
Elements of Information Theory

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU) Information Theory February 2024 1 / 114

Outline

1 Data Compression
Examples of Codes
Kraft Inequality
Optimal Codes
Bounds on the Optimal Code Length
Kraft Inequality for Uniquely Decodable Codes
Huffman Codes
Some Comments on Huffman Codes
Optimality of Huffman Codes
Shannon-Fano-Elias Coding
Competitive Optimality of the Shannon Code
Generation of Discrete Distributions from Fair Coins

George Voutsadakis (LSSU) Information Theory February 2024 2 / 114

Data Compression Examples of Codes

Subsection 1

Examples of Codes

George Voutsadakis (LSSU) Information Theory February 2024 3 / 114

Data Compression Examples of Codes

Source Code and Length of a Codeword

Definition

A source code C for a random variable X is a mapping

C : X → D∗

from X , the range of X , to D∗, the set of finite-length strings of symbols
from a D-ary alphabet D.
Let C (x) denote the codeword corresponding to x .
Let ℓ(x) denote the length of C (x).

Example: Let X = {red, blue} and D = {0, 1}.

Then C (red) = 00, C (blue) = 11 is a source code for X with
alphabet D.

George Voutsadakis (LSSU) Information Theory February 2024 4 / 114

Data Compression Examples of Codes

Expected Length

Definition

The expected length L(C) of a source code C (x) for a random variable
X with probability mass function p(x) is given by

L(C) =
∑

x∈X

p(x)ℓ(x),

where ℓ(x) is the length of the codeword associated with x .

Without loss of generality, we can assume that the D-ary alphabet is

D = {0, 1, . . . ,D − 1}.

George Voutsadakis (LSSU) Information Theory February 2024 5 / 114

Data Compression Examples of Codes

Example

Let X be a random variable with the following distribution and
codeword assignment:

Pr(X = 1) = 1
2 , C (1) = 0,

Pr(X = 2) = 1
4 , C (2) = 10,

Pr(X = 3) = 1
8 , C (3) = 110,

Pr(X = 4) = 1
8 , C (4) = 111.

The entropy of X is H(X) = 1
2 log

1
2 +

1
4 log

1
4 + 21

8 log
1
8 = 1.75 bits.

The expected length of C is

L(C) = Eℓ(X) =
1

2
· 1 +

1

4
· 2 + 2

1

8
· 3 = 1.75 bits.

Here we have a code that has the same average length as the entropy.

We note that any sequence of bits can be uniquely decoded into a
sequence of symbols of X .

For example, the bit string 0110111100110 is decoded as 134213.
George Voutsadakis (LSSU) Information Theory February 2024 6 / 114

Data Compression Examples of Codes

Example

Consider another simple example of a code for a random variable:

Pr(X = 1) = 1
3 , C (1) = 0,

Pr(X = 2) = 1
3 , C (2) = 10,

Pr(X = 3) = 1
3 , C (3) = 11.

The code is uniquely decodable.

In this case:

The entropy is H(X) = log 3 = 1.58 bits.
The average length of C is L(C) = 1

3 · 1 + 2 1
3 · 2 = 1.66 bits.

So we have Eℓ(X) > H(X).

George Voutsadakis (LSSU) Information Theory February 2024 7 / 114

Data Compression Examples of Codes

Morse Code

The Morse code is a reasonably efficient code for the English alphabet
using an alphabet of four symbols:

A dot;
A dash;
A letter space;
A word space.

Short sequences represent frequent letters (e.g., a single dot
represents E).

Long sequences represent infrequent letters (e.g., Q is represented by
“dash,dash,dot,dash”).

This is not the optimal representation for the alphabet in four
symbols.

Many possible codewords are not utilized because:
The codewords for letters do not contain spaces except for a letter
space at the end of every codeword;
No space can follow another space.

George Voutsadakis (LSSU) Information Theory February 2024 8 / 114

Data Compression Examples of Codes

Nonsingular Codes

Let xn denote (x1, x2, . . . , xn).

Definition

A code is said to be nonsingular if every element of the range of X maps
into a different string in D∗, i.e.,

x 6= x ′ ⇒ C (x) 6= C (x ′).

Nonsingularity suffices for an unambiguous description of a single
value of X .

But we usually wish to send a sequence of values of X .

In such cases we can ensure decodability by adding a special symbol
(a “comma”) between any two codewords.

This is an inefficient use of the special symbol.

To improve, we develop selfpunctuating or instantaneous codes.

George Voutsadakis (LSSU) Information Theory February 2024 9 / 114

Data Compression Examples of Codes

Extension

Definition

The extension C ∗ of a code C is the mapping from finite length strings of
X to finite-length strings of D, defined by

C ∗(x1x2 · · · xn) = C (x1)C (x2) · · ·C (xn),

where C (x1)C (x2) · · ·C (xn) indicates concatenation of the corresponding
codewords.

Example: Suppose C (x1) = 00 and C (x2) = 11.

Then we have
C ∗(x1x2) = 0011.

George Voutsadakis (LSSU) Information Theory February 2024 10 / 114

Data Compression Examples of Codes

Unique Decodability

Definition

A code is called uniquely decodable if its extension is nonsingular.

The advantage is that any encoded string in a uniquely decodable
code has only one possible source string producing it.

The drawback is that one may have to look at the entire string to
determine even the first symbol in the corresponding source string.

George Voutsadakis (LSSU) Information Theory February 2024 11 / 114

Data Compression Examples of Codes

Prefix Codes

Definition

A code is called a prefix code or an instantaneous code if no codeword
is a prefix of any other codeword.

An instantaneous code can be decoded without reference to future
codewords, since the end of a codeword is immediately recognizable.

Hence, for an instantaneous code, the symbol xi can be decoded as
soon as we come to the end of the codeword corresponding to it.

There is no need wait to see the codewords that come later.

An instantaneous code is a selfpunctuating code, since one can look
down the sequence of code symbols and add the commas to separate
the codewords, without looking at later symbols.

Example: The binary string 01011111010 produced by the code of the
previous example is parsed as 0, 10, 111, 110, 10.

George Voutsadakis (LSSU) Information Theory February 2024 12 / 114

Data Compression Examples of Codes

Hierarchy of Classes of Codes

The nesting of the definitions is shown in the figure:

George Voutsadakis (LSSU) Information Theory February 2024 13 / 114

Data Compression Examples of Codes

Differences Between Classes of Codes

Consider the examples of codeword assignments C (x) to x ∈ X :

For the nonsingular code, the code string 010 has three possible
source sequences: 2 or 14 or 31. Hence, the code is not uniquely
decodable.

The uniquely decodable code is not prefix-free and hence is not
instantaneous.

The fact that the last code is instantaneous is obvious, since no
codeword is a prefix of any other.

George Voutsadakis (LSSU) Information Theory February 2024 14 / 114

Data Compression Examples of Codes

Showing Unique Decodability

We show uniquely decodability of the third code.

Take any code string and start from the beginning.

If the first two bits are 00 or 10, they can be decoded immediately.
If the first two bits are 11, we must look at the following bits.

If the next bit is a 1, the first source symbol is a 3;

If the length of the string of 0’s immediately following the 11 is odd,

the first codeword must be 110 and the first source symbol must be 4;

If the length of the string of 0’s is even, the first source symbol is a 3.

By repeating this argument, we can see that this code is uniquely
decodable.

George Voutsadakis (LSSU) Information Theory February 2024 15 / 114

Data Compression Kraft Inequality

Subsection 2

Kraft Inequality

George Voutsadakis (LSSU) Information Theory February 2024 16 / 114

Data Compression Kraft Inequality

Kraft Inequality

Theorem

For any instantaneous code (prefix code) over an alphabet of size D, the
codeword lengths ℓ1, ℓ2, . . . , ℓm must satisfy the inequality

∑

i

D−ℓi ≤ 1.

Conversely, given a set of codeword lengths that satisfy this inequality,
there exists an instantaneous code with these word lengths.

Consider a D-ary tree in which each node has D children.

Let the branches of the tree represent the symbols of the codeword.

For example, the D branches arising from the root node represent the
D possible values of the first symbol of the codeword.

Then each codeword is represented by a leaf on the tree.

The path from the root traces out the symbols of the codeword.

George Voutsadakis (LSSU) Information Theory February 2024 17 / 114

Data Compression Kraft Inequality

Kraft Inequality (Cont’d)

The prefix condition on the codewords implies that no codeword is an
ancestor of any other codeword on the tree.

Hence, a codeword eliminates its descendants as possible codewords.

Let ℓmax be the length of the longest codeword.

Consider all nodes of the tree at level ℓmax.

They may be codewords, descendants of codewords or neither.

A codeword at level ℓi has D
ℓmax−ℓi descendants at level ℓmax.

Each of these descendant sets must be disjoint.
Also, the total number of nodes in these sets must be less than or
equal to Dℓmax .

So, summing over all codewords, we get
∑

i D
ℓmax−ℓi ≤ Dℓmax .

Equivalently,
∑

i

D−ℓi ≤ 1.

George Voutsadakis (LSSU) Information Theory February 2024 18 / 114

Data Compression Kraft Inequality

Kraft Inequality (Converse)

Conversely, given any set of codeword
lengths ℓ1, ℓ2, . . . , ℓm that satisfy the
Kraft inequality, we can always
construct a tree.

Label the first node (lexicographically)
of depth ℓ1 as codeword 1.

Remove its descendants from the tree.

Then label the first remaining node of depth ℓ2 as codeword 2.

Continue in the same way.

In the end, we obtain a prefix code with the specified codeword
lengths ℓ1, ℓ2, . . . , ℓm.

George Voutsadakis (LSSU) Information Theory February 2024 19 / 114

Data Compression Kraft Inequality

Extended Kraft Inequality

Theorem (Extended Kraft Inequality)

For any countably infinite set of codewords that form a prefix code, the
codeword lengths satisfy the extended Kraft inequality,

∞
∑

i=1

D−ℓi ≤ 1.

Conversely, given any ℓ1, ℓ2, . . . satisfying the extended Kraft inequality,
we can construct a prefix code with these codeword lengths.

Let the D-ary alphabet be {0, 1, . . . ,D − 1}.

Consider the i -th codeword y1y2 · · · yℓi .

Let 0.y1y2 · · · yℓi be the real number given by the D-ary expansion

0.y1y2 · · · yℓi =

ℓi
∑

j=1

yjD
−j .

George Voutsadakis (LSSU) Information Theory February 2024 20 / 114

Data Compression Kraft Inequality

Extended Kraft Inequality (Cont’d)

The codeword y1y2 · · · yℓi corresponds to the interval

[

0.y1y2 · · · yℓi , 0.y1y2 · · · yℓi +
1

Dℓi

)

,

the set of all real numbers whose D-ary expansion begins with
0.y1y2 · · · yℓi .

This is a subinterval of the unit interval [0, 1].

By the prefix condition, these intervals are disjoint.

Hence, the sum of their lengths has to be less than or equal to 1.

This proves that
∞
∑

i=1

D−ℓi ≤ 1.

George Voutsadakis (LSSU) Information Theory February 2024 21 / 114

Data Compression Kraft Inequality

Extended Kraft Inequality (Converse)

Just as in the finite case, we can reverse the proof to construct the
code for a given ℓ1, ℓ2, . . . that satisfies the Kraft inequality.

First, reorder the indexing so that ℓ1 ≤ ℓ2 ≤ · · · .

Then assign the intervals in order from the low end of the unit
interval.

For example, if we wish to construct a binary code with ℓ1 = 1,
ℓ2 = 2, . . ., we assign the intervals

[

0,
1

2

)

,

[

1

2
,
1

4

)

, . . .

to the symbols, with corresponding codewords 0, 10,

George Voutsadakis (LSSU) Information Theory February 2024 22 / 114

Data Compression Optimal Codes

Subsection 3

Optimal Codes

George Voutsadakis (LSSU) Information Theory February 2024 23 / 114

Data Compression Optimal Codes

Minimization of Expected Length

We consider the problem of finding the prefix code with the minimum
expected length.

This is equivalent to finding the set of lengths ℓ1, ℓ2, . . . , ℓm, such
that:

ℓ1, ℓ2, . . . , ℓm satisfy the Kraft inequality;
The expected length L =

∑

piℓi is less than the expected length of any
other prefix code.

In a standard optimization problem form:

Minimize L =
∑

piℓi

over all integers ℓ1, ℓ2, . . . , ℓm

satisfying
∑

D−ℓi ≤ 1.

George Voutsadakis (LSSU) Information Theory February 2024 24 / 114

Data Compression Optimal Codes

Using Lagrange Multipliers

Neglecting the integer constraint on ℓi and assuming equality in the
constraint, we can use Lagrange multipliers to minimize

J =
∑

piℓi + λ
(

∑

Dℓi
)

.

Differentiating with respect to ℓi , we obtain

∂J

∂ℓi
= pi − λD−ℓi loge D.

Setting the derivative to 0, we obtain

D−ℓi =
pi

λ loge D
.

Substituting this in the constraint, we find λ = 1
loge D

.

Hence pi = D−ℓi . This yields optimal code lengths

ℓ∗i = − logD pi .

George Voutsadakis (LSSU) Information Theory February 2024 25 / 114

Data Compression Optimal Codes

Using Lagrange Multipliers (Cont’d)

This noninteger choice of codeword lengths yields expected codeword
length

L∗ =
∑

piℓ
∗
i = −

∑

pi logD pi = HD(X).

But the ℓi must be integers.

So we should choose a set of codeword lengths ℓi “close” to the
optimal set.

George Voutsadakis (LSSU) Information Theory February 2024 26 / 114

Data Compression Optimal Codes

Lower Bound for the Expected Length

Theorem

The expected length L of any instantaneous D-ary code for a random
variable X is greater than or equal to the entropy HD(X), i.e.,

L ≥ HD(X),

with equality if and only if D−ℓi = pi .

Express the difference between the expected length L and the entropy

L− HD(X) =
∑

i piℓi −
∑

i pi logD
1
pi

= −
∑

i pi logD D−ℓi +
∑

i pi logD pi .

Now let ri =
D−ℓi

∑

j D
−ℓj

and c =
∑

i D
−ℓi . Then we get

L− H =
∑

i

pi log
pi

ri
∑

j D
−ℓj

.

George Voutsadakis (LSSU) Information Theory February 2024 27 / 114

Data Compression Optimal Codes

Lower Bound for the Expected Length (Cont’d)

We obtained

L− H =
∑

i pi log
pi

ri
∑

j D
−ℓj

=
∑

i pi logD
pi
ri
− logD c

= D(p‖r) + logD
1
c
.

But relative entropy is nonnegative and, by Kraft, c ≤ 1.

Hence, L ≥ H, with equality if and only if pi = D−ℓi .

Equivalently, if and only if − logD pi is an integer for all i .

Definition

A probability distribution is called D-adic if each of the probabilities is
equal to D−n, for some n.

Thus, we have equality in the theorem if and only if the distribution
of X is D-adic.

George Voutsadakis (LSSU) Information Theory February 2024 28 / 114

Data Compression Optimal Codes

Procedure for Finding an Optimal Code

Find the D-adic distribution that is closest (in the relative entropy
sense) to the distribution of X .

This distribution provides the set of codeword lengths.
Then we construct the code by choosing the first available node as in
the proof of the Kraft inequality.
We then have an optimal code for X .

This procedure is not easy, since the search for the closest D-adic
distribution is not obvious.

In the next section, we give a good suboptimal procedure
(Shannon-Fano coding).

Then, we describe a simple procedure (Huffman coding) for actually
finding the optimal code.

George Voutsadakis (LSSU) Information Theory February 2024 29 / 114

Data Compression Bounds on the Optimal Code Length

Subsection 4

Bounds on the Optimal Code Length

George Voutsadakis (LSSU) Information Theory February 2024 30 / 114

Data Compression Bounds on the Optimal Code Length

Recalling the Optimization Problem

We wish to minimize L =
∑

piℓi subject to the constraint that
ℓ1, ℓ2, . . . , ℓm are integers and

∑

D−ℓi ≤ 1.

We proved that the optimal codeword lengths can be found by finding
the D-adic probability distribution closest to the distribution of X in
relative entropy.

That is, we need to find the D-adic r , with

ri =
D−ℓi
∑

j D
−ℓj

,

minimizing

L− HD = D(p‖r)− log
(

∑

D−ℓi
)

≥ 0.

The choice of word lengths ℓi = logD
1
pi

yields L = H.

George Voutsadakis (LSSU) Information Theory February 2024 31 / 114

Data Compression Bounds on the Optimal Code Length

Approximating the Solution

Since logD
1
pi

may not equal an integer, we round it up to give integer
word-length assignments,

ℓi =

⌈

logD
1

pi

⌉

,

where ⌈x⌉ is the smallest integer ≥ x .

These lengths satisfy the Kraft inequality, since

∑

D
−

⌈

logD
1
pi

⌉

≤
∑

D
− logD

1
pi =

∑

pi = 1.

This choice of codeword lengths satisfies logD
1
pi

≤ ℓi < logD
1
pi
+ 1.

Multiplying by pi and summing over i , we obtain

HD(X) ≤ L < HD(X) + 1.

An optimal code can only be better than this code.

George Voutsadakis (LSSU) Information Theory February 2024 32 / 114

Data Compression Bounds on the Optimal Code Length

Bounds for the Optimal Expected Codeword Length

Theorem

Let ℓ∗1, ℓ
∗
2, . . . , ℓ

∗
m be optimal codeword lengths for a source distribution p

and a D-ary alphabet, and let L∗ be the associated expected length of an
optimal code (L∗ =

∑

piℓ
∗
i). Then

HD(X) ≤ L∗ < HD(X) + 1.

Let ℓi =
⌈

logD
1
pi

⌉

. Then ℓi satisfies the Kraft inequality.

By the preceding slide, we have

HD(X) ≤ L =
∑

piℓi < HD(X) + 1.

L∗, the expected length of the optimal code, is less than L =
∑

piℓi .
So L∗ < L < HD + 1.
L∗ ≥ HD by a previous theorem.

The conclusion follows.
George Voutsadakis (LSSU) Information Theory February 2024 33 / 114

Data Compression Bounds on the Optimal Code Length

Large Block Lengths to Spread the Overhead

In the preceding theorem, there is an overhead that is at most 1 bit,
due to the fact that log 1

pi
is not always an integer.

We can reduce the overhead per symbol by spreading it out over
many symbols.

Consider a system in which we send a sequence of n symbols from X .

The symbols are assumed to be drawn i.i.d. according to p(x).

Consider these n symbols to be a supersymbol from alphabet X n.

Define Ln to be the expected codeword length per input symbol.

That is, if ℓ(x1, x2, . . . , xn) is the length of the binary codeword
associated with (x1, x2, . . . , xn) (we assume that D = 2, for
simplicity), then

Ln =
1

n

∑

p(x1, x2, . . . , xn)ℓ(x1, x2, . . . , xn) =
1

n
Eℓ(X1,X2, . . . ,Xn).

George Voutsadakis (LSSU) Information Theory February 2024 34 / 114

Data Compression Bounds on the Optimal Code Length

Large Block Lengths to Spread the Overhead (Cont’d)

We can now apply the bounds derived above to the code:

H(X1,X2, . . . ,Xn) ≤ Eℓ(X1,X2, . . . ,Xn) < H(X1,X2, . . . ,Xn) + 1.

Since X1,X2, . . . ,Xn are i.i.d.,

H(X1,X2, . . . ,Xn) =
∑

H(Xi) = nH(X).

Dividing the inequality by n, we obtain

H(X) ≤ Ln < H(X) +
1

n
.

Hence, by using large block lengths we can achieve an expected
codelength per symbol arbitrarily close to the entropy.

George Voutsadakis (LSSU) Information Theory February 2024 35 / 114

Data Compression Bounds on the Optimal Code Length

The Non I.I.D. Case

Theorem

The minimum expected codeword length per symbol satisfies

H(X1,X2, . . . ,Xn)

n
≤ L∗n <

H(X1,X2, . . . ,Xn)

n
+

1

n
.

Moreover, if X1,X2, . . . ,Xn is a stationary stochastic process,

L∗n → H(X),

where H(X) is the entropy rate of the process.

As before, we have

H(X1,X2, . . . ,Xn) ≤ Eℓ(X1,X2, . . . ,Xn) < H(X1,X2, . . . ,Xn) + 1.

George Voutsadakis (LSSU) Information Theory February 2024 36 / 114

Data Compression Bounds on the Optimal Code Length

The Non I.I.D. Case (Cont’d)

we have

H(X1,X2, . . . ,Xn) ≤ Eℓ(X1,X2, . . . ,Xn) < H(X1,X2, . . . ,Xn) + 1.

Dividing by n again and defining Ln to be the expected description
length per symbol, we obtain

H(X1,X2, . . . ,Xn)

n
≤ Ln <

H(X1,X2, . . . ,Xn)

n
+

1

n
.

If the stochastic process is stationary, then

H(X1,X2, . . . ,Xn)

n
→ H(X).

So the expected description length tends to the entropy rate as
n → ∞.

George Voutsadakis (LSSU) Information Theory February 2024 37 / 114

Data Compression Bounds on the Optimal Code Length

Wrong Distribution and Relative Entropy

We ask what happens to the expected description length if the code
is designed for the wrong distribution.

The wrong distribution may be the best estimate that we can make of
the unknown true distribution.

We consider the Shannon code assignment ℓ(x) =
⌈

log 1
q(x)

⌉

designed

for the probability mass function q(x).

Suppose that the true probability mass function is p(x).

We will not achieve expected length L ≈ H(p) = −
∑

p(x) log p(x).

We show that the increase in expected description length due to the
incorrect distribution is the relative entropy D(p‖q).

Thus, D(p‖q) has a concrete interpretation as the increase in
descriptive complexity due to incorrect information.

George Voutsadakis (LSSU) Information Theory February 2024 38 / 114

Data Compression Bounds on the Optimal Code Length

The Wrong Code Theorem

Theorem (Wrong Code)

The expected length under p(x) of the code assignment ℓ(x) =
⌈

log 1
q(x)

⌉

satisfies
H(p) + D(p‖q) ≤ Epℓ(X) < H(p) + D(p‖q) + 1.

The expected codelength is

Eℓ(X) =
∑

x p(x)
⌈

log 1
q(x)

⌉

<
∑

x p(x)
(

log 1
q(x) + 1

)

=
∑

x p(x) log
p(x)
q(x)

1
p(x) + 1

=
∑

x p(x) log
p(x)
q(x) +

∑

x p(x) log
1

p(x) + 1

= D(p‖q) + H(p) + 1.

The lower bound can be derived similarly.
George Voutsadakis (LSSU) Information Theory February 2024 39 / 114

Data Compression Kraft Inequality for Uniquely Decodable Codes

Subsection 5

Kraft Inequality for Uniquely Decodable Codes

George Voutsadakis (LSSU) Information Theory February 2024 40 / 114

Data Compression Kraft Inequality for Uniquely Decodable Codes

Introduction

We showed that any instantaneous code must satisfy the Kraft
inequality.

The class of uniquely decodable codes is larger than the class of
instantaneous codes.

So one expects to achieve a lower expected codeword length if L is
minimized over all uniquely decodable codes.

We prove that the class of uniquely decodable codes does not offer
any further possibilities for the set of codeword lengths than do
instantaneous codes.

George Voutsadakis (LSSU) Information Theory February 2024 41 / 114

Data Compression Kraft Inequality for Uniquely Decodable Codes

Kraft Inequality for Uniquely Decodable Codes

Theorem (McMillan)

The codeword lengths of any uniquely decodable D-ary code must satisfy
the Kraft inequality

∑

D−ℓi ≤ 1.

Conversely, given a set of codeword lengths that satisfy this inequality, it
is possible to construct a uniquely decodable code with these codeword
lengths.

Consider C k , the k-th extension of the code (i.e., the code formed by
the concatenation of k repetitions of the given code C).

By unique decodability, the k-th extension of the code is nonsingular.

But there are only Dn different D-ary strings of length n.

Thus, unique decodability implies that the number of code sequences
of length n in the k-th extension must be no greater than Dn.

George Voutsadakis (LSSU) Information Theory February 2024 42 / 114

Data Compression Kraft Inequality for Uniquely Decodable Codes

Proof of McMillan’s Theorem

Let the codeword lengths of the symbols x ∈ X be denoted by ℓ(x).

Concerning the extension code,

ℓ(x1, x2, . . . , xk) =

k
∑

i=1

ℓ(xi).

The inequality that we wish to prove is
∑

x∈X D−ℓ(x) ≤ 1.

The trick is to consider the k-th power of this quantity.

(
∑

x∈X D−ℓ(x))k

=
∑

x1∈X

∑

x2∈X
· · ·
∑

xk∈X
D−ℓ(x1)D−ℓ(x2) · · ·D−ℓ(xk)

=
∑

x1,x2,...,xk∈X k D−ℓ(x1)D−ℓ(x2) · · ·D−ℓ(xk)

=
∑

xk∈X k D−ℓ(xk).

George Voutsadakis (LSSU) Information Theory February 2024 43 / 114

Data Compression Kraft Inequality for Uniquely Decodable Codes

Proof of McMillan’s Theorem (Cont’d)

We obtained
(

∑

x∈X

D−ℓ(x)

)k

=
∑

xk∈X k

D−ℓ(xk).

Gathering the terms by word lengths, we obtain

∑

xk∈X k

D−ℓ(xk) =

kℓmax
∑

m=1

a(m)D−m,

where:
ℓmax is the maximum codeword length;
a(m) is the number of source sequences xk mapping into codewords of
length m.

By unique decodability, there is at most one sequence mapping into
each code m-sequence and there are at most Dm code m-sequences.

Thus, a(m) ≤ Dm.

George Voutsadakis (LSSU) Information Theory February 2024 44 / 114

Data Compression Kraft Inequality for Uniquely Decodable Codes

Proof of McMillan’s Theorem (Cont’d)

Now we have

(

∑

x∈X

D−ℓ(x)

)k

=

kℓmax
∑

m=1

a(m)D−m ≤

kℓmax
∑

m=1

DmD−m = kℓmax.

Hence,
∑

j

D−ℓj ≤ (kℓmax)
1/k .

Since this inequality is true for all k , it is true in the limit as k → ∞.

Since (kℓmax)
1/k → 1, we have

∑

j D
−ℓj ≤ 1.

Conversely, given any set of ℓ1, ℓ2, . . . , ℓm satisfying the Kraft
inequality, we can construct an instantaneous code.

But every instantaneous code is uniquely decodable.

So we have also constructed a uniquely decodable code.

George Voutsadakis (LSSU) Information Theory February 2024 45 / 114

Data Compression Kraft Inequality for Uniquely Decodable Codes

Infinite Source Alphabets

Corollary

A uniquely decodable code for an infinite source alphabet X also satisfies
the Kraft inequality.

The preceding proof breaks down for infinite |X | at the inequality
∑

j D
−ℓj ≤ (kℓmax)

1/k , since for an infinite code ℓmax is infinite.

But there is a simple fix to the proof.

Any subset of a uniquely decodable code is also uniquely decodable.

Thus, any finite subset of codewords satisfies the Kraft inequality.

Hence,
∑∞

i=1D
−ℓi = limN→∞

∑N
i=1D

−ℓi ≤ 1.

Given a set of word lengths ℓ1, ℓ2, . . . that satisfy the Kraft inequality,
we can construct an instantaneous code.

But, instantaneous codes are uniquely decodable. So we have a
uniquely decodable code with an infinite number of codewords.

George Voutsadakis (LSSU) Information Theory February 2024 46 / 114

Data Compression Huffman Codes

Subsection 6

Huffman Codes

George Voutsadakis (LSSU) Information Theory February 2024 47 / 114

Data Compression Huffman Codes

Example

Consider a random variable X taking values in X = {1, 2, 3, 4, 5},
with probabilities 0.25, 0.25, 0.2, 0.15, 0.15, respectively.

x 1 2 3 4 5

p(x) 0.25 0.25 0.2 0.15 0.15

We expect the optimal binary code for X to have the longest
codewords assigned to the symbols 4 and 5.

Claim: These two lengths must be equal.

Otherwise, we can delete a bit from the longer codeword and still
have a prefix code, but with a shorter expected length.

In general, we can construct a code in which the two longest
codewords differ only in the last bit.

George Voutsadakis (LSSU) Information Theory February 2024 48 / 114

Data Compression Huffman Codes

Example (Cont’d)

For the optimal code, we can combine the symbols 4 and 5 into a
single source symbol, with a probability assignment 0.30.

Proceeding this way, until we are left with only one symbol:
Combine the two least likely symbols into one symbol.

Then assign codewords to the symbols.

This code has average length

L = 0.25 · 2 + 0.25 · 2 + 0.2 · 2 + 0.15 · 3 + 0.15 · 3
= 0.5 + 0.5 + 0.4 + 0.45 + 0.45 = 2.3 bits.

George Voutsadakis (LSSU) Information Theory February 2024 49 / 114

Data Compression Huffman Codes

Example

Consider a ternary code for the same random variable X .

x 1 2 3 4 5

p(x) 0.25 0.25 0.2 0.15 0.15

We combine the three least likely symbols into one supersymbol.

This code has an average length of

L = 0.25 · 1 + 0.25 · 1 + 0.2 · 2 + 0.15 · 2 + 0.15 · 2
= 0.25 + 0.25 + 0.4 + 0.3 + 0.3 = 1.5 ternary digits.

George Voutsadakis (LSSU) Information Theory February 2024 50 / 114

Data Compression Huffman Codes

Codes With At Least Three Symbols

If D ≥ 3, we may not have a sufficient number of symbols so that we
can combine them D at a time.

Then we add dummy symbols to the end of the set of symbols.

These symbols have probability 0 and are inserted to fill the tree.

At each stage, the number of symbols is reduced by D − 1.

So we want the total number of symbols to be

1 + k(D − 1),

where k is the number of merges.

George Voutsadakis (LSSU) Information Theory February 2024 51 / 114

Data Compression Huffman Codes

Example

Consider X = {1, 2, 3, 4, 5, 6}, with

x 1 2 3 4 5 6

p(x) 0.25 0.25 0.2 0.1 0.1 0.1

The merging process will take three steps of 3-merges.
So we need a total of 1 + 3(3 − 1) = 7 symbols.

This code has an average length of

L = 0.25 · 1 + 0.25 · 1 + 0.2 · 2 + 0.1 · 2 + 0.1 · 3 + 0.1 · 3
= 0.25 + 0.25 + 0.4 + 0.2 + 0.3 + 0.3 = 1.7 ternary digits.

George Voutsadakis (LSSU) Information Theory February 2024 52 / 114

Data Compression Some Comments on Huffman Codes

Subsection 7

Some Comments on Huffman Codes

George Voutsadakis (LSSU) Information Theory February 2024 53 / 114

Data Compression Some Comments on Huffman Codes

Comment 1: Source Coding and 20 Questions

Suppose that we wish to find the most efficient series of yes-no
questions to determine an object from a class of objects.

To determine an object, we need to ensure that the responses to the
sequence of questions uniquely identifies the object from the set of
possible objects.

It is not necessary that the last question have a “yes” answer.

Assuming that we know the probability distribution on the objects,
can we find the most efficient sequence of questions?

George Voutsadakis (LSSU) Information Theory February 2024 54 / 114

Data Compression Some Comments on Huffman Codes

Source Coding and 20 Questions

Any question depends only on the answers to the questions before it.

Since the sequence of answers uniquely determines the object, each
object has a different sequence of answers.

If we represent the yes-no answers by 0’s and 1’s, we have a binary
code for the set of objects.

The average length of this code is the average number of questions
for the questioning scheme.

George Voutsadakis (LSSU) Information Theory February 2024 55 / 114

Data Compression Some Comments on Huffman Codes

Source Coding and 20 Questions (Converse)

From a binary code for the set of objects, we can find a sequence of
questions that correspond to the code.

The average number of questions equals the expected codeword
length of the code.

The first question in this scheme is “Is the first bit equal to 1 in the
object’s codeword?”

The Huffman code is the best source code for a random variable.

So the optimal series of questions is that determined by the Huffman
code.

George Voutsadakis (LSSU) Information Theory February 2024 56 / 114

Data Compression Some Comments on Huffman Codes

Source Coding and 20 Questions (Example)

Consider again

The optimal first question is: “Is X equal to 2 or 3?”

The answer to this determines the first bit of the Huffman code.

If the answer to the first question is “yes”, the next question should
be “Is X equal to 3?”, which determines the second bit.

We need not wait for the answer to the first to ask the second.

We can ask as our second question “Is X equal to 1 or 3?”,
determining the second bit independent of the first.

The expected number of questions EQ in this optimal scheme satisfies
H(X) ≤ EQ < H(X) + 1.

George Voutsadakis (LSSU) Information Theory February 2024 57 / 114

Data Compression Some Comments on Huffman Codes

Comment 2: Huffman Coding for Weighted Codewords

Huffman’s algorithm for minimizing
∑

piℓi can be applied to any set
of numbers pi ≥ 0, regardless of

∑

pi .

In this case, the Huffman code minimizes the sum of weighted code
lengths

∑

wiℓi rather than the average code length.

Example: We perform the weighted minimization.

The code minimizes the weighted sum of the codeword lengths.

The minimum weighted sum is

L = 5 · 2 + 5 · 2 + 4 · 2 + 4 · 2 = 36.

George Voutsadakis (LSSU) Information Theory February 2024 58 / 114

Data Compression Some Comments on Huffman Codes

Comment 3: Huffman Coding and “Slice” Questions

We consider the game “20 questions” with a restricted set of
questions.

We assume that the elements of X = {1, 2, . . . ,m} are ordered so
that

p1 ≥ p2 ≥ · · · ≥ pm.

We also assume that the only questions allowed are of the form “Is
X > a?”, for some a.

George Voutsadakis (LSSU) Information Theory February 2024 59 / 114

Data Compression Some Comments on Huffman Codes

Huffman Coding and “Slice” Questions: Example

The Huffman code constructed by the Huffman algorithm may not
correspond to slices (sets of the form {x : x < a}).

We construct another optimal code, as follows:

We take the codeword lengths (ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓm) derived from the
Huffman code;
We use them to assign the symbols to the code tree by taking the first
available node at the corresponding level.

Now, each question (each bit of the code) splits the tree into sets of
the form {x : x > a} and {x : x < a}.

So, unlike the Huffman code itself, this code is a slice code.

George Voutsadakis (LSSU) Information Theory February 2024 60 / 114

Data Compression Some Comments on Huffman Codes

Huffman Coding and “Slice” Questions: Example

Consider again a random variable X taking values in the set
X = {1, 2, 3, 4, 5} with probabilities 0.25, 0.25, 0.2, 0.15, 0.15,
respectively.

Using the Huffman coding procedure, we obtained the code

C (1) = 01, C (2) = 10, C (3) = 11, C (4) = 000, C (5) = 001.

This is not a slice code.

We now use the lengths {2, 2, 2, 3, 3} from the Huffman procedure.

We assign the symbols to the first available node on the tree:

1 → 00, 2 → 01, 3 → 10, 4 → 110, 5 → 111.

It can be verified that this code is a slice code.

Such codes are also known as alphabetic codes, since the codewords
are ordered alphabetically.

George Voutsadakis (LSSU) Information Theory February 2024 61 / 114

Data Compression Some Comments on Huffman Codes

Comment 4: Huffman Codes and Shannon Codes

Using codeword lengths of
⌈

log 1
pi

⌉

(which is called Shannon coding)

may be much worse than the optimal code for some particular symbol.

Example: Consider two symbols, one of which occurs with probability
0.9999 and the other with probability 0.0001.

Then using codeword lengths of
⌈

log 1
pi

⌉

gives:

A codeword length of 1 bit for the first symbol.
A codeword of 14 bits for the second symbol.

The optimal codeword length is obviously 1 bit for both symbols.

Hence, the codeword for the infrequent symbol is much longer in the
Shannon code than in the optimal code.

George Voutsadakis (LSSU) Information Theory February 2024 62 / 114

Data Compression Some Comments on Huffman Codes

Huffman Codes and Shannon Codes (Cont’d)

It is not always true that the codeword lengths for an optimal code

are less than
⌈

log 1
pi

⌉

.

Example: Let X be a random variable with a distribution (13 ,
1
3 ,

1
4 ,

1
12).

The Huffman procedure results in one of the length tuples:

(2, 2, 2, 2);
(1, 2, 3, 3).

Both these codes achieve the same expected codeword length.

In the second code, the third symbol has length 3 >
⌈

log 1
p3

⌉

.

George Voutsadakis (LSSU) Information Theory February 2024 63 / 114

Data Compression Some Comments on Huffman Codes

Huffman Codes and Shannon Codes (Cont’d)

We saw that the codeword length for a Shannon code could be less
than the codeword length of the corresponding symbol of an optimal
(Huffman) code.

We also saw that the set of codeword lengths for an optimal code is
not unique.

Although either the Shannon code or the Huffman code can be shorter
for individual symbols, the Huffman code is shorter on average.

Also, both the Shannon code and the Huffman code have expected
codelength between H and H + 1.

So they differ by less than 1 bit in expected codelength.

George Voutsadakis (LSSU) Information Theory February 2024 64 / 114

Data Compression Some Comments on Huffman Codes

Comment 5: Fano Codes

Fano proposed a suboptimal procedure for constructing a source
code, which is similar to the idea of slice codes.

In his method:

We first order the probabilities in decreasing order.
Then we choose k such that |

∑k

i=1 pi −
∑m

i=k+1 pi | is minimized.
This point divides the source symbols into two sets of almost equal
probability.
Assign 0 for the first bit of the upper set and 1 for the lower set.
Repeat this process for each subset.

By this recursive procedure, we obtain a code for each source symbol.

This scheme, although not optimal in general, achieves

L(C) ≤ H(X) + 2.

George Voutsadakis (LSSU) Information Theory February 2024 65 / 114

Data Compression Optimality of Huffman Codes

Subsection 8

Optimality of Huffman Codes

George Voutsadakis (LSSU) Information Theory February 2024 66 / 114

Data Compression Optimality of Huffman Codes

Properties of an Optimal Code

Suppose the probability masses are ordered p1 ≥ p2 ≥ · · · ≥ pm.

Recall that a code is optimal if
∑

piℓi is minimal.

Lemma

For any distribution, there exists an optimal instantaneous code (with
minimum expected length) that satisfies the following properties:

1. The lengths are ordered inversely with the probabilities, i.e.,

pj > pk implies ℓj ≤ ℓk .

2. The two longest codewords have the same length.

3. Two of the longest codewords differ only in the last bit and correspond to
the two least likely symbols.

The proof amounts to swapping, trimming and rearranging.

We consider an optimal code Cm.

George Voutsadakis (LSSU) Information Theory February 2024 67 / 114

Data Compression Optimality of Huffman Codes

Properties of an Optimal Code (Swapping)

If pj > pk , then ℓj ≤ ℓk .

Here we swap codewords.

Consider C ′
m, with the codewords j and k of Cm interchanged.

Then we have

L(C ′
m)− L(Cm) =

∑

piℓ
′
i −
∑

piℓi

= pjℓk + pkℓj − pjℓj − pkℓk

= (pj − pk)(ℓk − ℓj).

But pj − pk > 0.

Since Cm is optimal, L(C ′
m)− L(Cm) ≥ 0.

Hence, we must have ℓk ≥ ℓj .

Thus, Cm itself satisfies Property 1.

George Voutsadakis (LSSU) Information Theory February 2024 68 / 114

Data Compression Optimality of Huffman Codes

Properties of an Optimal Code (Trimming)

The two longest codewords are of the same length.

Here we trim the codewords.

Suppose the two longest codewords are not of the same length.

Then we can delete the last bit of the longer one so that:

The prefix property is preserved;
A lower expected codeword length s achieved.

Hence, the two longest codewords must have the same length.

By Property 1, the longest codewords must belong to the least
probable source symbols.

George Voutsadakis (LSSU) Information Theory February 2024 69 / 114

Data Compression Optimality of Huffman Codes

Properties of an Optimal Code (Rearranging)

The two longest codewords differ only in the last bit and correspond
to the two least likely symbols.

If there is a maximal-length codeword without a sibling, we can delete
the last bit of the codeword and still satisfy the prefix property.

This reduces the average codeword length and contradicts the
optimality of the code.

So every maximal-length codeword in any optimal code has a sibling.

Now we can exchange the longest codewords so that the two lowest
probability source symbols are associated with two siblings on the tree.

This does not change the expected length,
∑

piℓi .

Thus, the codewords for the two lowest-probability source symbols
have maximal length and agree in all but the last bit.

George Voutsadakis (LSSU) Information Theory February 2024 70 / 114

Data Compression Optimality of Huffman Codes

Canonical Code

Summarizing, suppose that

p1 ≥ p2 ≥ · · · ≥ pm.

Then, there exists an optimal code, with:

ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓm−1 = ℓm;
Codewords C (xm−1) and C (xm) differ only in the last bit.

An optimal code satisfying the properties of the lemma is called a
canonical code.

George Voutsadakis (LSSU) Information Theory February 2024 71 / 114

Data Compression Optimality of Huffman Codes

The Huffman Reduction

For any probability mass function for an alphabet of size m,
p = (p1, p2, . . . , pm) with p1 ≥ p2 ≥ · · · ≥ pm, we define the
Huffman reduction

p
′ = (p1, p2, . . . , pm−2, pm−1 + pm)

over an alphabet of size m − 1.

Let C ∗
m−1(p

′) be an optimal code for p
′.

Let C ∗
m(p) be the canonical optimal code for p.

The proof of optimality will follow from two constructions:

First, we expand an optimal code for p
′ to construct a code for p;

Then we condense an optimal canonical code for p to construct a code
for the Huffman reduction p

′.

Comparing the average codeword lengths establishes that the optimal
code for p can be obtained by extending the optimal code for p

′.

George Voutsadakis (LSSU) Information Theory February 2024 72 / 114

Data Compression Optimality of Huffman Codes

Constructing an Extension Code

From the optimal code for p
′, we construct an extension code for m

elements as follows:

Take the codeword in C ∗
m−1 corresponding to weight pm−1 + pm.

C ∗
m−1(p

′) Cm(p)
p1 w ′

1 ℓ′1 w1 = w ′
1 ℓ1 = ℓ′1

p2 w ′
2 ℓ′2 w2 = w ′

2 ℓ2 = ℓ′2
...

...
...

...
...

pm−2 w ′
m−2 ℓ′m−2 wm−2 = w ′

m−2 ℓm−2 = ℓ′m−2

pm−1 + pm w ′
m−1 ℓ′m−1 wm−1 = w ′

m−10 ℓm−1 = ℓ′m−1 + 1
wm = w ′

m−11 ℓm = ℓ′m−1 + 1

Extend it by:
Adding a 0 to form a codeword for symbol m − 1;
Adding 1 to form a codeword for symbol m.

Calculating
∑

i p
′
iℓ
′
i shows that L(p) = L∗(p′) + pm−1 + pm.

George Voutsadakis (LSSU) Information Theory February 2024 73 / 114

Data Compression Optimality of Huffman Codes

Contracting a Code

From the canonical code for p, we construct a code for p
′ by merging

the codewords for the two lowest-probability symbols m − 1 and m

with probabilities pm−1 and pm, which are siblings by the properties of
the canonical code.

The new code for p
′ has average length

L(p′) =

m−2
∑

i=1

piℓi + pm−1(ℓm−1 − 1) + pm(ℓm − 1)

=

m
∑

i=1

piℓi − pm−1 − pm

= L∗(p)− pm−1 − pm.

George Voutsadakis (LSSU) Information Theory February 2024 74 / 114

Data Compression Optimality of Huffman Codes

Combining the Results

We have
L(p) = L∗(p′) + pm−1 + pm;
L(p′) = L∗(p)− pm−1 − pm.

Adding, we obtain L(p′) + L(p) = L∗(p′) + L∗(p).

Equivalently,

(L(p′)− L∗(p′)) + (L(p)− L∗(p)) = 0.

We examine the two terms:

Since L∗(p′) is the optimal length for p
′, L(p′)− L∗(p′) ≥ 0.

The length of the extension of the optimal code for p
′ has to have an

average length at least as large as the optimal code for p.
Therefore, L(p)− L∗(p) ≥ 0.

The sum of two nonnegative terms can be 0 only if both are 0.

So the extension of the optimal code for p
′ is optimal for p.

George Voutsadakis (LSSU) Information Theory February 2024 75 / 114

Data Compression Optimality of Huffman Codes

Optimality of the Huffman Code

We start with a code for two elements.

In this case the optimal code is obvious.

Assume an optimal code for p
′ with m − 1 symbols.

We construct an optimal code for m symbols by extending the
codeword corresponding to pm−1 + pm.

By induction, we construct an optimal code for any number of
elements.

Theorem

Huffman coding is optimal, that is, if C ∗ is a Huffman code and C ′ is any
other uniquely decodable code, L(C ∗) ≤ L(C ′).

Although we have proved the theorem for a binary alphabet, the proof
can be extended to establishing optimality of the Huffman coding
algorithm for a D-ary alphabet as well.

George Voutsadakis (LSSU) Information Theory February 2024 76 / 114

Data Compression Shannon-Fano-Elias Coding

Subsection 9

Shannon-Fano-Elias Coding

George Voutsadakis (LSSU) Information Theory February 2024 77 / 114

Data Compression Shannon-Fano-Elias Coding

Cumulative Distribution Functions

We showed that the codeword lengths ℓ(x) =
⌈

log 1
p(x)

⌉

satisfy the

Kraft inequality and can therefore be used to construct a uniquely
decodable code for the source.

We now describe a simple constructive procedure that uses the
cumulative distribution function to allot codewords.

Without loss of generality, we can take X = {1, 2, . . . ,m}.

Assume that p(x) > 0, for all x .

The cumulative distribution function

F (x) is defined as

F (x) =
∑

a≤x

p(a).

George Voutsadakis (LSSU) Information Theory February 2024 78 / 114

Data Compression Shannon-Fano-Elias Coding

Modified Cumulative Distribution Function

Consider the modified cumulative distribution function

F (x) =
∑

a<x

p(a) +
1

2
p(x),

where F (x) denotes the sum of the probabilities of all symbols less
than x plus half the probability of the symbol x .

Since the random variable is discrete, the cumulative distribution
function consists of steps of size p(x).

The value of F (x) is the midpoint of the step corresponding to x .

Since all the probabilities are positive, F (a) 6= F (b), if a 6= b.

Hence, we can determine x if we know F (x).

Thus, the value of F (x) can be used as a code for x .

But, F (x) is a real number expressible only by infinitely many bits.

So it is not efficient to use the exact value of F (x) as a code for x .

George Voutsadakis (LSSU) Information Theory February 2024 79 / 114

Data Compression Shannon-Fano-Elias Coding

The Required Accuracy

Assume that we truncate F (x) to ℓ(x) bits (denoted by ⌊F (x)⌋ℓ(x)).

Thus, we use the first ℓ(x) bits of F (x) as a code for x .

By definition of rounding off, we have F (x)− ⌊F (x)⌋ℓ(x) <
1

2ℓ(x)
.

If ℓ(x) =
⌈

log 1
p(x)

⌉

+ 1, then

1

2ℓ(x)
<

p(x)

2
= F (x)− F (x − 1).

Therefore, ⌊F (x)⌋ℓ(x) lies within the step corresponding to x .

Thus, ℓ(x) bits suffice to describe x .

George Voutsadakis (LSSU) Information Theory February 2024 80 / 114

Data Compression Shannon-Fano-Elias Coding

The Prefix Property

We also require the set of codewords to be prefix-free.

To check whether the code is prefix-free, we consider each codeword
z1z2 . . . zℓ to represent the interval

[

0.z1z2 · · · zℓ, 0.z1z2 · · · zℓ +
1
2ℓ

)

.

The code is prefix-free if and only if the intervals corresponding to
codewords are disjoint.

The interval corresponding to any codeword has length 2−ℓ(x).

This is less than half the height of the step corresponding to x .

The lower end of the interval is in the lower half of the step.

Thus, the upper end of the interval lies below the top of the step.

So, the interval corresponding to any codeword lies entirely within the
step corresponding to that symbol in F (x).

Therefore, the intervals corresponding to different codewords are
disjoint and the code is prefix-free.

George Voutsadakis (LSSU) Information Theory February 2024 81 / 114

Data Compression Shannon-Fano-Elias Coding

Expected Codeword Length

In this code, we use ℓ(x) =
⌈

log 1
p(x)

⌉

+ 1 bits to represent x .

So the expected length of the code is

L =
∑

x p(x)ℓ(x)

=
∑

x p(x)
(⌈

log 1
p(x)

⌉

+ 1
)

< H(X) + 2.

Thus, this coding scheme achieves an average codeword length that is
within 2 bits of the entropy.

George Voutsadakis (LSSU) Information Theory February 2024 82 / 114

Data Compression Shannon-Fano-Elias Coding

Example (Dyadic Distribution)

Consider an example where all the probabilities are dyadic.

We construct the code in the following table.

We have

L = 0.25 · 3 + 0.5 · 2 + 0.125 · 4 + 0.125 · 4 = 2.75;

H = 0.25 · 2 + 0.5 · 1 + 0.125 · 3 + 0.125 · 3 = 1.75.

The Huffman code for this case achieves the entropy bound.

Looking at the codewords, it is obvious that there is some inefficiency.
E.g., the last bit of the last two codewords can be omitted.

If we remove however, the last bit from all the codewords, the code is
no longer prefix-free.

George Voutsadakis (LSSU) Information Theory February 2024 83 / 114

Data Compression Shannon-Fano-Elias Coding

Example (Non-Dyadic Distribution)

The distribution is not dyadic, so the representation of F (x) in binary
may have an infinite number of bits.

We construct the code in the following table.

The above code is 1.2 bits longer on the average than the Huffman
code for this source.

George Voutsadakis (LSSU) Information Theory February 2024 84 / 114

Data Compression Competitive Optimality of the Shannon Code

Subsection 10

Competitive Optimality of the Shannon Code

George Voutsadakis (LSSU) Information Theory February 2024 85 / 114

Data Compression Competitive Optimality of the Shannon Code

Idea of Competitive Optimality

We have shown that Huffman coding is optimal in that it has
minimum expected length.

But, there are codes that assign shorter codewords to infrequent
source symbols.

So the Fuffman code’s performance is not better than any other code
on any particular sequence.

Such comparisons give rise to the idea of competitive optimality.

George Voutsadakis (LSSU) Information Theory February 2024 86 / 114

Data Compression Competitive Optimality of the Shannon Code

Competitive Optimality Through Games

To formalize the question of competitive optimality, we introduce a
two-person zero-sum game.

Two people are given a probability distribution and are asked to
design an instantaneous code for the distribution.

Then a source symbol is drawn from this distribution.

Depending on whether the codeword of Player A for the source
symbol drawn is shorter or longer than the codeword of Player B , the
payoff to Player A is 1 or −1.

The payoff is 0 for ties.

George Voutsadakis (LSSU) Information Theory February 2024 87 / 114

Data Compression Competitive Optimality of the Shannon Code

Competitive Optimality of the Shannon Code

Consider the Shannon code with codeword lengths

ℓ(x) =

⌈

log
1

p(x)

⌉

.

Theorem

Let ℓ(x) be the codeword lengths associated with the Shannon code and
let ℓ′(x) be the codeword lengths associated with any other uniquely
decodable code. Then

Pr(ℓ(X) ≥ ℓ′(X) + c) ≤
1

2c−1
.

George Voutsadakis (LSSU) Information Theory February 2024 88 / 114

Data Compression Competitive Optimality of the Shannon Code

Competitive Optimality of the Shannon Code (Cont’d)

We have

Pr(ℓ(X) ≥ ℓ′(X) + c) = Pr
(⌈

log 1
p(X)

⌉

≥ ℓ′(X) + c
)

≤ Pr
(

log 1
p(X) ≥ ℓ′(X) + c − 1

)

= Pr(p(X) ≤ 2−ℓ′(X)−c+1)

=
∑

x :p(x)≤2−ℓ′(x)−c+1 p(x)

≤
∑

x :p(x)≤2−ℓ′(x)−c+1 2−ℓ′(x)−(c−1)

≤
∑

x 2
−ℓ′(x)2−(c−1)

Kraft

≤ 2−(c−1).

George Voutsadakis (LSSU) Information Theory February 2024 89 / 114

Data Compression Competitive Optimality of the Shannon Code

Strengthening the Theorem

In a game-theoretic setting, one would like to ensure that
ℓ(x) < ℓ′(x) more often than ℓ(x) > ℓ′(x).

Recall that the probability mass function p(x) is dyadic if log 1
p(x) is

an integer, for all x .

Theorem

For a dyadic probability mass function p(x), let ℓ(x) = log 1
p(x) be the word

lengths of the binary Shannon code for the source and let ℓ′(x) be the
lengths of any other uniquely decodable binary code for the source. Then

Pr(ℓ(X) < ℓ′(X)) ≥ Pr(ℓ(X) > ℓ′(X)),

with equality if and only if ℓ′(x) = ℓ(x), for all x . Thus, the code length
assignment ℓ(x) = log 1

p(x) is uniquely competitively optimal.

George Voutsadakis (LSSU) Information Theory February 2024 90 / 114

Data Compression Competitive Optimality of the Shannon Code

Proof of the Strengthening

Define the function sgn(t) by

sgn(t) =







1 if t > 0
0 if t = 0
−1 if t < 0

.

Consider the graph showing sgn(t) and 2t − 1.

It is easy to see that, for all t = 0,±1,±2, . . .,

sgn(t) ≤ 2t − 1.

Although this inequality is not satisfied for all t, it is satisfied at all
integer values of t.

George Voutsadakis (LSSU) Information Theory February 2024 91 / 114

Data Compression Competitive Optimality of the Shannon Code

Proof of the Strengthening (Cont’d)

We can now write

Pr(ℓ′(X) < ℓ(X))− Pr(ℓ′(X) > ℓ(X))

=
∑

x :ℓ′(x)<ℓ(x) p(x)−
∑

x :ℓ′(x)>ℓ(x) p(x)

=
∑

x p(x)sgn(ℓ(x)− ℓ′(x))

= E sgn(ℓ(X)− ℓ′(X))

≤
∑

x p(x)(2
ℓ(x)−ℓ′(x) − 1)

=
∑

x 2
−ℓ(x)(2ℓ(x)−ℓ′(x) − 1)

=
∑

x 2
−ℓ′(x) −

∑

x 2
−ℓ(x)

=
∑

x 2
−ℓ′(x) − 1

≤ 1− 1 = 0.

George Voutsadakis (LSSU) Information Theory February 2024 92 / 114

Data Compression Competitive Optimality of the Shannon Code

Proof of the Strengthening (Cont’d)

We have equality in the above chain only if we have:

Equality in the bound for sgn;
Equality in the Kraft inequality.

Now observe that:

We have equality in the bound for sgn(t) only if t is 0 or 1.
I.e., ℓ(x) = ℓ′(x) or ℓ(x) = ℓ′(x) + 1.
Equality in Kraft implies that ℓ′(x) satisfies the Kraft inequality with
equality.

Combining these two facts implies that ℓ′(x) = ℓ(x), for all x .

George Voutsadakis (LSSU) Information Theory February 2024 93 / 114

Data Compression Competitive Optimality of the Shannon Code

A Consequence

Corollary

For nondyadic probability mass functions,

E sgn(ℓ(X)− ℓ′(X)− 1) ≤ 0,

where ℓ(x) =
⌈

log 1
p(x)

⌉

and ℓ′(x) is any other code for the source.

Along the same lines as the preceding proof.

We have shown that Shannon coding ℓ(x) =
⌈

log 1
p(x)

⌉

is optimal

under a variety of criteria.

It is robust with respect to the payoff function.
In particular, for dyadic p:

E (ℓ− ℓ′) ≤ 0;
E sgn(ℓ − ℓ′) ≤ 0;
Ef (ℓ− ℓ′) ≤ 0, for any function f , satisfying f (t) ≤ 2t − 1, for all
t = 0,±1,±2,

George Voutsadakis (LSSU) Information Theory February 2024 94 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Subsection 11

Generation of Discrete Distributions from Fair Coins

George Voutsadakis (LSSU) Information Theory February 2024 95 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Example

How many fair coin flips does it take to generate a random variable X

drawn according to a specified probability mass function p?

Example: Assume given a sequence of fair coin tosses (fair bits).

Suppose we wish to generate a random variable X with distribution

X =







a, with probability 1
2

b, with probability 1
4

c , with probability 1
4

.

If the first bit is 0, we let X = a.
If the first two bits are 10, we let X = b.
If we see 11, we let X = c .

The average number of fair bits required for generating X is

0.5 · 1 + 0.25 · 2 + 0.25 · 2 = 1.5 bits.

This is also the entropy of the distribution.

George Voutsadakis (LSSU) Information Theory February 2024 96 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

The General Problem and the Binary Tree

We are given a sequence of fair coin tosses Z1,Z2,

We generate a discrete random variable X ∈ X = {1, 2, . . . ,m}, with
probability mass function p = (p1, p2, . . . , pm).

Let the random variable T denote the number of coin flips used in
the algorithm.

We can describe the algorithm mapping
strings of bits Z1,Z2, . . . to possible
outcomes X by a binary tree.

The leaves of the tree are marked by
output symbols X .

The path to the leaves is given by the sequence of bits produced by
the fair coin.

George Voutsadakis (LSSU) Information Theory February 2024 97 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Tree Properties

The tree representing the algorithm must satisfy certain properties.

1. The tree should be complete (i.e., every node is either a leaf or has two
descendants in the tree).
The tree may be infinite.

2. The probability of a leaf at depth k is 2−k .
Many leaves may be labeled with the same output symbol and the
total probability of all these leaves should equal the desired probability
of the output symbol.

3. The expected number of fair bits ET required to generate X is equal
to the expected depth of this tree.

George Voutsadakis (LSSU) Information Theory February 2024 98 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Possible Algorithms

There are many possible algorithms that generate the same output
distribution.

Example: Consider the trees

They represent the mappings:

0 → a, 10 → b, 11 → c ;
00 → a, 01 → b, 10 → c , 11 → a.

Both yield the distribution (12 ,
1
4 ,

1
4).

However, the second uses two fair bits to generate each sample.

So it is less efficient than the first which uses only 1.5 bits per sample.

George Voutsadakis (LSSU) Information Theory February 2024 99 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Efficiency of Possible Algorithms

What is the most efficient algorithm to generate a given distribution,
and how is this related to the entropy of the distribution?

We expect that we need at least as much randomness in the fair bits
as we produce in the output samples.

Entropy is a measure of randomness.
Each fair bit has an entropy of 1 bit.

So we expect that the number of fair bits used will be at least equal
to the entropy of the output.

George Voutsadakis (LSSU) Information Theory February 2024 100 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Lemma About Trees

Lemma

For any complete tree, consider a probability distribution on the leaves,
such that the probability of a leaf at depth k is 2−k . Then the expected
depth of the tree is equal to the entropy of this distribution.

Let Y denote the set of leaves of a complete tree.

Let Y be a random variable with the distribution described.

Let k(y) denote the depth of leaf y .

The expected depth of the tree is ET =
∑

y∈Y k(y)2−k(y).

The entropy of the distribution of Y is

H(Y) = −
∑

y∈Y

1

2k(y)
log

1

2k(y)
=
∑

y∈Y

k(y)2−k(y).

Thus, H(Y) = ET .

George Voutsadakis (LSSU) Information Theory February 2024 101 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Expected Number of Fair Bits

Theorem

For any algorithm generating X , the expected number of fair bits used is
greater than the entropy H(X), i.e.,

ET ≥ H(X).

We represent the algorithm generating X by a complete binary tree.

Label the leaves of this tree by distinct symbols y ∈ Y = {1, 2, . . .}.

If the tree is infinite, the alphabet Y is also infinite.

Let Y be the random variable defined on the leaves of the tree.

For any leaf y at depth k , the probability that Y = y is 2−k .

By the lemma, the expected depth of the tree equals the entropy of
Y : ET = H(Y).

George Voutsadakis (LSSU) Information Theory February 2024 102 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Expected Number of Fair Bits (Cont’d)

The random variable X is a function of Y .

In fact, one or more leaves map onto an output symbol.

Hence, by a preceding problem, we have

H(X) ≤ H(Y).

We conclude that, for any algorithm generating the random variable
X , we have

H(X) ≤ ET .

George Voutsadakis (LSSU) Information Theory February 2024 103 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Optimality for a Dyadic Distribution

Theorem

Let the random variable X have a dyadic distribution. The optimal
algorithm to generate X from fair coin flips requires an expected number
of coin tosses precisely equal to the entropy:

ET = H(X).

By the preceding theorem, we need at least H(X) bits to generate X .

For the converse, we use the Huffman code tree for X as the tree to
generate the random variable.

For a dyadic distribution, the Huffman code is the same as the
Shannon code and achieves the entropy bound.

George Voutsadakis (LSSU) Information Theory February 2024 104 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Optimality for a Dyadic Distribution (Cont’d)

For any x ∈ X , the depth of the leaf in the code tree corresponding
to x is the length of the corresponding codeword, log 1

p(x) .

Hence, when this code tree is used to generate X , the leaf will have a
probability

2
− log 1

p(x) = p(x).

The expected number of coin flips is the expected depth of the tree.

The expected depth of the tree equals the entropy.

Hence, for a dyadic distribution, the optimal generating algorithm
achieves ET = H(X).

George Voutsadakis (LSSU) Information Theory February 2024 105 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

The Non-Dyadic Case

The code tree for the Huffman code generates a dyadic distribution
on the leaves.

Thus, if the given distribution is not dyadic, the code tree for the
Huffman code will not generate the given distribution.

Now all the leaves of the tree have probabilities of the form 2−k .

So we must do the following:

Split any probability pi that is not of this form into atoms of this form;
Allot these atoms to leaves on the tree.

George Voutsadakis (LSSU) Information Theory February 2024 106 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Example

Suppose one of the outcomes x has probability p(x) = 1
4 .

In this case, we need only one atom;

Namely, a leaf of the tree at level 2.

On the other hand, suppose p(x) = 7
8 .

Then we decompose

p(x) =
7

8
=

1

2
+

1

4
+

1

8
.

So, in this case, we need three atoms:

One at level 1;
One at level 2;
One at level 3.

George Voutsadakis (LSSU) Information Theory February 2024 107 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

The Non-Dyadic Case (Cont’d)

To minimize the expected depth of the tree, we should use atoms
with as large a probability as possible.

So given a probability pi :

We find the largest atom of the form 2−k that is less than pi .
We allot this atom to the tree.
We calculate the remainder.
We find that largest atom that will fit in the remainder.
Continuing this process, we can split all the probabilities into dyadic
atoms.

This process is equivalent to finding the binary expansions of the
probabilities.

George Voutsadakis (LSSU) Information Theory February 2024 108 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

The Non-Dyadic Case (Formalism)

Let the binary expansion of the probability pi be

pi =
∑

j≥1

p
(j)
i ,

where p
(j)
i = 2−j or 0.

The atoms of the expansion are the {p
(j)
i : i = 1, 2, . . . ,m, j ≥ 1}.

Since
∑

i pi = 1, the sum of the probabilities of these atoms is 1.

We will allot an atom of probability 2−j to a leaf at depth j .

The depths of the atoms satisfy the Kraft inequality.

Hence, we can always construct such a tree with all the atoms at the
right depths.

George Voutsadakis (LSSU) Information Theory February 2024 109 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Example

Let X have the distribution

X =

{

a, with probability 2
3

b, with probability 1
3

.

We find the binary expansions of these probabilities:

2
3 = 0.10101010 . . . ;
1
3 = 0.01010101

The atoms for the expansion are

2
3 → (12 ,

1
8 ,

1
32 , . . .);

1
3 → (14 ,

1
16 ,

1
64 , . . .).

George Voutsadakis (LSSU) Information Theory February 2024 110 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Bounds for the Expected Length

Theorem

The expected number of fair bits required by the optimal algorithm to
generate a random variable X lies between H(X) and H(X) + 2,

H(X) ≤ ET < H(X) + 2.

The lower bound was proved in a previous theorem.

For the upper bound, we write down an explicit expression for the
expected number of coin tosses required for the procedure.

Split all the probabilities (p1, p2, . . . , pm) into dyadic atoms

pi → (p
(1)
i , p

(2)
i , . . .).

Using these atoms, which form a dyadic distribution, we construct a
tree with leaves corresponding to each of these atoms.

George Voutsadakis (LSSU) Information Theory February 2024 111 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Bounds for the Expected Length (Cont’d)

The number of coin tosses required to generate each atom is its
depth in the tree.

Therefore, the expected number of coin tosses is the expected depth
of the tree.

This is equal to the entropy of the dyadic distribution of the atoms.

Hence, ET = H(Y), where Y has the distribution

(p
(1)
1 , p

(2)
1 , . . . , p

(1)
2 , p

(2)
2 , . . . , p

(1)
m , p

(2)
m , . . .).

Since X is a function of Y , we have

H(Y) = H(Y ,X) = H(X) + H(Y |X).

Our objective is to show that H(Y |X) < 2.

George Voutsadakis (LSSU) Information Theory February 2024 112 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Bounds for the Expected Length (Cont’d)

Expanding the entropy of Y , we have

H(Y) = −
∑m

i=1

∑

j≥1 p
(j)
i log p

(j)
i

=
∑m

i=1

∑

j :p
(j)
i

>0
j2−j ,

since each of the atoms is either 0 or 2−k for some k .

Consider the term Ti in the sum Ti =
∑

j :p
(j)
i

>0
j2−j .

We can find an n, such that 2−(n−1) > pi ≥ 2−n.

Equivalently, n − 1 < − log pi ≤ n. Then p
(j)
i > 0 only if j ≥ n.

So
Ti =

∑

j :j≥n,p
(j)
i

>0

j2−j .

Using the definition of the atom, we write pi =
∑

j :j≥n,p
(j)
i

>0
2−j .

George Voutsadakis (LSSU) Information Theory February 2024 113 / 114

Data Compression Generation of Discrete Distributions from Fair Coins

Bounds for the Expected Length (Claim)

Claim: Ti < −pi log pi + 2pi .

Ti + pi log pi − 2pi < Ti − pi(n − 1)− 2pi
= Ti − (n − 1 + 2)pi
=

∑

j :j≥n,p
(j)
i
>0

j2−j

− (n + 1)
∑

j :j≥n,p
(j)
i
>0

2−j

=
∑

j :j≥n,p
(j)
i
>0

(j − n − 1)2−j

= − 2−n + 0 +
∑

j :j≥n+2,p
(j)
i

>0
(j − n − 1)2−j

= − 2−n +
∑

k:k≥1,p
(k+n+1)
i

>0
k2−(k+n+1)

≤ − 2−n +
∑

k:k≥1 k2
−(k+n+1)

= − 2−n + 2−(n+1)2 = 0.

We have shown that Ti < −pi log pi + 2pi .

Now ET =
∑

i Ti < −
∑

i pi log pi + 2
∑

i pi = H(X) + 2.

George Voutsadakis (LSSU) Information Theory February 2024 114 / 114

	Outline
	Data Compression
	Examples of Codes
	Kraft Inequality
	Optimal Codes
	Bounds on the Optimal Code Length
	Kraft Inequality for Uniquely Decodable Codes
	Huffman Codes
	Some Comments on Huffman Codes
	Optimality of Huffman Codes
	Shannon-Fano-Elias Coding
	Competitive Optimality of the Shannon Code
	Generation of Discrete Distributions from Fair Coins

