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Entropy Rates of a Stochastic Process Markov Chains

Stochastic Processes

A stochastic process {Xi} is an indexed sequence of random
variables.

There may be an arbitrary dependence among the random variables.

The process is characterized by the joint probability mass functions,
given, for all n = 1, 2, . . . and all (x1, x2, . . . , xn) ∈ X n, by

Pr{(X1,X2, . . . ,Xn) = (x1, x2, . . . , xn)} = p(x1, x2, . . . , xn).
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Entropy Rates of a Stochastic Process Markov Chains

Stationary Stochastic Processes

Definition

A stochastic process is said to be stationary if the joint distribution of any
subset of the sequence of random variables is invariant with respect to
shifts in the time index. I.e., {Xi} is stationary if

Pr{X1 = x1,X2 = x2, . . . ,Xn = xn}
= Pr{X1+ℓ = x1,X2+ℓ = x2, . . . ,Xn+ℓ = xn},

for every n, every shift ℓ and all x1, x2, . . . , xn ∈ X .
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Entropy Rates of a Stochastic Process Markov Chains

Markov Chains

A simple example of a stochastic process is one in which each random
variable:

Depends only on the one preceding it;
Is conditionally independent of all the other preceding random variables.

Definition

A discrete stochastic process X1,X2, . . . is said to be a Markov chain or a
Markov process if, for n = 1, 2, . . .,

Pr(Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, . . . ,X1 = x1)
= Pr(Xn+1 = xn+1|Xn = xn),

for all x1, x2, . . . , xn, xn+1 ∈ X .

In this case, the joint probability mass function of the random
variables can be written as

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2) · · · p(xn|xn−1).
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Entropy Rates of a Stochastic Process Markov Chains

Time Invariant Markov Chains

Definition

A Markov chain is said to be time invariant if the conditional probability
p(xn+1|xn) does not depend on n, i.e., for n = 1, 2, . . .,

Pr{Xn+1 = b|Xn = a} = Pr{X2 = b|X1 = a}, for all a, b ∈ X .

We will assume that the Markov chain is time invariant unless
otherwise stated.

If {Xi} is a Markov chain, Xn is called the state at time n.

A time invariant Markov chain is characterized by:

Its initial state;
A probability transition matrix P = [Pij ], i , j ∈ {1, 2, . . . ,m}, where
Pij = Pr{Xn+1 = j |Xn = i}.

George Voutsadakis (LSSU) Information Theory February 2024 7 / 51



Entropy Rates of a Stochastic Process Markov Chains

Irreducibility and Aperiodicity

A Markov chain is called irreducible if it is possible to go with
positive probability from any state of the Markov chain to any other
state in a finite number of steps.

A Markov chain is called aperiodic if the largest common factor of
the lengths of different paths from a state to itself is 1.
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Entropy Rates of a Stochastic Process Markov Chains

Stationary Distribution

If the probability mass function of the random variable at time n is
p(xn), the probability mass function at time n + 1 is

p(xn+1) =
∑

xn

p(xn)Pxnxn+1 .

A stationary distribution is a distribution on the states, such that
the distribution at time n+1 is the same as the distribution at time n.

If the initial state of a Markov chain is drawn according to a
stationary distribution, the Markov chain forms a stationary process.

If the finite-state Markov chain is irreducible and aperiodic, then:

The stationary distribution is unique;
From any starting distribution, the distribution of Xn tends to the
stationary distribution as n → ∞.
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Entropy Rates of a Stochastic Process Markov Chains

Example

Consider a two-state Markov
chain with a probability tran-
sition matrix

P =

[

1− α α

β 1− β

]

.

Let the stationary distribution be represented by a vector µ whose
components are the stationary probabilities of States 1 and 2.

Then the stationary probability can be found by solving the equation
µP = µ or, more simply, by balancing probabilities.

For the stationary distribution, the net probability flow across any cut
set in the state transition graph is zero.

Applying this to the figure we obtain µ1α = µ2β.
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Entropy Rates of a Stochastic Process Markov Chains

Example (Cont’d)

We found stationary distribution

µ1α = µ2β.

Since µ1 + µ2 = 1, the stationary distribution is

µ1 =
β

α+ β
, µ2 =

α

α+ β
.

If the Markov chain has an initial state drawn according to the
stationary distribution, the resulting process will be stationary.

The entropy of the state Xn at time n is

H(Xn) = H

(

β

α+ β
,

α

α+ β

)

.

This is not the rate at which entropy grows for H(X1,X2, . . . ,Xn).

The dependence among the Xi ’s will take a steady toll.
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Entropy Rates of a Stochastic Process Entropy Rate

Subsection 2

Entropy Rate
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Entropy Rates of a Stochastic Process Entropy Rate

Entropy of a Stochastic Process

Definition

The entropy of a stochastic process {Xi} is defined by

H(X ) = lim
n→∞

1

n
H(X1,X2, . . . ,Xn)

when the limit exists.

Example (Typewriter): Consider the case of a typewriter that has m
equally likely output letters. The typewriter can produce mn

sequences of length n, all of them equally likely. Hence

H(X1,X2, . . . ,Xn) = logmn.

The entropy rate is H(X ) = logm bits per symbol.
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Entropy Rates of a Stochastic Process Entropy Rate

Example (X1,X2, . . . i.i.d. Random Variables)

Suppose X1,X2, . . . are i.i.d. random variables.

Then
H(X ) = lim H(X1,X2,...,Xn)

n

= lim nH(X1)
n

= H(X1).

This is what one would expect for the entropy rate per symbol.
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Entropy Rates of a Stochastic Process Entropy Rate

Process with Undefined Entropy

Suppose X1,X2, . . . are independent but not identically distributed
random variables.

Then

H(X1,X2, . . . ,Xn) =
n

∑

i=1

H(Xi ),

but the H(Xi )’s are not all equal.

We can choose a sequence of distributions on X1,X2, . . ., such that
the limit of 1

n

∑

H(Xi ) does not exist.

An example of such a sequence is a random binary sequence where:

pi = P(Xi = 1) is not constant but a function of i ;
pi is chosen carefully so that the limit
H(X ) = limn→∞

1
n
H(X1,X2, . . . ,Xn) does not exist.
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Entropy Rates of a Stochastic Process Entropy Rate

Process with Undefined Entropy (Cont’d)

Let

pi =

{

0.5, if 2k < log log i ≤ 2k + 1,
0, if 2k + 1 < log log i ≤ 2k + 2

for k = 0, 1, 2, . . ..

Then there are arbitrarily long stretches where H(Xi ) = 1, followed by
exponentially longer segments where H(Xi ) = 0.

Hence, the running average of the H(Xi ) will oscillate between 0 and
1 and will not have a limit.

Thus, H(X ) is not defined for this process.
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Entropy Rates of a Stochastic Process Entropy Rate

Another Definition for Entropy for a Process

We define a related quantity for entropy rate,

H ′(X ) = lim
n→∞

H(Xn|Xn−1,Xn−2, . . . ,X1),

when the limit exists.

The two quantities H(X ) and H ′(X ) correspond to two different
notions of entropy rate.

The first is the per symbol entropy of the n random variables.
The second is the conditional entropy of the last random variable given
the past.
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Entropy Rates of a Stochastic Process Entropy Rate

H
′(X ) for a Stationary Process

Theorem

For a stationary stochastic process, H(Xn|Xn−1, . . . ,X1) is nonincreasing
in n and has a limit H ′(X ).

We have

H(Xn+1|X1,X2, . . . ,Xn) ≤ H(Xn+1|Xn, . . . ,X2)

(conditioning reduces entropy)

= H(Xn|Xn−1, . . . ,X1).

(stationarity of the process)

Since H(Xn|Xn−1, . . . ,X1) is a decreasing sequence of nonnegative
numbers, it has a limit H ′(X ).

George Voutsadakis (LSSU) Information Theory February 2024 18 / 51



Entropy Rates of a Stochastic Process Entropy Rate

Cesáro Mean

Theorem (Cesáro Mean)

If an → a and bn = 1
n

∑n
i=1 ai , then bn → a.

Informal Outline: Since most of the terms in the sequence {ak} are
eventually close to a, then bn, which is the average of the first n
terms, is also eventually close to a.

Formal Proof: Let ǫ > 0. Since an → a, there exists a number N(ǫ),
such that |an − a| ≤ ǫ, for all n ≥ N(ǫ). Hence, for all n ≥ N(ǫ),

|bn − a| = | 1
n

∑n
i=1(ai − a)| ≤ 1

n

∑n
i=1 |ai − a|

≤ 1
n

∑N(ǫ)
i=1 |ai − a|+ n−N(ǫ)

n
ǫ

≤ 1
n

∑N(ǫ)
i=1 |ai − a|+ ǫ.

The first term goes to 0 as n → ∞. Hence, we can make
|bn − a| ≤ 2ǫ by taking n large enough. So bn → a as n → ∞.
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Entropy Rates of a Stochastic Process Entropy Rate

H(X ) and H
′(X ) for a Stationary Process

Theorem

For a stationary stochastic process, the limits H(X ) and H ′(X ) exist and
are equal:

H(X ) = H ′(X ).

By the chain rule,

H(X1,X2, . . . ,Xn)

n
=

1

n

n
∑

i=1

H(Xi |Xi−1, . . . ,X1).

So the entropy rate is the time average of the conditional entropies.

But we showed that the conditional entropies tend to a limit H ′.
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Entropy Rates of a Stochastic Process Entropy Rate

H(X ) and H
′(X ) for a Stationary Process (Cont’d)

By the Cesáro Mean Theorem, the running average of the conditional
entropies has a limit.

Moreover, this limit is equal to the limit H ′ of the terms.

Thus, by a previous theorem,

H(X ) = lim
H(X1,X2, . . . ,Xn)

n

= lim
1

n

∑n
i=1H(Xi |Xi−1, . . . ,X1)

= limH(Xn|Xn−1, . . . ,X1)

= H ′(X ).
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Entropy Rates of a Stochastic Process Entropy Rate

The Case of Markov Chains

For a stationary Markov chain, the entropy rate, when the conditional
entropy is calculated using the given stationary distribution, is given
by

H(X ) = H ′(X )

= limH(Xn|Xn−1, . . . ,X1)

= limH(Xn|Xn−1)

= H(X2|X1).

Recall that the stationary distribution µ is the solution of the
equations

µj =
∑

i

µiPij , for all j .
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Entropy Rates of a Stochastic Process Entropy Rate

Entropy Rate of a Stationary Markov Chain

Theorem

Let {Xi} be a stationary Markov chain with stationary distribution µ and
transition matrix P . Let X1 ∼ µ. Then the entropy rate is

H(X ) = −
∑

ij

µiPij log Pij .

We have
H(X ) = H(X2|X1)

=
∑

i µi(
∑

j −Pij logPij).
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Entropy Rates of a Stochastic Process Entropy Rate

Example

We look at the following two-state Markov chain.

Its entropy rate is

H(X ) = H(X2|X1)

= β
α+β

H(α) + α
α+β

H(β).
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Entropy Rates of a Stochastic Process Random Walk on a Weighted Graph

Subsection 3

Example: Entropy Rate of a Random Walk on a Weighted Graph
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Entropy Rates of a Stochastic Process Random Walk on a Weighted Graph

Random Walk on a Weighted Graph

We consider a random walk on a connected
graph with m nodes labeled {1, 2, . . . ,m}, with
weight Wij ≥ 0 on the edge joining node i to
node j .
The graph is undirected, so that Wij = Wji .
We setWij = 0 if there is no edge joining nodes
i and j .

A particle walks randomly from node to node in this graph.

The random walk {Xn} is a sequence of vertices of the graph.

Given Xn = i , the next vertex j is chosen from among the nodes
connected to node i with a probability proportional to the weight of
the edge connecting i to j :

Pij =
Wij

∑

k Wik

.
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Entropy Rates of a Stochastic Process Random Walk on a Weighted Graph

The Stationary Distribution: Guessing

The stationary distribution for this Markov chain assigns probability
to node i proportional to the total weight of the edges emanating
from node i .

Let Wi =
∑

j Wij be the total weight of edges emanating from node i .

Let W =
∑

i ,j :j>i

Wij be the sum of the weights of all the edges.

Then
∑

i Wi = 2W .

We now guess that the stationary distribution is

µi =
Wi

2W
.
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Entropy Rates of a Stochastic Process Random Walk on a Weighted Graph

The Stationary Distribution: Verification

We verify that µi =
Wi

2W is the stationary distribution by checking that
µP = µ.

∑

i

µiPij =
∑

i

Wi

2W

Wij

Wi

=
∑

i

1

2W
Wij =

Wj

2W
= µj .

Thus, the stationary probability of state i is proportional to the
weight of edges emanating from node i .

This stationary distribution has an interesting property of locality.

It depends only on the total weight and the weight of edges connected
to the node.
Hence, it does not change if the weights in some other part of the
graph are changed while keeping the total weight constant.
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Entropy Rates of a Stochastic Process Random Walk on a Weighted Graph

The Entropy Rate of the Random Walk

We can now calculate the entropy rate as

H(X ) = H(X2|X1)

= −
∑

i µi

∑

j Pij logPij

= −
∑

i
Wi

2W

∑

j

Wij

Wi
log

Wij

Wi

= −
∑

i

∑

j

Wij

2W log
Wij

Wi

= −
∑

i

∑

j

Wij

2W log
Wij

2W +
∑

i

∑

j

Wij

2W log Wi

2W

= H(· · ·
Wij

2W · · · )− H(· · · Wi

2W · · · ).
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Entropy Rates of a Stochastic Process Random Walk on a Weighted Graph

The Entropy Rate in a Special Case

Suppose all the edges have equal weight.

Then the stationary distribution puts weight Ei

2E on node i , where:

Ei is the number of edges emanating from node i ;
E is the total number of edges in the graph.

In this case, the entropy rate of the random walk is

H(X ) = log (2E )− H

(

E1

2E
,
E2

2E
, . . . ,

Em

2E

)

.
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Entropy Rates of a Stochastic Process Random Walk on a Weighted Graph

Random Walk on a Chessboard

Let a king move at random on an 8× 8 chessboard.

The king has eight moves in the interior, five moves at the edges, and
three moves at the corners.

Using this and the preceding results, the stationary probabilities are,
respectively,

8

420
,

5

420
,

3

420
.

The entropy rate is 0.92 log 8.

The factor of 0.92 is due to edge effects.

We would have an entropy rate of log 8 on an infinite chessboard.

Similarly, we can find the entropy rate of rooks (log 14 bits, since the
rook always has 14 possible moves), bishops, and queens.
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Entropy Rates of a Stochastic Process Random Walk on a Weighted Graph

Random Walks and Time Reversibility

It is easy to see that a stationary random walk on a graph is
time-reversible.

This means that the probability of any sequence of states is the same
forward or backward:

Pr(X1 = x1,X2 = x2, . . . ,Xn = xn)
= Pr(Xn = x1,Xn−1 = x2, . . . ,X1 = xn).

Rather surprisingly, the converse is also true.

Any time-reversible Markov chain can be represented as a random
walk on an undirected weighted graph.
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

Subsection 4

Second Law of Thermodynamics
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

Second Law of Thermodynamics and Entropy

The second law of thermodynamics states that the entropy of an
isolated system is nondecreasing.

In statistical thermodynamics, entropy is often defined as the log of
the number of microstates in the system.

This corresponds exactly to our notion of entropy if all the states are
equally likely.

We model the isolated system as a Markov chain with transitions
obeying the physical laws governing the system.

Implicit in this assumption is the notion of an overall state of the
system and the fact that knowing the present state, the future of the
system is independent of the past.

We will find that the entropy does not always increase.

However, relative entropy always decreases.
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

Relative Entropy D(µn‖µ
′
n) Decreases

Let µn and µ′

n be two probability distributions on the state space of a
Markov chain at time n.

Let µn+1 and µ′

n+1 be the corresponding distributions at time n+ 1.

Let the corresponding joint mass functions be denoted by p and q.

Let r(·|·) be the probability transition function of the Markov chain.

Then we have

p(xn, xn+1) = p(xn)r(xn+1|xn);
q(xn, xn+1) = q(xn)r(xn+1|xn).

By the chain rule for relative entropy, we have two expansions

D(p(xn, xn+1)‖q(xn, xn+1))
= D(p(xn)‖q(xn)) + D(p(xn+1|xn)‖q(xn+1|xn))
= D(p(xn+1)‖q(xn+1)) + D(p(xn|xn+1)‖q(xn|xn+1)).
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

Relative Entropy D(µn‖µ
′
n) Decreases (Cont’d)

We obtained

D(p(xn, xn+1)‖q(xn, xn+1))
= D(p(xn)‖q(xn)) +D(p(xn+1|xn)‖q(xn+1|xn))
= D(p(xn+1)‖q(xn+1)) + D(p(xn|xn+1)‖q(xn|xn+1)).

Now both p and q are derived from the Markov chain.

So both p(xn+1|xn) and q(xn+1|xn) are equal to r(xn+1|xn).

Hence D(p(xn+1|xn)‖q(xn+1|xn)) = 0.

But D(p(xn|xn+1)‖q(xn|xn+1)) ≥ 0.

Therefore, D(p(xn)‖q(xn)) ≥ D(p(xn+1)‖q(xn+1)).

Equivalently
D(µn‖µ

′

n) ≥ D(µn+1‖µ
′

n+1).

So the distance between the probability mass functions is decreasing
with time n for any Markov chain.
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

Relative Entropy D(µn‖µ) Decreases

In the preceding case, let µ′

n be any stationary distribution µ.

Then the distribution µ′

n+1 at the next time is also equal to µ.

Hence,
D(µn‖µ) ≥ D(µn+1‖µ).

This implies that any state distribution gets closer and closer to each
stationary distribution as time passes.

The sequence D(µn‖µ) is a monotonically nonincreasing nonnegative
sequence and must therefore have a limit.

The limit is zero if the stationary distribution is unique, but this is
more difficult to prove.
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

Entropy Does Not Increase In General

In general, the fact that the relative entropy decreases does not imply
that the entropy increases.

Example: Consider any Markov chain with a nonuniform stationary
distribution.

Suppose we start this Markov chain from the uniform distribution,
which already is the maximum entropy distribution.

The distribution will tend to the stationary distribution.

The limiting distribution has lower entropy than the uniform one.

So the entropy decreases with time.
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

Entropy Increases if Stationary Distribution is Uniform

In the special case where the stationary distribution is the uniform
distribution, entropy increases with time.

In fact, we can express the relative entropy as

D(µn‖µ) =
∑

µn(x) log
µn(x)
u(x)

=
∑

µn(x) log |X | −
∑

µn(x) log µn(x)

= log |X | − H(µn)

= log |X | − H(Xn).

In this case the monotonic decrease in relative entropy implies a
monotonic increase in entropy.
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

Double Stochasticity and Uniform Stationary Distribution

Definition

A probability transition matrix [Pij ], Pij = Pr{Xn+1 = j |Xn = i}, is called
doubly stochastic if

∑

i

Pij = 1, j = 1, 2, . . . ,
∑

j

Pij = 1, i = 1, 2, . . . .

Claim: The uniform distribution is a stationary distribution of P if
and only if the probability transition matrix is doubly stochastic.
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

Double Stochasticity and Uniform Distribution (Cont’d)

Assume, first, that P is doubly stochastic.

Then, for µ(i) = 1
N
, i = 1, . . . ,N, we have

(µP)(j) =

N
∑

i=1

µ(i)

N
∑

i=1

Pij =
1

N

N
∑

i=1

Pij =
1

N
= µ(j).

So the uniform distribution is a stationary distribution.

Suppose, conversely, that P is not doubly stochastic.

Then, there exists a k , 1 ≤ k ≤ N, such that
∑N

i=1 Pik 6= 1.

Then
N
∑

i=1

1

N
Pik =

1

N

N
∑

i=1

Pik 6=
1

N
.

Thus, the uniform distribution cannot be stationary.
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

The Conditional Entropy H(Xn|X1) for Stationary X

Claim: The conditional uncertainty H(Xn|X1) of a Markov process
increases with n.

Proof 1: Using the properties of entropy, we get

H(Xn|X1) ≥ H(Xn|X1,X2) (conditioning reduces entropy)

= H(Xn|X2) (by Markovity)

= H(Xn−1|X1) (by stationarity).

Proof 2: Applying the data-processing inequality to the Markov chain
X1 → Xn−1 → Xn, we have I (X1;Xn−1) ≥ I (X1;Xn).

Expanding mutual information in terms of entropies,

H(Xn−1)− H(Xn−1|X1) ≥ H(Xn)− H(Xn|X1).

By stationarity, H(Xn−1) = H(Xn). Hence, H(Xn−1|X1) ≤ H(Xn|X1).

These techniques can also be used to show that H(X0|Xn) is
increasing in n for any Markov chain.
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Entropy Rates of a Stochastic Process Second Law of Thermodynamics

Shuffles Increase Entropy

If T is a shuffle (permutation) of a deck of cards and X is the initial
(random) position of the cards in the deck, and if the choice of the
shuffle T is independent of X , then

H(TX ) ≥ H(X ),

where TX is the permutation of the deck induced by the shuffle T on
the initial permutation X .

We have

H(TX ) ≥ H(TX |T ) (conditioning reduces entropy)

= H(T−1TX |T ) (given T , shuffle can be reversed)

= H(X |T )

= H(X ).
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Entropy Rates of a Stochastic Process Functions of Markov Chains

Subsection 5

Functions of Markov Chains
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Entropy Rates of a Stochastic Process Functions of Markov Chains

Functions of Markov Chains

Let X1,X2, . . . ,Xn, . . . be a stationary Markov chain.

Let Yi = φ(Xi ) be a process each term of which is a function of the
corresponding state in the Markov chain.

We would like to compute the entropy rate H(Y).

It would simplify matters greatly if Y1,Y2, . . . ,Yn also formed a
Markov chain, but in many cases, this is not true.

Since the Markov chain is stationary, so is Y1,Y2, . . . ,Yn.

So the entropy rate is well defined.

However, if we wish to compute H(Y), we might try to compute
H(Yn|Yn−1, . . . ,Y1) for each n and find the limit.

Since the convergence can be arbitrarily slow, we will never know how
close we are to the limit.
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A Lower Bound for the Entropy

Lemma

H(Yn|Yn−1, . . . ,Y2,X1) ≤ H(Y).

We have for k = 1, 2, . . .,

H(Yn|Yn−1, . . . ,Y2,X1)
= H(Yn|Yn−1, . . . ,Y2,Y1,X1)

(since Y1 is a function of X1)
= H(Yn|Yn−1, . . . ,Y1,X1,X0,X−1, . . . ,X−k)

(by the Markovity of X )
= H(Yn|Yn−1, . . . ,Y1,X1,X0,X−1, . . . ,X−k ,Y0, . . . ,Y−k)

(since Yi is a function of Xi)
≤ H(Yn|Yn−1, . . . ,Y1,Y0, . . . ,Y−k)

(since conditioning reduces entropy)
= H(Yn+k+1|Yn+k , . . . ,Y1). (by stationarity)
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A Lower Bound for the Entropy (Cont’d)

We found

H(Yn|Yn−1, . . . ,Y2,X1) ≤ H(Yn+k+1|Yn+k , . . . ,Y1).

This inequality is true for all k .

So it is true in the limit.

Thus, we obtain

H(Yn|Yn−1, . . . ,Y1,X1) ≤ limk H(Yn+k+1|Yn+k , . . . ,Y1)

= H(Y).
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The Interval Between the Upper and the Lower Bounds

Lemma

H(Yn|Yn−1, . . . ,Y1)− H(Yn|Yn−1, . . . ,Y1,X1) → 0.

The interval length can be rewritten as

H(Yn|Yn−1, . . . ,Y1)− H(Yn|Yn−1, . . . ,Y1,X1)
= I (X1;Yn|Yn−1, . . . ,Y1).

By the properties of mutual information;

I (X1;Y1,Y2, . . . ,Yn) ≤ H(X1);
I (X1;Y1,Y2, . . . ,Yn) increases with n.

Thus, lim I (X1;Y1,Y2, . . . ,Yn) exists and

lim
n→∞

I (X1;Y1,Y2, . . . ,Yn) ≤ H(X1).
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The Upper and the Lower Bounds (Cont’d)

By the Chain Rule, we get

H(X1) ≥ lim
n→∞

I (X1;Y1,Y2, . . . ,Yn)

= lim
n→∞

n
∑

i=1

I (X1;Yi |Yi−1, . . . ,Y1)

=
∞
∑

i=1

I (X1;Yi |Yi−1, . . . ,Y1).

This infinite sum is finite and the terms are nonnegative.

Hence, the terms must tend to 0.

I.e.,
lim I (X1;Yn|Yn−1, . . . ,Y1) = 0.
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Bounds for the Entropy

Theorem

If X1,X2, . . . ,Xn form a stationary Markov chain, and Yi = φ(Xi ), then

H(Yn|Yn−1, . . . ,Y1,X1) ≤ H(Y) ≤ H(Yn|Yn−1, . . . ,Y1)

and

limH(Yn|Yn−1, . . . ,Y1,X1) = H(Y) = limH(Yn|Yn−1, . . . ,Y1).

By the preceding two lemmas.
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Hidden Markov Models

In general, we could also consider the case where Yi is a stochastic
function (as opposed to a deterministic function) of Xi .

Consider a Markov process X1,X2, . . . ,Xn.

Define a process Y1,Y2, . . . ,Yn, where each Yi is drawn according to
p(yi |xi ), conditionally independent of all the other Xj , j 6= i .

That is,

p(xn, yn) = p(x1)

n−1
∏

i=1

p(xi+1|xi )

n
∏

i=1

p(yi |xi ).

Such a process, called a hidden Markov model (HMM).

The same argument used above for functions of a Markov chain carry
over to hidden Markov models.

So we can lower bound the entropy rate of an HMM by conditioning
it on the underlying Markov state.
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