias is the expected value of the error.

The fact that it is zero does not guarantee that the error is low with
high probability.

We need to look at some loss function of the error.

The most commonly chosen is the expected square of the error.

A good estimator should have:

A low expected squared error;
An error approaching 0 as the sample size goes to infinity.

Definition

An estimator T (X1,X2, . . . ,Xn) for θ is said to be consistent in

probability if

T (X1,X2, . . . ,Xn) → θ in probability as n → ∞.
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Domination

Consistency is a desirable asymptotic property.

But we are also interested in the behavior for small sample sizes.

We can then rank estimators on the basis of their mean-squared error.

Definition

An estimator T1(X1,X2, . . . ,Xn) is said to dominate another estimator
T2(X1,X2, . . . ,Xn) if, for all θ,

E (T1(X1,X2, . . . ,Xn)− θ)2 ≤ E (T2(X1,X2, . . . ,Xn)− θ)2.

We would like to discover whether there is a best estimator of θ, i.e.,
one that dominates every other estimator.

To answer this question, we derive the Cramér-Rao Lower Bound on
the mean-squared error of any estimator.

George Voutsadakis (LSSU) Information Theory February 2024 123 / 130



Information Theory and Statistics Fisher Information and the Cramér-Rao Inequality

The Score of a Distribution

Definition

The score V is a random variable defined by

V =
∂

∂θ
ln f (X ; θ) =

∂
∂θ f (X ; θ)

f (X ; θ)
,

where X ∼ f (x ; θ).

The mean value of the score is

EV =
∫ ∂

∂θ
f (x ;θ)

f (x ;θ) f (x ; θ)dx

=
∫

∂
∂θ f (x ; θ)dx

= ∂
∂θ

∫
f (x ; θ)dx

= ∂
∂θ1 = 0.

Therefore, EV 2 = var(V ) is the variance of the score.
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The Fisher Information

Definition

The Fisher information J(θ) is the variance of the score:

J(θ) = Eθ

[
∂

∂θ
ln f (X ; θ)

]2
.

Consider n random variables X1,X2, . . . ,Xn drawn i.i.d. ∼ f (x ; θ).

We have f (x1, x2, . . . , xn; θ) =
∏n

i=1 f (xi ; θ).

The score function is the sum of the individual score functions,

V (X1,X2, . . . ,Xn) = ∂
∂θ ln f (X1,X2, . . . ,Xn; θ)

=
∑n

i=1
∂
∂θ ln f (Xi ; θ)

=
∑n

i=1 V (Xi).

The V (Xi) are independent, identically distributed with zero mean.
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The n-Sample Fisher Information

We found V (X1,X2, . . . ,Xn) =
∑n

i=1 V (Xi).

Hence, the n-sample Fisher information is

Jn(θ) = Eθ

[
∂
∂θ ln f (X1,X2, . . . ,Xn; θ)

]2

= EθV
2(X1,X2, . . . ,Xn)

= Eθ (
∑n

i=1 V (Xi))
2

=
∑n

i=1 EθV
2(Xi )

= nJ(θ).

Consequently, the Fisher information for n i.i.d. samples is n times
the individual Fisher information.
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The Cramér-Rao Inequality

Theorem (Cramér-Rao Inequality)

The mean-squared error of any unbiased estimator T (X ) of the parameter
θ is lower bounded by the reciprocal of the Fisher information:

var(T ) ≥ 1

J(θ)
.

Let V be the score function and T the estimator.

By the Cauchy-Schwarz inequality,

(Eθ[(V − EθV )(T − EθT )])2 ≤ Eθ(V − EθV )2Eθ(T − EθT )2.

Since T is unbiased, EθT = θ, for all θ.

We also know that EθV = 0. Hence

Eθ(V − EθV )(T − EθT ) = Eθ((V − 0)(T − θ))

= Eθ(VT )− θEθV = Eθ(VT ).
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The Cramér-Rao Inequality (Cont’d)

By definition, var(V ) = J(θ).

Substituting these conditions in, we have

[Eθ(VT )]2 ≤ J(θ)var(T ).

Now we obtain

Eθ(VT ) =
∫ ∂

∂θ
f (x ;θ)

f (x ;θ) T (x)f (x ; θ)dx

=
∫

∂
∂θ f (x ; θ)T (x)dx

= ∂
∂θ

∫
f (x ; θ)T (x)dx

(Bounded Convergence Theorem for nice f (x ; θ))

= ∂
∂θEθT

= ∂
∂θθ = 1.

So we get 1 ≤ J(θ)var(T ), i.e., var(T ) ≥ 1
J(θ) .
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Example

Let X1,X2, . . . ,Xn be i.i.d. ∼ N (θ, σ2), σ2 known.

We have

J(θ) = n

∫ ∞

−∞

(
x − θ

σ2

)2 1√
2πσ2

e
− (x−θ)2

2σ2 dx =
n

σ2
.

Let T (X1,X2, . . . ,Xn) = X n = 1
n

∑
Xi . Then

Eθ(X n − θ)2 =
σ2

n
=

1

J(θ)
.

Thus, X n is the minimum variance unbiased estimator of θ, since it
achieves the Cramér-Rao lower bound.
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Efficient Unbiased Estimators

The Cramér-Rao inequality gives us a lower bound on the variance for
all unbiased estimators.

When this bound is achieved, we call the estimator efficient.

Definition

An unbiased estimator T is said to be efficient if it meets the Cramér-Rao
bound with equality, i.e., if

var(T ) =
1

J(θ)
.

The Fisher information is therefore a measure of the amount of
“information” about θ that is present in the data.

It gives a lower bound on the error in estimating θ from the data.

It is possible that there is no estimator achieving the bound.
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