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Kolmogorov Complexity

Example

Consider the strings:

1. 0101010101010101010101010101010101010101010101010101010101010101

2. 0110101000001001111001100110011111110011101111001100100100001000

3. 1101111001110101111101101111101110101101111000101110010100111011

The first sequence consists of thirty-two 01’s.

The second sequence looks random and passes most tests for
randomness, but it is in fact the initial segment of the binary
expansion of

√
2− 1.

The third again looks random, except that the proportion of 1’s is not
near 1

2 . We assume that it is otherwise random.

George Voutsadakis (LSSU) Information Theory February 2024 3 / 83



Kolmogorov Complexity

Example: Comparing Complexities

One can give a description of the sequence in roughly

log n+ nH

(
k

n

)

bits by:

Describing the number k of 1’s in the sequence;
Then giving the index of the sequence in a lexicographic ordering of
those with this number of 1’s.

This is substantially fewer than the n bits in the sequence.

We conclude that the sequence, random though it is, is simple.

However, it is not as simple as the other two sequences, which have
constant-length descriptions.

Its complexity is proportional to n.
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Kolmogorov Complexity

Example: Random Sequences

Finally, we can imagine a truly random sequence generated by pure
coin flips.

There are 2n such sequences and they are all equally probable.

It is highly likely that such a random sequence cannot be compressed.

This is tantamount to saying that there is no better description for
such a sequence than simply saying

“Print the following: 0101100111010. . .0”.

The reason for this is that there are not enough short programs to go
around.

Thus, the descriptive complexity of a truly random binary sequence is
as long as the sequence itself.
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Kolmogorov Complexity Models of Computation

Subsection 1

Models of Computation
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Kolmogorov Complexity Models of Computation

The Turing Machine Model of Computation

We model computation using the Turing machine model.

At each step of the computation, the computer:

Reads a symbol from the input tape;
Changes state according to its state transition table;
Possibly writes something on the work tape or output tape;
Moves the program read head to the next cell of the program read tape.

This machine reads the program from right to left only, never going
back, and therefore the programs form a prefix-free set.
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Kolmogorov Complexity Models of Computation

Partial Recursive Functions

We can view the Turing machine as a map from a set of finite length
binary strings to the set of finite or infinite length binary strings.

In some cases, the computation does not halt, and in such cases the
value of the function is said to be undefined.

The set of functions f : {0, 1}∗ → {0, 1}∗ ∪ {0, 1}∞ computable by
Turing machines is called the set of partial recursive functions.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Subsection 2

Kolmogorov Complexity: Definitions and Examples
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Kolmogorov Complexity

Let x be a binary string of finite length ℓ(x).

Let U be a universal computer.

Let U(p) be the output of U when the input is a program p.

We define the Kolmogorov (or algorithmic) complexity of a string x

as the minimal description length of x .

Definition

The Kolmogorov complexity KU (x) of a string x , with respect to a
universal computer U , is defined as

KU (x) = min
p:U(p)=x

ℓ(p),

the minimum length over all programs that print x and halt.
Thus, KU (x) is the shortest description length of x over all descriptions
interpreted by computer U .

George Voutsadakis (LSSU) Information Theory February 2024 10 / 83



Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Conditional Kolmogorov Complexity

If we assume that the computer already knows the length of x , we
can define the conditional Kolmogorov complexity knowing ℓ(x) as

KU (x |ℓ(x)) = min
p:U(p,ℓ(x))=x

ℓ(p).

This is the shortest description length if the computer U has the
length of x made available to it.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Universality of Kolmogorov Complexity

Theorem (Universality of Kolmogorov Complexity)

If U is a universal computer, for any other computer A there exists a
constant cA, such that

KU (x) ≤ KA(x) + cA,

for all strings x ∈ {0, 1}∗, and the constant cA does not depend on x .

Assume a program pA for computer A prints x , i.e., A(pA) = x .

We can precede this program by a simulation program sA which tells
computer U how to simulate computer A.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Universality of Kolmogorov Complexity (Cont’d)

Computer U will:

Interpret the instructions in the program for A;
Perform the corresponding calculations and print out x .

The program for U is p = sApA.

Its length is
ℓ(p) = ℓ(sA) + ℓ(pA) = cA + ℓ(pA),

where cA is the length of the simulation program.

Hence, for all x ,

KU (x) = minp:U(p)=x ℓ(p)

≤ minp:A(p)=x (ℓ(p) + cA)

= KA(x) + cA.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Comments on the Universality Property

The constant cA in the theorem may be very large.

A may be a large computer with many built-in functions;
U may be a simple microprocessor;
The simulation program will contain implementations of all software
available on the large computer.

The crucial point is that the length of this simulation program is
independent of the length of x , the string to be compressed.

For sufficiently long x , cA will be small in comparison.

In this sense Kolmogorov complexity may ignore the constants.

If A and U are both universal, we have

|KU (x)− KA(x)| < c , for all x .

Hence, we will assume the unspecified computer U is some fixed
universal computer.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Conditional Complexity and Length of the Sequence

Theorem (Conditional Complexity < Length of the Sequence)

K (x |ℓ(x)) ≤ ℓ(x) + c .

A program for printing x is

Print the following ℓ-bit sequence: x1x2 . . . xℓ(x).

Note that no bits are required to describe ℓ since ℓ is given.

The program is self-delimiting because ℓ(x) is provided and the end of
the program is thus clearly defined.

The length of this program is ℓ(x) + c .

George Voutsadakis (LSSU) Information Theory February 2024 15 / 83



Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Unknown Length

If the computer does not know ℓ(x), the method of the preceding
theorem does not apply.

We must have some way of informing the computer when it has come
to the end of the string of bits that describes the sequence.

A simple (inefficient) method uses a sequence 01 as a “comma”.

This will suffice to establish an upper bound.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Upper Bound on Kolmogorov Complexity

Theorem (Upper Bound on Kolmogorov Complexity)

K (x) ≤ K (x |ℓ(x)) + 2 log ℓ(x) + c .

Suppose that ℓ(x) = n.

To describe ℓ(x):

Repeat every bit of the binary expansion of n twice;
Then end with a 01 to signal the end of the description of n.

Example: The number 5 (binary 101) will be described as 11001101.

This description requires 2 log n + 2 bits.

Thus, inclusion of the binary representation of ℓ(x) does not add
more than 2 log ℓ(x) + c bits to the length of the program.

So we have the bound stated in the theorem.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

A More Efficient Method

A more efficient method for describing ℓ(x) = n uses recursion.
We specify the number log n of bits in the binary representation of n;
Then specify the actual bits of n.

To specify log n, we can use:
The inefficient method (length 2 log log n);
The efficient method (length log log n + · · · ).

If we use the efficient method at each level, we can describe n in

log n+ log log n + log log log n + · · · bits,

where we continue the sum until the last positive term.

This sum of iterated logarithms is sometimes written log∗ n.

Thus, the theorem can be improved to

K (x) ≤ K (x |ℓ(x)) + log∗ ℓ(x) + c .
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Lower Bound on Kolmogorov Complexity

Theorem (Lower Bound on Kolmogorov Complexity)

The number of strings x with complexity K (x) < k satisfies

|{x ∈ {0, 1}∗ : K (x) < k}| < 2k .

There are not very many short programs.

If we list all the programs of length < k , we have

Λ︸︷︷︸
1

, 0, 1︸︷︷︸
2

, 00, 01, 10, 11︸ ︷︷ ︸
4

, . . . , . . . ,

k−1︷ ︸︸ ︷
11 . . . 1︸ ︷︷ ︸
2k−1

.

The total number of such programs is

1 + 2 + 4 + · · · + 2k−1 = 2k − 1 < 2k .

Each program can produce only one possible output sequence.

So the number of sequences with complexity < k is less than 2k .
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Fixing Notation

To avoid confusion and to facilitate exposition in the rest of this
chapter, we shall need to introduce a special notation for the binary

entropy function

H0(p) = −p log p − (1− p) log (1− p).

Thus, when we write H0

(
1
n

∑n
i=1 Xi

)
, we will mean

−X n logX n − (1− X n) log (1− X n)

and not the entropy of random variable X n.

When there is no confusion, we shall simply write H(p) for H0(p).
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Setup for Presentation of Examples

We consider various examples of Kolmogorov complexity.

The complexity will depend on the computer, but only up to an
additive constant.

We consider a computer that can accept unambiguous commands in
English (with numbers given in binary notation).

Stirling’s Approximation Formula for the factorial is

√
2πn

(n
e

)n
≤ n! ≤

√
2πn

(n
e

)n
e

1
12n .

Using Stirling’s Formula, we obtain a formula we use later,

√
n

8k(n − k)
2nH(

k
n ) ≤

(
n

k

)
≤
√

n

πk(n − k)
2nH(

k
n ), k 6= 0, n.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Example: A Sequence of n Zeros

If we assume that the computer knows n, a short program to print

00 · · · 0︸ ︷︷ ︸
n zeros

is
Print the specified number of zeros.

The length of this program is a constant number of bits independent
of n.

Hence, the Kolmogorov complexity of this sequence is c

K (00 · · · 0︸ ︷︷ ︸
n zeros

|n) = c , for all n.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Example: Kolmogorov complexity of π

The first n bits of π can be calculated using a simple series expression.

This program has a small constant length if the computer already
knows n.

Hence,
K (π1π2 . . . πn|n) = c .
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Example: Repeating Sequence of the form 010101. . .01

A short program suffices.

Print the specified number of 01 pairs.

Hence,
K (0101 · · · 01︸ ︷︷ ︸

n pairs

|n) = c .
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Example: Fractal

A fractal is part of the Mandelbrot set and is generated by a simple
computer program.

For different points c in the complex plane, one calculates the number
of iterations of the map

zn+1 = z2n + c , (z0 = 0)

needed for |z | to cross a particular threshold.
The point c is then colored according to the number of iterations
needed.

Thus, the fractal is an example of an object that looks very complex
but is essentially very simple.

Its Kolmogorov complexity is essentially zero.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Example: Mona Lisa

We can make use of the many structures and dependencies in the
painting.

We can probably compress the image by a factor of 3 or so by using
some existing easily described image compression algorithm.

Hence, if n is the number of pixels in the image of the Mona Lisa,

K (Mona Lisa|n) ≤ n

3
+ c .
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Example: Integer n

If the computer knows the number of bits in the binary representation
of the integer, we need only provide the values of these bits.

This program will have length c + log n.

In general, the computer will not know the length of the binary
representation of the integer.

So we must inform the computer in some way when the description
ends.

Using the method to describe integers used previously, we see that
the Kolmogorov complexity of an integer is bounded by

K (n) ≤ log∗ n + c .
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Example: Sequence of n Bits With k Ones

Theorem

The Kolmogorov complexity of a binary string x is bounded by

K (x1x2 . . . xn|n) ≤ nH0

(
1

n

n∑

i=1

xi

)
+

1

2
log n+ c .

Consider a sequence of n bits with k ones.

The following program will print out the required sequence:

Generate, in lexicographic order, all sequences with k ones;

Of these sequences, print the ith sequence.

The only variables in the program are:

k , with known range {0, 1, . . . , n};
i , with conditional range {1, 2, . . . ,

(
n

k

)
}.
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Kolmogorov Complexity Kolmogorov Complexity: Definitions and Examples

Example: Sequence of n Bits With k Ones (Cont’d)

The total length of the program is

ℓ(p) = c + log n + log

(
n

k

)
.

But (
n

k

)
≤ 1√

πnpq
2nH0(p), for p = k

n
, q = 1− p and k 6= 0, n.

Therefore,

ℓ(p) ≤ c ′ + log n+ nH0

(
k

n

)
− 1

2
log n.

We have used log n bits to represent k .

Thus, if
∑n

i=1 xi = k , then

K (x1, x2, . . . , xn|n) ≤ nH0

(
k

n

)
+

1

2
log n + c .
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Kolmogorov Complexity Kolmogorov Complexity and Entropy

Subsection 3

Kolmogorov Complexity and Entropy
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Kolmogorov Complexity Kolmogorov Complexity and Entropy

Kraft Inequality for Program Lengths

Lemma

For any computer U , ∑

p: U(p) halts

2−ℓ(p) ≤ 1.

Suppose the computer halts on some program.

Then it does not look any further for input.

This implies that there cannot be any other halting program with this
program as a prefix.

Thus, the halting programs form a prefix-free set.

So their lengths satisfy the Kraft inequality.
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Kolmogorov Complexity Kolmogorov Complexity and Entropy

Relationship of Kolmogorov Complexity and Entropy

Theorem (Relationship of Kolmogorov Complexity and Entropy)

Let the stochastic process {Xi} be drawn i.i.d. according to the probability
mass function f (x), x ∈ X , where X is a finite alphabet. Let

f (xn) =

n∏

i=1

f (xi ).

Then there exists a constant c such that, for all n,

H(X ) ≤ 1

n

∑

xn

f (xn)K (xn|n) ≤ H(X ) +
(|X | − 1) log n

n
+

c

n
.

Consequently, E 1
n
K (X n|n) → H(X ).
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Kolmogorov Complexity Kolmogorov Complexity and Entropy

Kolmogorov Complexity and Entropy (Cont’d)

Consider the lower bound.

The allowed programs satisfy the prefix property.

Thus, their lengths satisfy the Kraft inequality.

We assign to each xn the length of the shortest program p, such that

U(p, n) = xn

These shortest programs also satisfy the Kraft inequality.

We know from the theory of source coding that the expected
codeword length must be greater than the entropy.

Hence,

∑

xn

f (xn)K (xn|n) ≥ H(X1,X2, . . . ,Xn) = nH(X ).
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Kolmogorov Complexity Kolmogorov Complexity and Entropy

Kolmogorov Complexity and Entropy (Cont’d)

We first prove the upper bound when X is binary.

Suppose X1,X2, . . . ,Xn are i.i.d. ∼ Bernoulli(θ).

We can bound the complexity of a binary string by

K (x1x2 . . . xn|n) ≤ nH0

(
1

n

n∑

i=1

xi

)
+

1

2
log n+ c .

Hence,

EK (X1X2 . . .Xn|n)
≤ nEH0

(
1
n

∑n
i=1Xi

)
+ 1

2 log n + c

≤ nH0

(
1
n

∑n
i=1 EXi

)
+ 1

2 log n + c

(Jensen’s Inequality and Concavity of H0)

= nH0(θ) +
1
2 log n + c .

So we have the upper bound for binary processes.
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Kolmogorov Complexity Kolmogorov Complexity and Entropy

Kolmogorov Complexity and Entropy (Conclusion)

We use the same technique for a nonbinary finite alphabet.

We first describe the type of the sequence (the empirical frequency of
occurrence of each of the alphabet symbols) using (|X | − 1) log n bits
(the frequency of the last symbol can be calculated from the rest).
Then we describe the index of the sequence within the set of all
sequences having the same type. The type class has less than 2nH(Pxn )

elements (where Pxn is the type of the sequence xn) as shown before.

Therefore, the two-stage description of a string xn has length

K (xn|n) ≤ nH(Pxn) + (|X | − 1) log n + c .

Taking the expectation and applying Jensen’s inequality,

EK (X n|n) ≤ nH(X ) + (|X | − 1) log n + c .

Dividing this by n yields the upper bound of the theorem.
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Kolmogorov Complexity Kolmogorov Complexity and Entropy

Removing Conditioning

By similar arguments, we can show that, for all n,

H(X ) ≤ 1

n

∑

xn

f (xn)K (xn) ≤ H(X ) +
(|X | + 1) log n

n
+

c

n
.

The lower bound follows from the fact that K (xn) is also a prefix-free
code for the source.
The upper bound can be derived from the fact that

K (xn) ≤ K (xn|n) + 2 log n + c .

Thus, we have

E
1

n
K (X n) → H(X ).

So the compressibility achieved by the computer approaches the
entropy.
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Kolmogorov Complexity Kolmogorov Complexity of Integers

Subsection 4

Kolmogorov Complexity of Integers
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Kolmogorov Complexity Kolmogorov Complexity of Integers

Kolmogorov Complexity of Integers

Definition

The Kolmogorov complexity of an integer n is defined as

K (n) = min
p:U(p)=n

ℓ(p).

Theorem

For universal computers A and U , KU (n) ≤ KA(n) + cA.

Theorem

K (n) ≤ log∗ n + c .

Any number can be specified by its binary expansion.
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Kolmogorov Complexity Kolmogorov Complexity of Integers

Integers with High Complexity

Theorem

There are an infinite number of integers n, such that K (n) > log n.

We know by a previous lemma that
∑

n

1
2K (n) ≤ 1.

Moreover, ∑

n

1

2log n
=
∑

n

1

n
= ∞.

Now suppose that K (n) < log n, for all n > n0.

This would give

∞∑

n=n0

1

2K(n)
>

∞∑

n=n0

1

2log n
= ∞.

This is a contradiction.
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Kolmogorov Complexity Algorithmically Random and Incompressible Sequences

Subsection 5

Algorithmically Random and Incompressible Sequences
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Kolmogorov Complexity Algorithmically Random and Incompressible Sequences

Complexity of Sequences

From the examples we looked at, it is clear that there are some long
sequences that are simple to describe, like the first million bits of π.

By the same token, there are also large integers that are simple to

describe, such as 22
22

22
2

or (100!)!.

We now show that although there are some simple sequences, most
sequences do not have simple descriptions.

Similarly, most integers are not simple.

It follows that, if we draw a sequence at random, we are likely to draw
a complex sequence.
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Kolmogorov Complexity Algorithmically Random and Incompressible Sequences

Probability of k-Bit Compressibility

The probability that a sequence can be compressed by more than k

bits is no greater than 2−k .

Theorem

Let X1,X2, . . . ,Xn be drawn according to a Bernoulli
(
1
2

)
process. Then

P(K (X1X2 . . .Xn|n) < n − k) <
1

2k
.

P(K (X1X2 . . .Xn|n) < n − k)

=
∑

x1x2...xn:K(x1x2...xn|n)<n−k

p(x1, x2, . . . , xn)

=
∑

x1x2...xn:K(x1x2...xn|n)<n−k

1
2n

= |{x1x2 . . . xn : K (x1x2 . . . xn|n) < n − k}| 12n
< 2n−k 1

2n = 1
2k
.
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Kolmogorov Complexity Algorithmically Random and Incompressible Sequences

Algorithmic Randomness and Incompressibility

Most sequences have a complexity close to their length.

Example: The fraction of sequences of length n that have complexity
less than n− 5 is less than 1

25
= 1

32 .

Definition

A sequence x1, x2, . . . , xn is said to be algorithmically random if
K (x1x2 . . . xn|n) ≥ n.

By the counting argument, there exists, for each n, at least one
sequence xn such that K (xn|n) ≥ n.

Definition

We call an infinite string x incompressible if

lim
n→∞

K (x1x2x3 . . . xn|n)
n

= 1.
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Kolmogorov Complexity Algorithmically Random and Incompressible Sequences

Law of Large Numbers for Incompressible Sequences

Theorem (Strong Law of Large Numbers for Incompressible Sequences)

If a string x1x2 . . . is incompressible, it satisfies the law of large numbers in
the sense that

1

n

n∑

i=1

xi →
1

2
.

Hence the proportions of 0’s and 1’s in such a string are almost equal.

Let θn = 1
n

∑n
i=1 xi denote the proportion of 1’s in x1x2 . . . xn.

There is a program of length nH0(θn) + 2 log (nθn) + c printing xn.

Thus, K(xn|n)
n

< H0(θn) + 2 log n
n

+ c′

n
.

By incompressibility, we have, for large enough n,

1− ǫ ≤ K (xn|n)
n

≤ H0(θn) + 2
log n

n
+

c ′

n
.

Thus, H0(θn) > 1− 2 log n+c′

n
− ǫ.
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Kolmogorov Complexity Algorithmically Random and Incompressible Sequences

Law of Large Numbers (Cont’d)

We have

H0(θn) > 1− 2 log n + c ′

n
− ǫ.

Inspection of the graph of H0(p) shows
that θn is close to 1

2 for large n.

Specifically, the inequality above
implies that

θn ∈
(
1

2
− δn,

1

2
+ δn

)
,

where δn is chosen so that H0

(
1
2 − δn

)
= 1− 2 log n+cn+c′

n
.

This implies that δn → 0 as n → ∞. So 1
n

∑
xi → 1

2 as n → ∞.
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Kolmogorov Complexity Algorithmically Random and Incompressible Sequences

Kolmogorov Complexity of Bernoulli(θ) Sequences

Theorem

Let X1,X2, . . . ,Xn be drawn i.i.d. ∼ Bernoulli(θ). Then

1

n
K (X1X2 . . .Xn|n) → H0(θ) in probability.

Let X n = 1
n

∑
Xi be the proportion of 1’s in X1,X2, . . . ,Xn.

Then
K (X1X2 . . .Xn|n) ≤ nH0(X n) + 2 log n + c .

By the weak law of large numbers, X n → θ in probability.

It follows that

Pr

{
1

n
K (X1X2 . . .Xn|n)− H0(θ) ≥ ǫ

}
→ 0.
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Complexity of Bernoulli(θ) Sequences (Cont’d)

Conversely, we can bound the number of sequences with complexity
significantly lower than the entropy.

From the AEP, we can divide the set of sequences into the typical set
and the nontypical set.

There are at least (1− ǫ)2n(H0(θ)−ǫ) sequences in the typical set.
At most 2n(H0(θ)−c) of typical sequences can have complexity
< n(H0(θ)− c).

We calculate the probability that the complexity of the random
sequence is less than n(H0(θ)− c).

Pr(K (X n|n) < n(H0(θ)− c))

≤ Pr(X n 6∈ A
(n)
ǫ ) + Pr(X n ∈ A

(n)
ǫ ,K (X n|n) < n(H0(θ)− c))

≤ ǫ+
∑

xn∈A
(n)
ǫ ,K(xn|n)<n(H0(θ)−c)

p(xn)
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Complexity of Bernoulli(θ) Sequences (Cont’d)

We continue

≤ ǫ+
∑

xn∈A
(n)
ǫ ,K(xn|n)<n(H0(θ)−c)

p(xn)

≤ ǫ+
∑

xn∈A
(n)
ǫ ,K(xn|n)<n(H0(θ)−c)

2−n(H0(θ)−ǫ)

≤ ǫ+ 2n(H0(θ)−c)2−n(H0(θ)−ǫ)

= ǫ+ 2−n(c−ǫ).

This is arbitrarily small for appropriate choice of ǫ, n, and c .

Hence, with high probability, the Kolmogorov complexity of the
random sequence is close to the entropy, and we have

K (X1,X2, . . . ,Xn|n)
n

→ H0(θ) in probability.
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Subsection 6

Universal Probability
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Universal Probability

Definition

The universal probability of a string x is

PU (x) =
∑

p:U(p)=x

1

2ℓ(p)
= Pr(U(p) = x),

which is the probability that a program randomly drawn as a sequence of
fair coin flips p1, p2, . . . will print out the string x .

This probability can be considered as the probability of observing the
string in nature based on the implicit belief that simpler strings are
more likely than complicated strings (Occam’s Razor).
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Universality of Universal Probability

Theorem

For every computer A,

PU(x) ≥ c ′APA(x), for every string x ∈ {0, 1}∗,

where the constant c ′A depends only on U and A.

Recall that, for every program p′ for A that prints x , there exists a
program p for U of length not more than ℓ(p′) + cA produced by
prefixing a simulation program for A, which also prints x .

Hence,

PU (x) =
∑

p:U(p)=x

1

2ℓ(p)
≥

∑

p′:A(p′)=x

1

2ℓ(p′)+cA
= c ′APA(x).
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Subsection 7

Noncomputability of Kolmogorov Complexity
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Noncomputability of Kolmogorov Complexity

The halting problem in computer science states that for any
computational model, there is no general algorithm to decide whether
a program will halt or not (go on forever).

One of the consequences of the nonexistence of an algorithm for the
halting problem is the noncomputability of Kolmogorov complexity.

The only way to find the shortest program, in general, is to try all
short programs and see which of them can do the job.

However, at any time some of the short programs may not have
halted and there is no effective (finite mechanical) way to tell whether
or not they will halt and what they will print out.

Hence, there is no effective way to find the shortest program to print
a given string.
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Subsection 8

Chaitin’s Number Ω
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Chaitin’s Number Ω

We introduce Chaitin’s number Ω, which has some extremely
interesting properties.

Definition

Chaitin’s number Ω is defined by

Ω =
∑

p:U(p) halts

1

2ℓ(p)
.

Note that Ω = Pr(U(p) halts), the probability that the given universal
computer halts when the input to the computer is a binary string
drawn according to a Bernoulli

(
1
2

)
process.

Programs that halt are prefix-free, so their lengths satisfy Kraft.

Hence, the sum above is always between 0 and 1.

Let Ωn = .ω1ω2 . . . ωn denote the first n bits of Ω.
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Properties of Ω

1. Ω is noncomputable.

There is no effective (finite, mechanical) way to check whether
arbitrary programs halt (the halting problem). So there is no effective
way to compute Ω.

2. Ω is a “philosopher’s stone”.

Knowing Ω to an accuracy of n bits will enable us to decide the truth
of any provable or finitely refutable mathematical theorem that can
be written in less than n bits.

Actually, all that this means is that given n bits of Ω, there is an
effective procedure to decide the truth of n-bit theorems.

The procedure may take an arbitrarily long (but finite) time.

Of course, without knowing Ω, it is not possible to check the truth or
falsity of every theorem by an effective procedure.
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Property 2 of Ω

The basic idea of the procedure using n bits of Ω is simple.

We run all programs until the sum of the masses 1
2ℓ(p)

contributed by
programs that halt equals or exceeds Ωn = 0.ω1ω2 . . . ωn, the
truncated version of Ω that we are given.

Now we have Ω− Ωn < 1
2n .

So the sum of all further contributions of the form 1
2ℓ(p)

to Ω from

programs that halt must also be less than 1
2n .

Thus, no program of length ≤ n that has not yet halted will ever halt.

This enables us to decide the halting or nonhalting of all programs of
length ≤ n.

To complete the proof, we must show that it is possible for a
computer to run all possible programs in “parallel” in such a way that
any program that halts will eventually be found to halt.
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Property 2 of Ω (Cont’d)

First, list all possible programs, starting with the null program,
Λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . ..

Then let the computer execute one clock cycle of Λ for the first cycle.
In the next cycle, let the computer execute two clock cycles of Λ and
two clock cycles of the program 0.
In the third cycle, let it execute three clock cycles of each of the first
three programs, and so on.

In this way, the computer will eventually run all possible programs and
run them for longer and longer times, so that if any program halts, it
will eventually be discovered to halt.

So the computer can produce a list of all programs that halt.

Thus, we will ultimately know whether or not any program of less
than n bits will halt.

So the computer will find a proof or a counterexample to the theorem
if the theorem can be stated in less than n bits.
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Property 3 of Ω

3. Ω is algorithmically random.

Theorem

Ω cannot be compressed by more than a constant, i.e., there exists a
constant c , such that

K (ω1ω2 . . . ωn) ≥ n − c , for all n.

We know that if we are given n bits of Ω, we can determine whether
or not any program of length ≤ n halts.

Using K (ω1ω2 . . . ωn) bits, we can:

Calculate n bits of Ω;
Generate a list of all programs of length ≤ n that halt, together with
their corresponding outputs.

Find the first string x0 that is not on this list.
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Property 3 of Ω (Cont’d)

The string x0 is the shortest string with Kolmogorov complexity

K (x0) > n.

The complexity of the program, described in the preceding slide, to
print x0 is

K (Ωn) + c .

This must be at least as long as the shortest program for x0.

Hence, for all n,
K (Ωn) + c ≥ K (x0) > n.

Thus,
K (ω1ω2 . . . ωn) > n− c .
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Universal Gambling
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Gambling on Finite Binary Sequences

Suppose a gambler is asked to gamble sequentially on a sequence

x ∈ {0, 1}∗.

He has no idea of the origin of the sequence.

He is given fair odds (2-for-1) on each bit.

We want to decide on the best gambling method.
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Intuition

If the gambler believes that the string occurred naturally, it seems
intuitive that simpler strings are more likely than complex ones.

Hence, he might bet according to the universal probability of the
string.

If the gambler knows the string x in advance, he can increase his
wealth by a factor of 2ℓ(x) by betting all his wealth each time on the
next symbol of x .
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Betting Schemes and Universal Gambling

A betting scheme is a mapping b : {0, 1}∗ → [0,∞), such that
∑

b(x) = 1.

The wealth S associated with betting scheme b is given by

S(x) = 2ℓ(x)b(x), x ∈ {0, 1}∗.

The betting scheme

b(x) =
1

2K(x)
, x ∈ {0, 1}∗,

is called universal gambling.

Note that
∑

x

b(x) =
∑

x

1

2K(x)
≤

∑

p:p halts

1

2ℓ(p)
= Ω ≤ 1.
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Wealth Associated With A Bet

Suppose the amount b(0110) is bet on a sequence x = 0110.

Then the wealth associated with this bet is the sum of:

2ℓ(x)b(x) = 24b(0110);
The amount won on all bets b(0110 . . .) on sequences that extend x .
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Wealth Achieved Using Universal Gambling

Theorem

The logarithm of the wealth a gambler achieves on a sequence using
universal gambling plus the complexity of the sequence is no smaller than
the length of the sequence:

log S(x) + K (x) ≥ ℓ(x).

Recall that, in the universal gambling scheme, b(x) = 1
2K (x) .

So we have

S(x) =
∑

x ′⊒x

2ℓ(x
′)b(x ′) ≥ 2ℓ(x)

1

2K(x)
,

where x ′ ⊒ x means that x is a prefix of x ′.

Taking logarithms establishes the theorem.
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Universality of Universal Gambling

For infinite sequences x , with finite Kolmogorov complexity,

S(x1x2 . . . xℓ) ≥ 2ℓ−K(x) = 2ℓ−c , for all ℓ.

2ℓ is the most that can be won in ℓ gambles at fair odds.

So this scheme does asymptotically as well as the scheme based on
knowing the sequence in advance.
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Examples

Example: Let x = π1π2 . . . πn . . ., the digits in the expansion of π.

Recall that K (π1π2 . . . πn|n) = c .

For all n, the wealth at time n will be

Sn = S(xn) ≥ 2n−c .

Example: Suppose the string is actually generated by a Bernoulli
process with parameter p.

We know that, if
∑n

i=1 xi = k , then

K (x1, x2, . . . , xn|n) ≤ nH0(X n) + 2 log n + c .

Thus,

S(X1 . . .Xn) ≥ 2n−nH0(X n)−2 log n−c ≈ 2n(1−H0(p)−2 log n

n
− c

n ).
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Kolmogorov Complexity and Universal Probability
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Kolmogorov Complexity and Universal Probability

Recall the definitions of Kolmogorov complexity and universal
probability.

K (x) = min
p:U(p)=x

ℓ(p), PU (x) =
∑

p:U(p)=x

1

2ℓ(p)
.

Theorem (Equivalence of K (x) and log 1
PU (x))

There exists a constant c , independent of x , such that

1

2K(x)
≤ PU (x) ≤ c

1

2K(x)
,

for all strings x . Thus, the universal probability of a string x is determined
essentially by its Kolmogorov complexity.
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Equivalence of Complexity and Universal Probability

Remark: The theorem implies that K (x) and log 1
PU (x) have equal

status as universal complexity measures, since

K (x)− c ′ ≤ log
1

PU (x)
≤ K (x).

Recall that the complexity defined with respect to two different
computers KU and KU ′ are essentially equivalent complexity measures
if

|KU (x)− KU ′(x)|
is bounded.

The theorem shows that KU (x) and log 1
PU (x) are essentially

equivalent complexity measures.
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Kolmogorov Complexity and Entropy

Notice the striking similarity between:
The relationship of K (x) and log 1

PU (x) in Kolmogorov complexity;

The relationship of H(X ) and log 1
p(x) in information theory.

The ideal Shannon code length assignment

ℓ(x) = log
1

p(x)

achieves an average description length H(X ).

In Kolmogorov complexity theory, the ideal description length

log
1

PU (x)

is almost equal to K (X ).

We conclude that log 1
p(x) is the natural notion of descriptive

complexity of x in algorithmic as well as probabilistic settings.
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Comments on the Lower Bound

The upper bound in K (x)− c ′ ≤ log 1
PU (x) ≤ K (x) is obvious from

the definitions.

The lower bound is more difficult to prove.

The result is very surprising, since there are an infinite number of
programs that print x .

From any program it is possible to produce longer programs by
padding the program with irrelevant instructions.

The theorem proves that although there are an infinite number of
such programs, the universal probability is essentially determined by
the largest term, which is 1

2K (x) .
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Comments on the Lower Bound (Cont’d)

There is another way to look at the upper bound for K (x) that makes
it less surprising.

Consider any computable probability mass function on strings p(x).

Using this mass function, we can:

Construct a Shannon-Fano code for the source;
Describe each string by the corresponding codeword, which will have
length log 1

p(x) .

Hence, for any computable distribution, we can construct a
description of a string using not more than log 1

p(x) + c bits.

It follows that this number is an upper bound on the Kolmogorov
complexity K (x).
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Proof of the Equivalence Theorem

For 1
2K (x) ≤ PU(x), let p

∗ be the shortest program for x .

Then

PU (x) =
∑

p:U(p)=x

1

2ℓ(p)
≥ 1

2ℓ(p∗)
=

1

2K(x)
.

The inequality PU (x) ≤ c

2K (x) , can be rewritten K (x) ≤ log 1
PU (x) + c .

We find a short program to describe the strings having high PU(x).

An obvious idea is some kind of Huffman coding based on PU (x).
However, since PU (x) cannot be calculated effectively, a procedure
using Huffman coding is not implementable on a computer.
Similarly, the process using the Shannon-Fano code also cannot be
implemented.

But, if we have the Shannon-Fano code tree, we can reconstruct the
string by looking for the corresponding node in the tree.
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Idea of the Proof: Tree Construction

We want to construct a code tree in such a way that strings with high
probability have low depth.

Since we cannot calculate the probability of a string, we do not know
a priori the depth of the string on the tree.

Instead, we assign x successively to the nodes of the tree, assigning x

to nodes closer and closer to the root as our estimate of PU (x)
improves.

We want the computer to be able to recreate the tree and use the
lowest depth node corresponding to the string x to reconstruct the
string.
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Idea of the Proof: Assignment of Programs

Consider the set of pairs {(p, x)} consisting of:

Programs;
Corresponding outputs.

We try to assign these pairs to the tree.

But we immediately come across the problem of the existence of an
infinite number of programs for a given string and the lack of enough
nodes of low depth.

We trim the list of program-output pairs to get a more manageable
list that can be assigned to the tree.
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Tree Construction Procedure: Programs and Outputs

For the universal computer U , we simulate all programs using the
standard technique.

We list all binary programs:

Λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .

Then let the computer execute one clock cycle of Λ for the first stage.
In the next stage, let the computer execute two clock cycles of Λ and
two clock cycles of the program 0.
In the third stage, let the computer execute three clock cycles of each
of the first three programs, and so on.

In this way, the computer will eventually run all possible programs and
run them for longer and longer times.

If any program halts, it will, eventually, be discovered to halt.

We use this method to produce a list of all programs that halt in the
order in which they halt, together with their associated outputs.
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Tree Construction Procedure: Approximations

For each pair (pk , xk), we calculate nk , which is chosen so that it
corresponds to the current estimate of PU (x).

P̂U(xk ) =
∑

(pi ,xi ):xi=xk ,i≤k

1
2ℓ(pi )

;

nk =
⌈
log 1

P̂U (xk )

⌉
.

Note that P̂U (xk) ր PU (x) on the subsequence of k , with xk = x .

As we add to the list of triplets, (pk , xk , nk), of programs that halt,
we map some of them onto nodes of a binary tree.

For purposes of the construction, we must ensure that all the ni ’s
corresponding to a particular xk are distinct.

We remove from the list all triplets that have the same x and n as a
previous triplet.
This ensures that there is at most one node at each level of the tree
that corresponds to a given x .
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Tree Construction Procedure: Assigning Nodes

Let {(p′i , x ′i , n′i ) : i = 1, 2, 3, . . .} denote the new list.

On the winnowed list, we assign the triplet (p′k , x
′
k , n

′
k) to the first

available node at level n′k + 1.

As soon as a node is assigned, all of its descendants become
unavailable for assignment (to keep the assignment prefix-free).

Claim: There are always enough nodes so that the assignment can be
completed.

We can perform the assignment of triplets to nodes if and only if the
Kraft inequality is satisfied.

We now drop the primes and deal only with the winnowed list.
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Tree Construction Procedure: Proof of the Claim

We start with the infinite sum in the Kraft inequality:

∞∑

k=1

1

2nk+1
=

∑

x∈{0,1}∗

∑

k:xk=x

1

2nk+1
.

We then write the inner sum as
∑

k:xk=x
1

2nk+1 = 1
2

∑
k:xk=x

1
2nk

≤ 1
2(2

⌊log PU (x)⌋ + 2⌊logPU (x)⌋−1 + · · · )
(at most one node at each level for each x)

= 1
22

⌊log PU (x)⌋(1 + 1
2 +

1
4 + · · · )

= 1
22

⌊log PU (x)⌋2 ≤ PU (x).

Hence, ∑

k

1

2nk+1
≤
∑

x

∑

k:xk=x

1

2nk+1
≤
∑

x

PU (x) ≤ 1.
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Using the Tree as a Code

So we can construct a tree with the nodes labeled by the triplets.

We identify an x by the path to the lowest depth node printing x .

Call this node p̃. By construction, ℓ(p̃) ≤ log 1
PU (x) + 2.

To use this tree in a program to print x :

We specify p̃;
Ask the computer to execute the foregoing simulation of all programs;
The computer will construct the tree as described above and wait for
the particular node; p̃ to be assigned;

The computer executes the same construction as the sender;

So eventually p̃ will be assigned.

Then, the computer halts and prints the x assigned to that node.

The preceding is an effective (finite, mechanical) procedure for the
computer to reconstruct x .
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The Length of the Code Bounds the Complexity

There is no effective procedure to find the lowest depth node
corresponding to x .

All that we have proved is that there is an (infinite) tree with a node

corresponding to x at level
⌈
log 1

PU (x)

⌉
+ 1.

The length of the program to reconstruct x is essentially the length of
the description of the position of the lowest depth node p̃

corresponding to x in the tree.

The length of this program for x is ℓ(p̃) + c , where

ℓ(p̃) ≤
⌈
log

1

PU(x)

⌉
+ 1.

Hence the complexity of x satisfies

K (x) ≤
⌈
log

1

PU (x)

⌉
+ c .
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