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Entropy, Relative Entropy, and Mutual Information Entropy

Subsection 1

Entropy
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Entropy, Relative Entropy, and Mutual Information Entropy

Discrete Random Variables

We first introduce the concept of entropy, which is a measure of the
uncertainty of a random variable.

Let X be a discrete random variable with alphabet X and probability
mass function

p(x) = Pr{X = x}, x ∈ X .

Notation: We denote the probability mass function by p(x) rather
than pX (x), for convenience.

Thus, p(x) and p(y) refer to two different random variables and are
different probability mass functions, pX (x) and pY (y), respectively.
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Entropy, Relative Entropy, and Mutual Information Entropy

Entropy

Definition

The entropy H(X ) of a discrete random variable X is defined by

H(X ) = −
∑

x∈X

p(x) log p(x).

We also write H(p) for the above quantity.

The log is base 2 and entropy is expressed in bits.

Example: The entropy of a fair coin toss is 1 bit.

Convention: We will use the convention that 0 log 0 = 0, which is
easily justified by continuity since lim

x→0
(x log x) = 0.

Adding terms of zero probability does not change the entropy.
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Entropy, Relative Entropy, and Mutual Information Entropy

Other Bases

If the base of the logarithm is b, we denote the entropy as Hb(X ).

If the base of the logarithm is e, the entropy is measured in nats.

Unless otherwise specified, we will take all logarithms base 2, and
hence all the entropies will be measured in bits.

Remark: Entropy is a functional of the distribution of X .

It does not depend on the actual values taken by the random variable
X , but only on the probabilities.
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Entropy, Relative Entropy, and Mutual Information Entropy

Entropy and Expectation

We denote the expectation by E .

Thus, if X ∼ p(x), the expected value of the random variable g(X ) is
written

Epg(X ) =
∑

x∈X

g(x)p(x).

If the probability mass function is clear from context, we write Eg(X ).

The entropy of X can be interpreted as the expected value of the
random variable log 1

p(X ) , where X is drawn according to probability

mass function p(x),

H(X ) = Ep log
1

p(X )
.
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Entropy, Relative Entropy, and Mutual Information Entropy

Nonnegativity and Change of Base

Lemma

H(X ) ≥ 0.

0 ≤ p(x) ≤ 1 implies that log 1
p(x) ≥ 0.

Lemma

Hb(X ) = (logb a)Ha(X ).

logb p = logb a loga p.

The second property of entropy enables us to change the base of the
logarithm in the definition.

Entropy can be changed from one base to another by multiplying by
the appropriate factor.
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Entropy, Relative Entropy, and Mutual Information Entropy

Example

Let X =

{
1, with probability p,
0, with probability 1− p.

Then
H(X ) = − p log p − (1− p) log (1− p)

def
= H(p).

In particular, H(X ) = 1 bit when p = 1
2 .

The graph of the function H(p) is shown in the figure.

Entropy is a concave function of the dis-
tribution.
It equals 0 when p = 0 or 1, i.e., when
there is no uncertainty.
The uncertainty is maximum when p = 1

2 ,
which also corresponds to the maximum
value of the entropy.
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Entropy, Relative Entropy, and Mutual Information Entropy

Example

Let X =





a, with probability 1
2

b, with probability 1
4

c , with probability 1
8

d , with probability 1
8

.

The entropy of X is

H(X ) = − 1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

8
log

1

8
=

7

4
bits.
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Entropy, Relative Entropy, and Mutual Information Entropy

Example (Cont’d)

Suppose that we wish to determine the value of X with the minimum
number of binary questions.

An efficient first question is “Is X = a?”
This splits the probability in half.
If the answer to the first question is no, the second question can be “Is
X = b?”
The third question can be “Is X = c?”

The resulting expected number of binary questions required is 1.75.

This turns out to be the minimum expected number of binary
questions required to determine the value of X .

We will show later that the minimum expected number of binary
questions required to determine X lies between H(X ) and H(X ) + 1.
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Entropy, Relative Entropy, and Mutual Information Joint Entropy and Conditional Entropy

Subsection 2

Joint Entropy and Conditional Entropy
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Entropy, Relative Entropy, and Mutual Information Joint Entropy and Conditional Entropy

Joint Entropy

Definition

The joint entropy H(X ,Y ) of a pair of discrete random variables (X ,Y )
with a joint distribution p(x , y) is defined as

H(X ,Y ) = −
∑

x∈X

∑

y∈Y

p(x , y) log p(x , y).

This can also be expressed as

H(X ,Y ) = −E log p(X ,Y ).
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Entropy, Relative Entropy, and Mutual Information Joint Entropy and Conditional Entropy

Conditional Entropy

Definition

If (X ,Y ) ∼ p(x , y), the conditional entropy H(Y |X ) is defined as

H(Y |X ) =
∑

x∈X

p(x)H(Y |X = x)

= −
∑

x∈X

p(x)
∑

y∈Y

p(y |x) log p(y |x)

= −
∑

x∈X

∑

y∈Y

p(x , y) log p(y |x)

= − E log p(Y |X ).
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Entropy, Relative Entropy, and Mutual Information Joint Entropy and Conditional Entropy

The Chain Rule

Theorem (Chain Rule)

H(X ,Y ) = H(X ) + H(Y |X ).

We have

H(X ,Y ) = −∑x∈X

∑
y∈Y p(x , y) log p(x , y)

= −∑x∈X

∑
y∈Y p(x , y) log p(x)p(y |x)

= −∑x∈X

∑
y∈Y p(x , y) log p(x)

−∑x∈X

∑
y∈Y p(x , y) log p(y |x)

= −∑x∈X p(x) log p(x)
−∑x∈X

∑
y∈Y p(x , y) log p(y |x)

= H(X ) + H(Y |X ).

Alternatively:

Write log p(X ,Y ) = log p(X ) + log p(Y |X );
Take the expectation of both sides to obtain the theorem.
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Entropy, Relative Entropy, and Mutual Information Joint Entropy and Conditional Entropy

Consequence of the Chain Rule

Corollary

H(X ,Y |Z ) = H(X |Z ) + H(Y |X ,Z ).

Using the Chain Rule, we obtain

H(X ,Y |Z ) = H(X ,Y ,Z )− H(Z )

= H(X ,Z )− H(Z ) + H(X ,Y ,Z )− H(X ,Z )

= H(X |Z ) + H(Y |X ,Z ).
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Entropy, Relative Entropy, and Mutual Information Joint Entropy and Conditional Entropy

Example

Let (X ,Y ) have the joint distribution shown on the right.

Y \X 1 2 3 4

1 1
8

1
16

1
32

1
32

2 1
16

1
8

1
32

1
32

3 1
16

1
16

1
16

1
16

4 1
4 0 0 0

We have:

The marginal distribution of X is ( 12 ,
1
4 ,

1
8 ,

1
8 ).

The marginal distribution of Y is ( 14 ,
1
4 ,

1
4 ,

1
4 ).

H(X ) = − 1
2 log

1
2 − 1

4 log
1
4 − 1

8 log
1
8 − 1

8 log
1
8 = 1

2 + 1
2 +

3
8 +

3
8 = 7

4 .

H(Y ) = 4(− 1
4 log

1
4 ) = 2.
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Entropy, Relative Entropy, and Mutual Information Joint Entropy and Conditional Entropy

Example (Cont’d)

We also have

H(X |Y ) =
∑4

i=1 p(Y = i)H(X |Y = i)

= 1
4H(12 ,

1
4 ,

1
8 ,

1
8) +

1
4H(14 ,

1
2 ,

1
8 ,

1
8)

+ 1
4H(14 ,

1
4 ,

1
4 ,

1
4) +

1
4H(1, 0, 0, 0)

= 1
4 · 7

4 + 1
4 · 7

4 +
1
4 · 2 + 1

4 · 0
= 11

8 bits;

H(Y |X ) =
∑4

i=1 p(X = i)H(Y |X = i)

= 1
2H(14 ,

1
8 ,

1
8 ,

1
2) +

1
4H(14 ,

1
2 ,

1
4 , 0)

+ 1
8H(14 ,

1
4 ,

1
2 , 0) +

1
8H(14 ,

1
4 ,

1
2 , 0)

= 1
2 · 7

4 + 1
4 · 3

2 +
1
8 · 3

2 +
1
8 · 3

2

= 13
8 bits.

Finally H(X ,Y ) = H(X ) + H(Y |X ) = 7
4 +

13
8 = 27

8 bits.
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Entropy, Relative Entropy, and Mutual Information Relative Entropy and Mutual Information

Subsection 3

Relative Entropy and Mutual Information
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Entropy, Relative Entropy, and Mutual Information Relative Entropy and Mutual Information

Idea of Relative Entropy

The entropy of a random variable is a measure of the uncertainty of
the random variable.

The relative entropy is a measure of the distance between two
distributions.

The relative entropy D(p‖q) is a measure of the inefficiency of
assuming that the distribution is q when the true distribution is p.

Example: If we knew the true distribution p of the random variable,
we could construct a code with average description length H(p).

If, instead, we used the code for a distribution q, we would need
H(p) + D(p‖q) bits on average to describe the random variable.
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Entropy, Relative Entropy, and Mutual Information Relative Entropy and Mutual Information

The Relative Entropy

Definition

The relative entropy or Kullback-Leibler distance between two
probability mass functions p(x) and q(x) is defined as

D(p‖q) =
∑

x∈X p(x) log p(x)
q(x)

= Ep log
p(X )
q(X ) .

In computing relative entropies, we use the following conventions:

0 log 0
0 = 0;

0 log 0
q
= 0;

p log p

0 = ∞.
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Entropy, Relative Entropy, and Mutual Information Relative Entropy and Mutual Information

Remarks on The Relative Entropy

For a symbol x ∈ X , such that p(x) > 0 and q(x) = 0,

D(p‖q) = ∞.

We will soon show that:

The relative entropy is always nonnegative
The relative entropy is zero if and only if p = q.

However, it is not a true distance between distributions since:

It is not symmetric;
It does not satisfy the triangle inequality.
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Entropy, Relative Entropy, and Mutual Information Relative Entropy and Mutual Information

Mutual Information

Mutual Information is a measure of the amount of information that
one random variable contains about another random variable.

It is the reduction in the uncertainty of one random variable due to
the knowledge of the other.

Definition

Consider two random variables X and Y with a joint probability mass
function p(x , y) and marginal probability mass functions p(x) and p(y).
The mutual information I (X ;Y ) is the relative entropy between the joint
distribution and the product distribution p(x)p(y):

I (X ;Y ) =
∑

x∈X

∑
y∈Y p(x , y) log p(x ,y)

p(x)p(y)

= D(p(x , y)‖p(x)p(y))
= Ep(x ,y) log

p(X ,Y )
p(X )p(Y ) .
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Entropy, Relative Entropy, and Mutual Information Relative Entropy and Mutual Information

Example

Let X = {0, 1} and consider two distributions p and q on X .

p(0) = 1− r , p(1) = r ;
q(0) = 1− s, q(1) = s.

Then
D(p‖q) = p(0) log p(0)

q(0) + p(1) log p(1)
q(1)

= (1− r) log 1−r
1−s

+ r log r
s
;

D(q‖p) = (1− s) log 1−s
1−r

+ s log s
r
.

If r = s, then
D(p‖q) = D(q‖p) = 0.
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Entropy, Relative Entropy, and Mutual Information Relative Entropy and Mutual Information

Example (Cont’d)

If r = 1
2 , s =

1
4 , we can calculate

D(p‖q) = 1
2 log

1/2
3/4 + 1

2 log
1/2
1/4

= 1− 1
2 log 3

= 0.2075 bit;

D(q‖p) = 3
4 log

3/4
1/2 + 1

4 log
1/4
1/2

= 3
4 log 3− 1

= 0.1887 bit.

Note that D(p‖q) 6= D(q‖p) in general.
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Entropy, Relative Entropy, and Mutual Information Relationship Between Entropy and Mutual Information

Subsection 4

Relationship Between Entropy and Mutual Information
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Entropy, Relative Entropy, and Mutual Information Relationship Between Entropy and Mutual Information

Mutual Information and Entropy

Theorem (Mutual Information and Entropy)

I (X ;Y ) = H(X )− H(X |Y )
I (X ;Y ) = H(Y )− H(Y |X )
I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )
I (X ;Y ) = I (Y ;X )
I (X ;X ) = H(X ).

We can rewrite the definition of mutual information I (X ;Y ) as

I (X ;Y ) =
∑

x ,y p(x , y) log
p(x ,y)

p(x)p(y)

=
∑

x ,y p(x , y) log
p(x |y)
p(x)

= −∑x ,y p(x , y) log p(x) +
∑

x ,y p(x , y) log p(x |y)
= −∑x p(x) log p(x)− (−∑x ,y p(x , y) log p(x |y))
= H(X ) − H(X |Y ).
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Entropy, Relative Entropy, and Mutual Information Relationship Between Entropy and Mutual Information

Mutual Information and Entropy (Cont’d)

We showed I (X ;Y ) = H(X )− H(X |Y ).

Thus, the mutual information I (X ;Y ) is the reduction in the
uncertainty of X due to the knowledge of Y .

By symmetry, this also follows that I (X ;Y ) = H(Y )− H(Y |X ).

Thus, X says as much about Y as Y says about X .

Now recall that H(X ,Y ) = H(X ) + H(Y |X ).

Thus, we have I (X ;Y ) = H(X ) + H(Y )− H(X ,Y ).

Finally, we have I (X ;X ) = H(X )− H(X |X ) = H(X ).

Thus, the mutual information of a random variable with itself is the
entropy of the random variable.

For this reason entropy is sometimes called self-information.
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Entropy, Relative Entropy, and Mutual Information Relationship Between Entropy and Mutual Information

Pictorial Representation

The relationship between

H(X ),H(Y ),H(X ,Y ),
H(X |Y ),H(Y |X ) and I (X ;Y )

is expressed in a Venn diagram.

The mutual information I (X ;Y ) corresponds to the intersection of
the information in X with the information in Y .

George Voutsadakis (LSSU) Information Theory February 2024 29 / 89



Entropy, Relative Entropy, and Mutual Information Relationship Between Entropy and Mutual Information

Example

Consider the joint distribution

Y \X 1 2 3 4

1 1
8

1
16

1
32

1
32

2 1
16

1
8

1
32

1
32

3 1
16

1
16

1
16

1
16

4 1
4 0 0 0

Recall that we calculated H(X ) = 7
4 and X (X |Y ) = 11

8 .

Now, it is easy to calculate the mutual information

I (X ;Y ) = H(X )− H(X |Y )

= 14
8 − 11

8

= 3
8 = 0.375 bit.
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Entropy, Relative Entropy, and Mutual Information Chain Rules

Subsection 5

Chain Rules for Entropy, Relative Entropy and Mutual Information
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Entropy, Relative Entropy, and Mutual Information Chain Rules

Chain Rule for Entropy

Theorem (Chain Rule for Entropy)

Let X1,X2, . . . ,Xn be drawn according to p(x1, x2, . . . , xn). Then

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi |Xi−1, . . . ,X1).

We repeatedly apply the two-variable chain rule.

H(X1,X2) = H(X1) + H(X2|X1),
H(X1,X2,X3) = H(X1) + H(X2,X3|X1)

= H(X1) + H(X2|X1) + H(X3|X2,X1),
...

H(X1,X2, . . . ,Xn) = H(X1) + H(X2|X1) + · · ·+
H(Xn|Xn−1, . . . ,X1)

=
∑n

i=1H(Xi |Xi−1, . . . ,X1).
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Entropy, Relative Entropy, and Mutual Information Chain Rules

Alternative Proof of the Chain Rule

We write p(x1, . . . , xn) =
∏n

i=1 p(xi |xi−1, . . . , x1).

We then evaluate:

H(X1,X2, . . . ,Xn)

= −∑x1,x2,...,xn
p(x1, x2, . . . , xn) log p(x1, x2, . . . , xn)

= −∑x1,x2,...,xn
p(x1, x2, . . . , xn) log

∏n
i=1 p(xi |xi−1, . . . , x1)

= −∑x1,x2,...,xn

∑n
i=1 p(x1, x2, . . . , xn) log p(xi |xi−1, . . . , x1)

= −∑n
i=1

∑
x1,x2,...,xn

p(x1, x2, . . . , xn) log p(xi |xi−1, . . . , x1)

= −∑n
i=1

∑
x1,x2,...,xi

p(x1, x2, . . . , xi ) log p(xi |xi−1, . . . , x1)

=
∑n

i=1H(Xi |Xi−1, . . . ,X1).
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Entropy, Relative Entropy, and Mutual Information Chain Rules

Conditional Mutual Information

We define the conditional mutual information as the reduction in the
uncertainty of X due to knowledge of Y when Z is given.

Definition

The conditional mutual information of random variables X and Y given
Z is defined by

I (X ;Y |Z ) = H(X |Z )− H(X |Y ,Z )

= H(X |Z )− (H(X ,Y |Z )− H(Y |Z ))
= Ep(x ,y ,z) log

p(X ,Y |Z)
p(X |Z)p(Y |Z) .
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Entropy, Relative Entropy, and Mutual Information Chain Rules

Chain Rule for Mutual Information

Mutual information also satisfies a chain rule.

Theorem (Chain Rule for Information)

I (X1,X2, . . . ,Xn;Y ) =
∑n

i=1 I (Xi ;Y |Xi−1,Xi−2, . . . ,X1).

We have

I (X1,X2, . . . ,Xn;Y )
= H(X1,X2, . . . ,Xn)− H(X1,X2, . . . ,Xn|Y )

=
∑n

i=1H(Xi |Xi−1, . . . ,X1)−
∑n

i=1H(Xi |Xi−1, . . . ,X1,Y )

=
∑n

i=1 I (Xi ;Y |Xi−1,Xi−2, . . . ,X1).
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Entropy, Relative Entropy, and Mutual Information Chain Rules

Conditional Relative Entropy

We define a conditional version of the relative entropy.

Definition

For joint probability mass functions p(x , y) and q(x , y), the conditional

relative entropy D(p(y |x)‖q(y |x)) is the average of the relative entropies
between the conditional probability mass functions p(y |x) and q(y |x)
averaged over the probability mass function p(x). More precisely,

D(p(y |x)‖q(y |x)) =
∑

x p(x)
∑

y p(y |x) log
p(y |x)
q(y |x)

= Ep(x ,y) log
p(Y |X )
q(Y |X ) .

The notation for conditional relative entropy is not explicit, since it
omits mention of the distribution p(x) of the conditioning random
variable, which is normally understood from the context.
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Entropy, Relative Entropy, and Mutual Information Chain Rules

The Chain Rule for Relative Entropy

Theorem (Chain Rule for Relative Entropy)

D(p(x , y)‖q(x , y)) = D(p(x)‖q(x)) + D(p(y |x)‖q(y |x)).

We have

D(p(x , y)‖q(x , y))
=
∑

x

∑
y p(x , y) log

p(x ,y)
q(x ,y)

=
∑

x

∑
y p(x , y) log

p(x)p(y |x)
q(x)q(y |x)

=
∑

x

∑
y p(x , y) log

p(x)
q(x) +

∑
x

∑
y p(x , y) log

p(y |x)
q(y |x)

= D(p(x)‖q(x)) + D(p(y |x)‖q(y |x)).
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Entropy, Relative Entropy, and Mutual Information Jensen’s Inequality and Its Consequences

Subsection 6

Jensen’s Inequality and Its Consequences
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Entropy, Relative Entropy, and Mutual Information Jensen’s Inequality and Its Consequences

Convex and Concave Functions

Definition

A function f (x) is said to be convex over an interval (a, b) if for every
x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2).

A function f is said to be strictly convex if equality holds only if λ = 0
or λ = 1.

Definition

A function f is concave if −f is convex.

A function is convex if it always lies below any chord.

A function is concave if it always lies above any chord.
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Entropy, Relative Entropy, and Mutual Information Jensen’s Inequality and Its Consequences

Examples

Examples of convex functions include

x2, |x |, ex , x log x (for x ≥ 0), and so on.

Examples of concave functions include

log x and
√
x , for x ≥ 0.
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Entropy, Relative Entropy, and Mutual Information Jensen’s Inequality and Its Consequences

Examples

The figure shows some examples of convex and concave functions.

Linear functions ax + b are both convex and concave.
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Entropy, Relative Entropy, and Mutual Information Jensen’s Inequality and Its Consequences

Convexity and Second Derivatives

Theorem

If the function f has a second derivative that is nonnegative (positive)
over an interval, the function is convex (strictly convex) over that interval.

We use the Taylor series expansion of the function around x0:

f (x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x∗)

2!
(x − x0)

2,

where x∗ lies between x0 and x . By hypothesis, f ′′(x∗) ≥ 0.

Thus, the last term is nonnegative for all x .

Letting x0 = λx1 + (1− λ)x2 and take x = x1, to obtain

f (x1) ≥ f (x0) + f ′(x0)((1 − λ)(x1 − x2)).

Similarly, taking x = x2, we obtain

f (x2) ≥ f (x0) + f ′(x0)(λ(x2 − x1)).
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Entropy, Relative Entropy, and Mutual Information Jensen’s Inequality and Its Consequences

Convexity and Second Derivatives (Cont’d)

We got

f (x1) ≥ f (x0) + f ′(x0)((1 − λ)(x1 − x2)),
f (x2) ≥ f (x0) + f ′(x0)(λ(x2 − x1)).

Multiplying the first by λ and the second by 1− λ and adding, we
obtain

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2).

The proof for strict convexity proceeds along the same lines.

Example: The theorem allows us immediately to verify:

The strict convexity of x2, ex , and x log x , for x ≥ 0;
The strict concavity of log x and

√
x , for x ≥ 0.
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Jensen’s Inequality

Let E denote expectation.

EX =
∑

x∈X
p(x)x in the discrete case;

EX =
∫
xf (x) dx in the continuous case.

Theorem (Jensen’s Inequality)

If f is a convex function and X is a random variable,

Ef (X ) ≥ f (EX ).

Moreover, if f is strictly convex, the equality implies that X = EX with
probability 1 (i.e., X is a constant).

We prove the inequality for discrete distributions using induction on
the number of mass points.

We omit the proof of the second statement.
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Jensen’s Inequality (Cont’d)

For a two-mass-point distribution, the inequality becomes

p1f (x1) + p2f (x2) ≥ f (p1x1 + p2x2).

This follows directly from the definition of convex functions.

Suppose the theorem is true for distributions with k − 1 mass points.

Then writing p′i =
pi

1−pk
, for i = 1, 2, . . . , k − 1, we have

∑k
i=1 pi f (xi) = pk f (xk) + (1− pk)

∑k−1
i=1 p′i f (xi )

≥ pk f (xk) + (1− pk)f (
∑k−1

i=1 p′ixi)
(by the induction hypothesis)

≥ f (pkxk + (1− pk)
∑k−1

i=1 p′ixi)
(definition of convexity)

= f (
∑k

i=1 pixi ).

The proof can be extended to continuous distributions by continuity
arguments.
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The Information Inequality

Theorem (Information Inequality)

Let p(x), q(x), x ∈ X , be two probability mass functions. Then

D(p‖q) ≥ 0,

with equality if and only if p(x) = q(x), for all x .

Let A = {x : p(x) > 0} be the support set of p(x). Then

−D(p‖q) = −∑x∈A p(x) log p(x)
q(x)

=
∑

x∈A p(x) log q(x)
p(x)

≤ log
∑

x∈A p(x)q(x)
p(x)

= log
∑

x∈A q(x)
≤ log

∑
x∈X q(x)

= log 1 = 0.
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The Information Inequality (Cont’d)

We showed D(p‖q) ≥ 0.

Now log t is a strictly concave function of t.

It follows that we have equality instead of the first inequality if and
only if q(x)

p(x) is constant everywhere, i.e.,

q(x) = cp(x), for all x .

Thus, ∑

x∈A

q(x) = c
∑

x∈A

p(x) = c .

We have equality in the second inequality only if
∑

x∈A

q(x) =
∑

x∈X

q(x) = 1.

This implies that c = 1.

Hence, D(p‖q) = 0 if and only if p(x) = q(x), for all x .
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Consequences

Corollary (Nonnegativity of Mutual Information)

For any two random variables, X ,Y ,

I (X ;Y ) ≥ 0,

with equality if and only if X and Y are independent.

We have
I (X ;Y ) = D(p(x , y)‖p(x)p(y)) ≥ 0.

Moreover, by the Information Inequality Theorem,

D(p(x , y)‖p(x)p(y)) = 0 iff p(x , y) = p(x)p(y)

iff X and Y are independent.
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Consequences (Cont’d)

Corollary

We have
D(p(y |x)‖q(y |x)) ≥ 0,

with equality if and only if p(y |x) = q(y |x), for all y and x , such that
p(x) > 0.

Also using the Information Inequality Theorem.

Corollary

We have
I (X ;Y |Z ) ≥ 0,

with equality if and only if X and Y are conditionally independent given Z .

Note that I (X ;Y |Z ) =∑z p(z)
∑

x ,y p(x , y |z) log
p(x ,y |z)

p(x |z)p(y |z) .

So we may, once more, use the Information Inequality Theorem.
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Maximum Entropy

We now show that the uniform distribution over the range X is the
maximum entropy distribution over this range.

It follows that any random variable with this range has an entropy no
greater than log |X |.

Theorem

H(X ) ≤ log |X |, where |X | denotes the number of elements in the range
of X , with equality if and only if X has a uniform distribution over X .

Let u(x) = 1
|X | be the uniform probability mass function over X .

Let p(x) be the probability mass function for X . Then

log |X | − H(X ) =
∑

p(x) log 1
u(x) −

∑
p(x) log 1

p(x)

=
∑

p(x) log p(x)
u(x)

= D(p‖u) ≥ 0.
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Conditioning Reduces Entropy

Theorem (Conditioning Reduces Entropy) (Information Cannot Hurt)

We have
H(X |Y ) ≤ H(X ),

with equality if and only if X and Y are independent.

By the Nonnegativity of Mutual Information,

H(X )− H(X |Y ) = I (X ;Y ) ≥ 0.

Intuitively, the theorem says that knowing another random variable Y

can only reduce the uncertainty in X .
Note: This is true only on the average.
H(X |Y = y) may be greater than or less than or equal to H(X ).

However, on the average

H(X |Y ) =
∑

y

p(y)H(X |Y = y) ≤ H(X ).

George Voutsadakis (LSSU) Information Theory February 2024 51 / 89



Entropy, Relative Entropy, and Mutual Information Jensen’s Inequality and Its Consequences

Example

Let (X ,Y ) have the joint distribution shown on the
right.
Then

H(X ) = H(18 ,
7
8) = 0.544 bit;

H(X |Y = 1) = H(0, 1) = 0 bits;

H(X |Y = 2) = H(12 ,
1
2) = 1 bit.

Y \X 1 2

1 0 3
4

2 1
8

1
8

We calculate

H(X |Y ) =
3

4
H(X |Y = 1) +

1

4
H(X |Y = 2) = 0.25 bit.

Thus, the uncertainty in X is:

Increased if Y = 2 is observed;
Decreased if Y = 1 is observed.

But uncertainty decreases on the average.
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Independence Bound on Entropy

Theorem (Independence Bound on Entropy)

Let X1,X2, . . . ,Xn be drawn according to p(x1, x2, . . . , xn). Then

H(X1,X2, . . . ,Xn) ≤
n∑

i=1

H(Xi ),

with equality if and only if the Xi are independent.

By the chain rule for entropies,

H(X1,X2, . . . ,Xn) =
∑n

i=1H(Xi |Xi−1, . . . ,X1)

≤ ∑n
i=1H(Xi ),

where the inequality follows directly from the preceding theorem.

We have equality if and only if Xi is independent of Xi−1, . . . ,X1 for
all i , i.e., if and only if the Xi ’s are independent.
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Subsection 7

Log Sum Inequality and Its Applications
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Log Sum Inequality

Theorem (Log Sum Inequality)

For nonnegative numbers, a1, a2, . . . , an and b1, b2, . . . , bn,

n∑

i=1

ai log
ai

bi
≥
(

n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

,

with equality if and only if ai
bi

= const.

We again use the convention that 0 log 0 = 0, a log a
0 = ∞ if a > 0,

and 0 log 0
0 = 0. These follow from continuity.

Assume without loss of generality that ai > 0 and bi > 0.

Note that f (t) = t log t ⇒ f ′(t) = log t + log e ⇒ f ′′(t) = 1
t
log e.

So f (t) = t log t is strictly convex, for all positive t.
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Log Sum Inequality (Cont’d)

Hence, by Jensen’s inequality, for αi ≥ 0, with
∑

i αi = 1,

∑
αi f (ti ) ≥ f

(∑
αi ti

)
.

Now set αi =
bi∑n
j=1 bj

and ti =
ai
bi
.

∑ bi∑
bi

ai
bi
log ai

bi
≥ ∑ bi∑

bi

ai
bi
log
∑ bi∑

bi

ai
bi

1∑
bi

∑
ai log

ai
bi

≥
∑

ai∑
bi
log

∑
ai∑
bi

∑
ai log

ai
bi

≥ (
∑

ai ) log
∑

ai∑
bi
.

Finally, taking into account that f (t) = t log t is strictly convex, we
get, from Jensen’s Inequality, that equality implies ti =

ai
bi

= const.
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Applying the Log Sum Inequality

Claim: D(p‖q) ≥ 0, with equality if and only if p(x) = q(x).

By the log sum inequality,

D(p‖q) =
∑

p(x) log p(x)
q(x)

≥ (
∑

p(x)) log
∑

p(x)∑
q(x)

= 1 log 1
1

= 0.

Equality holds if and only if p(x)
q(x) = c .

Since both p and q are probability mass functions, c = 1.

Hence, D(p‖q) = 0 if and only if p(x) = q(x), for all x .
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Convexity of Relative Entropy

Theorem (Convexity of Relative Entropy)

D(p‖q) is convex in the pair (p, q), i.e., if (p1, q1) and (p2, q2) are two
pairs of probability mass functions, then, for all 0 ≤ λ ≤ 1,

D(λp1 + (1− λ)p2‖λq1 + (1− λ)q2) ≤ λD(p1‖q1) + (1− λ)D(p2‖q2).

We apply the log sum inequality to a term on the left-hand side.

D(λp1 + (1− λ)p2‖λq1 + (1− λ)q2)

=
∑

(λp1 + (1− λ)p2) log
λp1+(1−λ)p2
λq1+(1−λ)q2

≤∑
[
λp1 log

λp1
λp2

+ (1− λ)p2 log
(1−λ)p2
(1−λ)q2

]

= λ
∑

p1 log
p1
q1

+ (1− λ)
∑

p2 log
p2
q2

= λD(p1‖q1) + (1− λ)D(p2‖q2).
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Concavity of Entropy

Theorem (Concavity of Entropy)

H(p) is a concave function of p.

Let u be the uniform distribution on X .

We know that H(u) = log |X | and

H(p) = log |X | − D(p‖u).

By the preceding theorem, relative entropy is convex.

Therefore, by the displayed equality, H is concave.
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Concavity of Entropy (Alternative Proof)

Let X1, X2 be random variables with values in a set A.

Suppose that:

X1 has distribution p1;
X2 has distribution p2.

Let

θ =

{
1, with probability λ

2, with probability 1− λ
.

Let Z = Xθ. Then the distribution of Z is λp1 + (1− λ)p2.

Now conditioning reduces entropy. So H(Z ) ≥ H(Z |θ).
Equivalently,

H(λp1 + (1− λ)p2) ≥ λH(p1) + (1− λ)H(p2).

So entropy is concave as a function of the distribution.
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Concavity, Convexity and Mutual Information

Theorem

Let (X ,Y ) ∼ p(x , y) = p(x)p(y |x). The mutual information I (X ;Y ) is:

A concave function of p(x) for fixed p(y |x);
A convex function of p(y |x) for fixed p(x).

For the first part, we expand the mutual information

I (X ;Y ) = H(Y )− H(Y |X ) = H(Y )−
∑

x

p(x)H(Y |X = x).

By Concavity of Entropy, H(Y ) is a concave function of p(y).

If p(y |x) is fixed, then p(y) is a linear function of p(x).

Hence, H(Y ) is also a concave function of p(x).

The second term is a linear function of p(x).

Therefore, the difference is a concave function of p(x).
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Concavity, Convexity and Mutual Information (Cont’d)

For the second part, fix p(x).

Consider two different conditional distributions p1(y |x) and p2(y |x).
The corresponding joint distributions are

p1(x , y) = p(x)p1(y |x) and p2(x , y) = p(x)p2(y |x).

Their respective marginals are p(x), p1(y) and p(x), p2(y).

Consider a
pλ(y |x) = λp1(y |x) + (1− λ)p2(y |x),

a mixture of p1(y |x) and p2(y |x), where 0 ≤ λ ≤ 1.

The corresponding joint distribution is also a mixture of the
corresponding joint distributions,

pλ(x , y) = λp1(x , y) + (1− λ)p2(x , y).
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Concavity, Convexity and Mutual Information (Cont’d)

The distribution of Y is also a mixture,

pλ(y) = λp1(y) + (1− λ)p2(y).

Let qλ(x , y) = p(x)pλ(y) be the product of the marginal distributions.

Then we have

qλ(x , y) = λq1(x , y) + (1− λ)q2(x , y).

But the mutual information is the relative entropy between the joint
distribution and the product of the marginals.

So we get
I (X ;Y ) = D(pλ(x , y)‖qλ(x , y)).

By the Convexity of Relative Entropy, D(p‖q) is convex in (p, q).

So the mutual information is a convex function of the conditional
distribution.
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Subsection 8

Data-Processing Inequality
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Ordered Markov Chains

Definition

Random variables X ,Y ,Z are said to form a Markov chain in that

order, denoted by X → Y → Z , if the conditional distribution of Z
depends only on Y and is conditionally independent of X .
Specifically, X ,Y and Z form a Markov chain X → Y → Z if the joint
probability mass function can be written as

p(x , y , z) = p(x)p(y |x)p(z |y).
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Characterization

Given, random variables X ,Y ,Z , X → Y → Z if and only if X and Z

are conditionally independent given Y .

Suppose, first, that p(x , y , z) = p(x)p(y |x)p(z |y).
Then we have

p(x , z |y) = p(x , y , z)

p(y)
=

p(x)p(y |x)p(z |y)
p(x ,y)
p(x |y)

= p(x |y)p(z |y).

Suppose, conversely, that p(x , z |y) = p(x |y)p(z |y).
Then, we have

p(x , y , z) = p(x , z |y)p(y) = p(x |y)p(z |y)p(y)
= p(x , y)p(z |y) = p(x)p(y |x)p(z |y).

This characterization of Markov chains can be extended to define
Markov fields, which are n-dimensional random processes in which the
interior and exterior are independent given the values on the boundary.
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Consequences

X → Y → Z implies that Z → Y → X .

Thus, the condition is sometimes written

X ↔ Y ↔ Z .

If Z = f (Y ), then X → Y → Z .

The hypothesis implies p(z |x , y) = p(z |y).
Therefore,

p(x , y , z) = p(x)p(y |x)p(z |x , y) = p(x)p(y |x)p(z |y).
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Data-Processing Inequality

The next theorem demonstrates that no processing of Y , deterministic
or random, can increase the information that Y contains about X .

Theorem (Data-Processing Inequality)

If X → Y → Z , then I (X ;Y ) ≥ I (X ;Z ).

By the chain rule, we can expand mutual information in two different
ways:

I (X ;Y ,Z ) = I (X ;Z ) + I (X ;Y |Z )
= I (X ;Y ) + I (X ;Z |Y ).

But X and Z are conditionally independent given Y .

So we have I (X ;Z |Y ) = 0.

Since I (X ;Y |Z ) ≥ 0, we have I (X ;Y ) ≥ I (X ;Z ).

Equality holds if and only if I (X ;Y |Z ) = 0.

That is, if and only if X → Z → Y forms a Markov chain.

Similarly, one can prove that I (Y ;Z ) ≥ I (X ;Z ).
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Effect of Functions of the Data

Corollary

In particular, if Z = g(Y ), we have I (X ;Y ) ≥ I (X ; g(Y )).

X → Y → g(Y ) forms a Markov chain.

Thus functions of the data Y cannot increase the information about
X .
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Effect of Downstream Observations

Corollary

If X → Y → Z , then I (X ;Y |Z ) ≤ I (X ;Y ).

Consider again

I (X ;Y ,Z ) = I (X ;Z ) + I (X ;Y |Z )
= I (X ;Y ) + I (X ;Z |Y ).

By Markovity, I (X ;Z |Y ) = 0. Moreover, I (X ;Z ) ≥ 0.

We obtain I (X ;Y |Z ) ≤ I (X ;Y ).

Thus, the dependence of X and Y is decreased (or remains
unchanged) by the observation of a “downstream” random variable Z .
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Effect of Downstream Observations

Note: It is possible that I (X ;Y |Z ) > I (X ;Y ) when X ,Y and Z do
not form a Markov chain.

Example: Let X and Y be independent fair binary random variables.

Let
Z = X + Y .

Then I (X ;Y ) = 0.

On the other hand,

I (X ;Y |Z ) = H(X |Z ) − H(X |Y ,Z )

= H(X |Z )
= P(Z = 1)H(X |Z = 1)

= 1
2 bit.
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Subsection 9

Sufficient Statistics
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Idea of Sufficient Statistic

Suppose that we have a family of probability mass functions {fθ(x)}
indexed by θ.

Let X be a sample from a distribution in this family.

Let T (X ) be any statistic (function of the sample) like the sample
mean or sample variance.

Then θ → X → T (X ).

By the data-processing inequality, we have

I (θ;T (X )) ≤ I (θ;X ),

for any distribution on θ.

However, if equality holds, no information is lost.

A statistic T (X ) is called sufficient for θ if it contains all the
information in X about θ.
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Sufficient Statistic

Definition

A function T (X ) is said to be a sufficient statistic relative to the family
{fθ(x)} if X is independent of θ given T (X ), for any distribution on θ, i.e.,

θ → T (X ) → X

forms a Markov chain.

This is the same as the condition for equality in the data-processing
inequality,

I (θ;X ) = I (θ;T (X )),

for all distributions on θ.

Hence sufficient statistics preserve mutual information and conversely.
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Example of Sufficient Statistic I

Let X1,X2, . . . ,Xn, Xi ∈ {0, 1}, be an independent and identically
distributed (i.i.d.) sequence of coin tosses of a coin with unknown
parameter θ = Pr(Xi = 1).

Given n, the number of 1’s,

T (X1,X2, . . . ,Xn) =
n∑

i=1

Xi ,

is a sufficient statistic for θ.

In fact, we can show that given T , all sequences having that many 1’s
are equally likely and independent of the parameter θ. Specifically,

Pr{(X1,X2, . . . ,Xn) = (x1, x2, . . . , xn) :
∑n

i=1 Xi = k}

=

{
1

(nk)
, if

∑
xi = k

0, otherwise

Thus, θ →∑
Xi → (X1,X2, . . . ,Xn) forms a Markov chain,

This shows that T is a sufficient statistic for θ.
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Example of Sufficient Statistic II

Suppose X is normally distributed with mean θ and variance 1; i.e.,

fθ(x) =
1√
2π

e−(x−θ)2/2 = N (θ, 1).

Let X1,X2, . . . ,Xn be drawn independently according to this
distribution.

A sufficient statistic for θ is the sample mean

X n =
1

n

n∑

i=1

Xi .

It can be verified that the conditional distribution of X1,X2, . . . ,Xn,
conditioned on X n and n does not depend on θ.
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Example of Sufficient Statistic III

Suppose fθ = Uniform(θ, θ + 1).

A sufficient statistic for θ is

T (X1,X2, . . . ,Xn)
= (max {X1,X2, . . . ,Xn},min {X1,X2, . . . ,Xn}).

Again, one can show (not very easily) that the distribution of the
data is independent of the parameter given the statistic T .
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Minimal Sufficient Statistic

Definition

A statistic T (X ) is a minimal sufficient statistic relative to {fθ(x)} if it
is a function of every other sufficient statistic U.
Interpreting this in terms of the data-processing inequality, this implies that

θ → T (X ) → U(X ) → X .

A minimal sufficient statistic maximally compresses the information
about θ in the sample.

Other sufficient statistics may contain additional irrelevant
information.

Example: For a normal distribution with mean θ, the pair of functions
giving the mean of all odd samples and the mean of all even samples
is a sufficient statistic, but not a minimal sufficient statistic.
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Subsection 10

Fano’s Inequality
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Introduction

Suppose that we know a random variable Y and we wish to guess the
value of a correlated random variable X .

Fano’s inequality relates the probability of error in guessing the
random variable X to its conditional entropy H(X |Y ).

We can show that the conditional entropy of a random variable X ,
given another random variable Y , is zero if and only if X is a function
of Y .

Hence, we can estimate X from Y with zero probability of error if and
only if H(X |Y ) = 0.

Extending this argument, we expect to be able to estimate X with a
low probability of error only if the conditional entropy H(X |Y ) is
small.
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Idea of Fano’s Inequality

Suppose that we wish to estimate a random variable X having
distribution p(x).

We observe a random variable Y which is related to X by the
conditional distribution p(y |x).
From Y , we calculate a function g(Y ) = X̂ , where X̂ is an estimate

of X and takes on values in X̂ .

We will not restrict the alphabet X̂ to be equal to X .
We will also allow the function g(Y ) to be random.

We wish to bound the probability that X̂ 6= X .

We observe that X → Y → X̂ forms a Markov chain.

Define the probability of error Pe = Pr{X̂ 6= X}.
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Fano’s Inequality

Theorem (Fano’s Inequality)

For any estimator X̂ , such that X → Y → X̂ , with Pe = Pr(X 6= X̂ ), we
have

H(Pe) + Pe log |X | ≥ H(X |X̂ ) ≥ H(X |Y ).

This inequality can be weakened to

1 + Pe log |X | ≥ H(X |Y ) or Pe ≥
H(X |Y )− 1

log |X | .

Remark: Note that Pe = 0 implies that H(X |Y ) = 0.

We first ignore the role of Y and prove the first inequality.

Then we use the data-processing inequality to prove the more
traditional form of Fano’s inequality, given by the second inequality.
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Fano’s Inequality (Cont’d)

Define an error random variable

E =

{
1, if X̂ 6= X

0, if X̂ = X
.

Using the chain rule for entropies, we expand H(E ,X |X̂ ) in two
different ways

H(E ,X |X̂ ) = H(X |X̂ ) + H(E |X , X̂ )︸ ︷︷ ︸
=0

= H(E |X̂ )︸ ︷︷ ︸
≤H(Pe)

+H(X |E , X̂ )︸ ︷︷ ︸
≤Pe log |X |

.

Since conditioning reduces entropy, H(E |X̂ ) ≤ H(E ) = H(Pe).

Since E is a function of X and X̂ , H(E |X , X̂ ) = 0.
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Fano’s Inequality (Cont’d)

The remaining term, H(X |E , X̂ ), can be bounded by noting that:

Given E = 0, X = X̂ ;
Given E = 1, we can upper bound the conditional entropy by the log of
the number of possible outcomes.

Therefore, we obtain

H(X |E , X̂ ) = Pr(E = 0)H(X |X̂ ,E = 0)

+ Pr(E = 1)H(X |X̂ ,E = 1)
≤ (1− Pe)0 + Pe log |X |.

Combining these results, we obtain

H(Pe ) + Pe log |X | ≥ H(X |X̂ ).
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Fano’s Inequality (Conclusion)

We obtained
H(Pe ) + Pe log |X | ≥ H(X |X̂ ).

Now X → Y → X̂ is a Markov chain.

So, by the Data-Processing Inequality, I (X ; X̂ ) ≤ I (X ;Y ).

Therefore,

H(X |X̂ ) = H(X )− I (X ; X̂ ) ≥ H(X ) − I (X ;Y ) = H(X |Y ).

Thus, we have

H(Pe ) + Pe log |X | ≥ H(X |X̂ ) ≥ H(X |Y ).
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Consequences

Corollary

For any two random variables X and Y , let p = Pr(X 6= Y ). Then

H(p) + p log |X | ≥ H(X |Y ).

Let X̂ = Y in Fano’s inequality.

For any two random variables X and Y , if the estimator g(Y ) takes
values in the set X , we can strengthen the inequality slightly by
replacing log |X | with log (|X | − 1).

Corollary

Let Pe = Pr(X 6= X̂ ), and let X̂ : Y → X . Then

H(Pe) + Pe log (|X | − 1) ≥ H(X |Y ).
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Sharpness of Fano’s Inequality

Suppose that there is no knowledge of Y .

Thus, X must be guessed without any information.

Let X ∈ {1, 2, . . . ,m} and p1 ≥ p2 ≥ · · · ≥ pm.

Then the best guess of X is X̂ = 1.

The resulting probability of error is Pe = 1− p1.

Fano’s inequality becomes

H(Pe ) + Pe log (m − 1) ≥ H(X ).

The probability mass function

(p1, p2, . . . , pm) =

(
1− Pe ,

Pe

m − 1
, . . . ,

Pe

m − 1

)

achieves this bound with equality.

Thus, Fano’s inequality is sharp.
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Error and Entropy for Two iid Random Variables

Let X and X ′ be two independent identically distributed random
variables with entropy H(X ). The probability at X = X ′ is given by
Pr(X = X ′) = p2(x).

Lemma

If X and X ′ are i.i.d. with entropy H(X ),

Pr(X = X ′) ≥ 2−H(X ),

with equality if and only if X has a uniform distribution.

Suppose that X ∼ p(x).

By Jensen’s inequality, we have 2E log p(X ) ≤ E2log p(X ).

This implies that

2−H(X ) = 2
∑

p(x) log p(x) ≤
∑

p(x)2log p(x) =
∑

p2(x).
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Error and Entropy for Two Random Variables

Corollary

Let X ,X ′ be independent with X ∼ p(x), X ′ ∼ r(x), x , x ′ ∈ X .
Then

Pr(X = X ′) ≥ 2−H(p)−D(p‖r), Pr(X = X ′) ≥ 2−H(r)−D(r‖p).

We have

2−H(p)−D(p‖r) = 2
∑

p(x) log p(x)+
∑

p(x) log r(x)
p(x)

= 2
∑

p(x) log r(x)

≤ ∑
p(x)2log r(x)

=
∑

p(x)r(x)
= Pr(X = X ′).

The inequality follows from Jensen’s inequality and the convexity of
the function f (y) = 2y .
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