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Asymptotic Equipartition Property Convergence of Random Variables

Law of Large Numbers and Asymptotic Equipartition

In information theory, the analog of the law of large numbers is the
asymptotic equipartition property (AEP).

The law of large numbers states that for independent, identically
distributed (i.i.d.) random variables, 1

n

∑n
i=1 Xi is close to its

expected value EX for large values of n.

The AEP states that, for i.i.d. random variables X1,X2, . . . ,Xn, if
p(X1,X2, . . . ,Xn) is the probability of observing the sequence
X1,X2, . . . ,Xn, then

1
n
log 1

p(X1,X2,...,Xn)
is close to the entropy H.

Thus, the probability p(X1,X2, . . . ,Xn) assigned to an observed
sequence will be close to 2−nH .
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Asymptotic Equipartition Property Convergence of Random Variables

Typical and Nontypical Sets of Sequences

This enables us to divide the set of all sequences into two sets.

The typical set, where the sample entropy is close to the true entropy;
The nontypical set, which contains the other sequences.

Most of our attention will be on the typical sequences.

Any property that is proved for the typical sequences:

Will be true with high probability;
Will determine the average behavior of a large sample.
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Asymptotic Equipartition Property Convergence of Random Variables

Example

Let the random variable X ∈ {0, 1} have a probability mass function
defined by p(1) = p and p(0) = q.

If X1,X2, . . . ,Xn are i.i.d. according to p(x), the probability of a
sequence x1, x2, . . . , xn is

∏n
i=1 p(xi).

Example: The probability of the sequence (1, 0, 1, 1, 0, 1) is

p
∑

Xiqn−
∑

Xi = p4q2.

Clearly, it is not true that all 2n sequences of length n have the same
probability.
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Asymptotic Equipartition Property Convergence of Random Variables

Prediction

We might be able to predict the probability of the sequence that we
actually observe.

We ask for the probability p(X1,X2, . . . ,Xn) of the outcomes
X1,X2, . . . ,Xn, where X1,X2, . . . are i.i.d. ∼ p(x).

Apparently, we are asking for the probability of an event drawn
according to the same probability distribution.

It turns out that p(X1,X2, . . . ,Xn) is close to 2−nH with high
probability.

We summarize this by saying, “Almost all events are almost equally
surprising”.

This is a way of saying that

Pr{(X1,X2, . . . ,Xn) : p(X1,X2, . . . ,Xn) = 2−n(H±ǫ)} ≈ 1,

if X1,X2, . . . ,Xn are i.i.d. ∼ p(x).
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Asymptotic Equipartition Property Convergence of Random Variables

Example (Cont’d)

In the example given, where

p(X1,X2, . . . ,Xn) = p
∑

Xiqn−
∑

Xi ,

we are simply saying the following:

The number of 1’s in the sequence is close to np (with high
probability);
All such sequences have (roughly) the same probability 2−nH(p).

For the last statement observe that

−nH(p) = − n(−p log p − q log q)
= log (pnpqnq)
= log (pnpqn−np).

So pnpqn−np = 2−nH(p).
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Asymptotic Equipartition Property Convergence of Random Variables

Convergence in Probability

We use the following idea of convergence in probability.

Definition (Convergence of Random Variables)

Given a sequence of random variables, X1,X2, . . ., we say that the
sequence X1,X2, . . . converges to a random variable X :

1. In probability if, for every ǫ > 0,

Pr{|Xn − X | > ǫ} → 0;

2. In mean square if
E (Xn − X )2 → 0;

3. With probability 1 (also called almost surely) if

Pr

{

lim
n→∞

Xn = X

}

= 1.
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Asymptotic Equipartition Property Asymptotic Equipartition Property Theorem
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Asymptotic Equipartition Property Asymptotic Equipartition Property Theorem

Asymptotic Equipartition Property

Theorem (AEP)

If X1,X2, . . . are i.i.d. ∼ p(x), then

−
1

n
log p(X1,X2, . . . ,Xn) → H(X ) in probability.

Functions of independent random variables are also independent
random variables. Thus, since the Xi are i.i.d., so are log p(Xi).

Hence, by the Weak Law of Large Numbers,

− 1
n
log p(X1,X2, . . . ,Xn) = − 1

n

∑

i log p(Xi)

→ − E log p(X ) in probability

= H(X ).
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Asymptotic Equipartition Property Asymptotic Equipartition Property Theorem

Typical Sets

Definition

The typical set A
(n)
ǫ with respect to p(x) is the set of sequences

(x1, x2, . . . , xn) ∈ X n with the property

2−n(H(X )+ǫ) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(X )−ǫ).
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Asymptotic Equipartition Property Asymptotic Equipartition Property Theorem

Properties of A
(n)
ǫ

Theorem

1. If (x1, x2, . . . , xn) ∈ A
(n)
ǫ , then

H(X )− ǫ ≤ −
1

n
log p(x1, x2, . . . , xn) ≤ H(X ) + ǫ.

2. Pr{A
(n)
ǫ } > 1− ǫ, for n sufficiently large.

3. |A
(n)
ǫ | ≤ 2n(H(X )+ǫ), where |A| denotes the number of elements in A.

4. |A
(n)
ǫ | ≥ (1− ǫ)2n(H(X )−ǫ), for n sufficiently large.

Thus:

The typical set has probability nearly 1;

All elements of the typical set are nearly equiprobable;

The number of elements in the typical set is nearly 2nH .
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Asymptotic Equipartition Property Asymptotic Equipartition Property Theorem

Proof of the Theorem

(1) By the definition of A
(n)
ǫ , if (x1, x2, . . . , xn) ∈ A

(n)
ǫ , then

2−n(H(X )+ǫ) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(X )−ǫ).

Therefore, H(X ) − ǫ ≤ − 1
n
log p(x1, x2, . . . , xn) ≤ H(X ) + ǫ.

(2) By the preceding theorem, the probability of the event

(X1,X2, . . . ,Xn) ∈ A
(n)
ǫ tends to 1 as n → ∞.

Thus, for any δ > 0, there exists an n0, such that, for all n ≥ n0, we
have

Pr

{
∣

∣

∣

∣

−
1

n
log p(X1,X2, . . . ,Xn)− H(X )

∣

∣

∣

∣

< ǫ

}

> 1− δ.

Setting δ = ǫ, we obtain the second part of the theorem.

The identification of δ = ǫ will conveniently simplify notation later.
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Asymptotic Equipartition Property Asymptotic Equipartition Property Theorem

Proof of the Theorem (Cont’d)

(3) We write

1 =
∑

x∈X n p(x) ≥
∑

x∈A
(n)
ǫ

p(x)

≥
∑

x∈A
(n)
ǫ

2−n(H(X )+ǫ) = 2−n(H(X )+ǫ)|A
(n)
ǫ |.

The second inequality follows from the typical set property.

Hence |A
(n)
ǫ | ≤ 2n(H(X )+ǫ).

(4) Finally, for sufficiently large n, Pr{A
(n)
ǫ } > 1− ǫ. So

1− ǫ < Pr{A(n)
ǫ } ≤

∑

x∈A
(n)
ǫ

2−n(H(X )−ǫ) = 2−n(H(X )−ǫ)|A(n)
ǫ |.

The second inequality follows again from the typical set property.

Hence, |A
(n)
ǫ | ≥ (1− ǫ)2n(H(X )−ǫ).
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Asymptotic Equipartition Property Consequences of the AEP: Data Compression

Typical and Nontypical Sets of Sequences

Let X1,X2, . . . ,Xn be independent, identically distributed random
variables drawn from the probability mass function p(x).

We wish to find short descriptions for such sequences of random
variables.

We divide all sequences in
X n into two sets:

The typical set A
(n)
ǫ ;

Its complement.
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Asymptotic Equipartition Property Consequences of the AEP: Data Compression

Encoding Scheme

We order all elements in each set according to some order (e.g.,
lexicographic order).

Then we can represent each sequence of A
(n)
ǫ by giving the index of

the sequence in the set.

There are 2n(H+ǫ) sequences in A
(n)
ǫ .

So the indexing requires no more than n(H + ǫ) + 1 bits.
We prefix all these sequences by a 0.

So total length ≤ n(H+ ǫ)+2 bits to represent each sequence in A
(n)
ǫ .

Similarly, we can index each sequence not in A
(n)
ǫ by using not more

than n log |X |+ 1 bits.

We prefix these indices by 1.

We get a code for all sequences in X n by using not more than
n log |X |+ 2 bits.
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Asymptotic Equipartition Property Consequences of the AEP: Data Compression

Features of the Encoding Scheme

The following features hold for the above coding scheme:

The code is one-to-one and easily decodable.
The initial bit acts as a flag bit to indicate the length of the codeword
that follows.
We have used a brute-force enumeration of the atypical set A

(n)c

ǫ

without taking into account the fact that the number of elements in

A
(n)c

ǫ is less than the number of elements in X n.
Surprisingly, this is good enough to yield an efficient description.
The typical sequences have short descriptions of length ≈ nH .

We use the notation xn to denote a sequence x1, x2, . . . , xn.

Let ℓ(xn) be the length of the codeword corresponding to xn.
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Asymptotic Equipartition Property Consequences of the AEP: Data Compression

Expected Average Length of Encoding Scheme

Theorem

Let X n be i.i.d. ∼ p(x). Let ǫ > 0. Then, there exists a code that maps
sequences xn of length n into binary strings, such that the mapping is
one-to-one (and therefore invertible) and

E

[

1

n
ℓ(X n)

]

≤ H(X ) + ǫ,

for n sufficiently large.

Thus, we can represent sequences X n using nH(X ) bits on the
average.

Suppose n is sufficiently large so that Pr{A
(n)
ǫ } ≥ 1− ǫ.

George Voutsadakis (LSSU) Information Theory February 2024 20 / 26



Asymptotic Equipartition Property Consequences of the AEP: Data Compression

Expected Average Length of Encoding Scheme (Cont’d)

Then the expected length of the codeword is

E (ℓ(X n)) =
∑

xn p(x
n)ℓ(xn)

=
∑

xn∈A
(n)
ǫ

p(xn)ℓ(xn) +
∑

xn∈A
(n)c
ǫ

p(xn)ℓ(xn)

≤
∑

xn∈A
(n)
ǫ

p(xn)(n(H + ǫ) + 2)

+
∑

xn∈A
(n)c
ǫ

p(xn)(n log |X |+ 2)

= Pr{A
(n)
ǫ }(n(H + ǫ) + 2) + Pr{A

(n)c
ǫ }(n log |X |+ 2)

≤ n(H + ǫ) + ǫ(n log |X |) + 2
= n(H + ǫ′).

Note that ǫ′ = ǫ+ ǫ log |X |+ 2
n
can be made arbitrarily small by an

appropriate choice of ǫ followed by an appropriate choice of n.
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Asymptotic Equipartition Property High-Probability Sets and the Typical Set
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Asymptotic Equipartition Property High-Probability Sets and the Typical Set

Smallest High-Probability Sets

We will prove that the typical set has essentially the same number of
elements as the smallest set that contains most of the probability.

Definition

For each n = 1, 2, . . ., let B
(n)
δ ⊆ X n be the smallest set with

Pr{B
(n)
δ } ≥ 1− δ.
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Asymptotic Equipartition Property High-Probability Sets and the Typical Set

Smallest High-Probability Sets and Typical Sets

B
(n)
δ must have significant intersection with A

(n)
ǫ .

Theorem

Let X1,X2, . . . ,Xn be i.i.d. ∼ p(x). For δ < 1
2 and any δ′ > 0, we have,

for sufficiently large n,

Pr{B
(n)
δ } > 1− δ implies

1

n
log |B

(n)
δ | > H − δ′.

Thus, B
(n)
δ must have at least 2nH elements, to first order in the

exponent.

But A
(n)
ǫ has 2n(H±ǫ) elements.

Therefore, A
(n)
ǫ is about the same size as the smallest high-probability

set.
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Asymptotic Equipartition Property High-Probability Sets and the Typical Set

Equality of First-Order in the Exponent

Definition

The notation an
.
= bn means lim

n→∞

1

n
log

an

bn
= 0.

Thus, an
.
= bn implies that an and bn are equal to the first order in

the exponent.

We can restate the above results:

If δn → 0 and ǫn → 0, then |B
(n)
δn

|
.
= |A

(n)
ǫn |

.
= 2nH .
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Asymptotic Equipartition Property High-Probability Sets and the Typical Set

Difference Between A
(n)
ǫ and B

(n)
δ

Recall that a Bernoulli(θ) random variable is a binary random variable
that takes on the value 1 with probability θ.

Consider a Bernoulli sequence X1,X2, . . . ,Xn with parameter p = 0.9.

The typical sequences in this case are the sequences in which the
proportion of 1’s is close to 0.9.

However, this does not include the most likely single sequence, which
is the sequence of all 1’s.

The set B
(n)
δ includes all the most probable sequences and therefore

includes the sequence of all 1’s.

The preceding theorem implies that:

A
(n)
ǫ and B

(n)
δ

must both contain the sequences with about 90% 1’s;

A
(n)
ǫ and B

(n)
δ

are almost equal in size.
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