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Channel Capacity Channel Capacity

Subsection 1

Channel Capacity
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Channel Capacity Channel Capacity

A Signaling System

The mathematical analog of a physical signaling system:

Source symbols from some finite alphabet are mapped into some
sequence of channel symbols.

The sequence produces the output sequence of the channel.

The output sequence is random but has a distribution that depends on
the input sequence.

From the output sequence, we attempt to recover the transmitted
message.
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Channel Capacity Channel Capacity

Discrete Channel and Channel Capacity

Definition

We define a discrete channel to be a system consisting of an input
alphabet X and output alphabet Y and a probability transition matrix
p(y |x) that expresses the probability of observing the output symbol y
given that we send the symbol x .
The channel is said to be memoryless if the probability distribution of the
output depends only on the input at that time and is conditionally
independent of previous channel inputs or outputs.

Definition

We define the “information” channel capacity of a discrete memoryless
channel as

C = max
p(x)

I (X ;Y ),

where the maximum is taken over all possible input distributions p(x).
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Channel Capacity Examples of Channel Capacity

Subsection 2

Examples of Channel Capacity
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Channel Capacity Examples of Channel Capacity

Noiseless Binary Channel

Suppose that we have a channel whose binary input is reproduced
exactly at the output.

In this case, any transmitted bit is received without error.

Hence, one error-free bit can be transmitted per use of the channel.

It follow that the capacity is 1 bit.

We can also calculate the information capacity

C = max
p

(x)I (X ;Y )

= max
p(x)

(
p(0, 0) log p(0|0)

p(0) + p(1, 1) log p(1|1)
p(1)

)
= 1 bit,

achieved using p(x) = (12 ,
1
2 ).
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Channel Capacity Examples of Channel Capacity

Noisy Channel with Nonoverlapping Outputs

This channel has two possible outputs
corresponding to each of the two inputs.

The channel appears to be noisy, but
really is not.

The output of the channel is a random
consequence of the input, but the input
can be determined from the output.

Hence every transmitted bit can be recovered without error.

The capacity of this channel is also 1 bit per transmission.

We can calculate the information capacity C = maxp(x) I (X ;Y ) = 1

bit, achieved using p(x) = (12 ,
1
2 ).
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Channel Capacity Examples of Channel Capacity

Noisy Typewriter

The channel input is either received
unchanged with probability 1

2 or is
transformed into the next letter with
probability 1

2 .

If the input has 26 symbols and we use every
alternate input symbol, we can transmit one
of 13 symbols error-free per transmission.

Hence, the capacity of this channel is log 13
bits per transmission.

We can also calculate the information capacity

C = maxp(x) I (X ;Y ) = max (H(Y )− H(Y |X ))

= maxH(Y )− 1 = log 26− 1 = log 13,

achieved using p(x) distributed uniformly over all inputs.
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Channel Capacity Examples of Channel Capacity

Binary Symmetric Channel

Consider the following binary symmetric channel (BSC).

This is a binary channel in which the input
symbols are complemented with probability
p.

This is the simplest model of a channel
with errors, yet it captures most of the
complexity of the general problem.

When an error occurs, a 0 is received as a 1, and vice versa.

The bits received do not reveal where the errors have occurred.

In a sense, all the bits received are unreliable.

Later we show that we can still use such a communication channel to
send information at a nonzero rate with an arbitrarily small probability
of error.
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Channel Capacity Examples of Channel Capacity

Binary Symmetric Channel (Capacity)

We bound the mutual information by

I (X ;Y ) = H(Y )− H(Y |X )

= H(Y )−
∑

p(x)H(Y |X = x)

= H(Y )−
∑

p(x)H(p)

= H(Y )− H(p)

≤ 1− H(p),

where the inequality follows because Y is a binary random variable.

Equality is achieved when the input distribution is uniform.

Hence, the information capacity of a binary symmetric channel with
parameter p is C = 1− H(p) bits.
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Channel Capacity Examples of Channel Capacity

Binary Erasure Channel

The analog of the binary symmetric channel
in which some bits are lost (rather than
corrupted) is the binary erasure channel.

In this channel, a fraction α of the bits are
erased.

The receiver knows which bits have been
erased.

The binary erasure channel has two inputs and three outputs.

George Voutsadakis (LSSU) Information Theory February 2024 12 / 99



Channel Capacity Examples of Channel Capacity

Binary Erasure Channel (Capacity)

We calculate the capacity of the binary erasure channel as follows:

C = max
p(x)

I (X ;Y )

= max
p(x)

(H(Y )− H(Y |X ))

= max
p(x)

H(Y )− H(α).

The first guess for the maximum of H(Y ) would be log 3.

But we cannot achieve this by any choice of input distribution p(x).
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Channel Capacity Examples of Channel Capacity

Binary Erasure Channel (Capacity Cont’d)

Let Pr(X = 1) = π and E be the event {Y = e}.

We have
H(Y ) = H(Y ,E ) = H(E ) + H(Y |E ).

Moreover,

H(Y ) = H((1 − π)(1 − α), α, π(1 − α))
= H(α) + (1− α)H(π).

Hence,

C = maxp(x)H(Y )− H(α)

= maxπ (1− α)H(π) + H(α) − H(α)
= maxπ (1− α)H(π) = 1− α,

where capacity is achieved by π = 1
2 .

The expression for the capacity has some intuitive meaning:
Since a proportion α of the bits are lost, we can recover (at most) a
proportion 1− α of the bits. Hence the capacity is at most 1− α.
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Channel Capacity Symmetric Channels

Subsection 3

Symmetric Channels
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Channel Capacity Symmetric Channels

Symmetric Channels

The capacity of the binary symmetric channel is C = 1− H(p) bits.

The capacity of the binary erasure channel is C = 1− α bits per
transmission.

Consider the channel with transition matrix:

p(y |x) =




0.3 0.2 0.5
0.5 0.3 0.2
0.2 0.5 0.3


 .

The entry in the x-th row and the y -th column denotes the
conditional probability p(y |x) that y is received when x is sent.

In this channel, all the rows of the probability transition matrix are
permutations of each other and so are the columns.

Such a channel is said to be symmetric.
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Channel Capacity Symmetric Channels

Example

Another example of a symmetric channel is one of the form

Y = X + Z (mod c),

where:

Z has some distribution on the integers {0, 1, 2, . . . , c − 1};
X has the same alphabet as Z ;
Z is independent of X .
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Channel Capacity Symmetric Channels

Example (Capacity)

We can find an explicit expression for the capacity of the channel.

Let r be a row of the transition matrix. Then we have

I (X ;Y ) = H(Y )− H(Y |X ) = H(Y )− H(r ) ≤ log |Y| − H(r ).

Equality holds if the output distribution is uniform.

But p(x) = 1
|X | achieves a uniform distribution on Y .

In fact, let c be the sum of the entries in one column of the matrix.

Then

p(y) =
∑

x∈X

p(y |x)p(x) =
1

|X |

∑
p(y |x) = c

1

|X |
=

1

|Y|
.

Thus, the channel has the capacity

C = max
p(x)

I (X ;Y ) = log 3− H(0.5, 0.3, 0.2).

C is achieved by a uniform distribution on the input.
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Channel Capacity Symmetric Channels

Symmetric and Weakly Symmetric Channels

Definition

A channel is said to be:

Symmetric if the rows of the channel transition matrix p(y |x) are
permutations of each other and the columns are permutations of each
other;

Weakly symmetric if every row of the transition matrix p(·|x) is a
permutation of every other row and all the column sums

∑
x p(y |x)

are equal.

Example: The channel with transition matrix

p(y |x) =

(
1
3

1
6

1
2

1
3

1
2

1
6

)

is weakly symmetric but not symmetric.
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Channel Capacity Symmetric Channels

Capacity of Weakly Symmetric Channels

The preceding derivation for symmetric channels carries over to
weakly symmetric channels as well.

Theorem

For a weakly symmetric channel,

C = log |Y| − H(row of transition matrix),

and this is achieved by a uniform distribution on the input alphabet.
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Properties of Channel Capacity
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Channel Capacity Properties of Channel Capacity

Properties of Channel Capacity

Recall that
C = max

p(x)
I (X ;Y ).

The definition implies several properties of channel capacity.

1. C ≥ 0.

Follows from I (X ;Y ) ≥ 0.

2. C ≤ log |X |.

We have
C = max

p(x)
I (X ;Y ) ≤ maxH(X ) = log |X |.

3. C ≤ log |Y|.

Same reason as above.
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Channel Capacity Properties of Channel Capacity

Properties of Channel Capacity (Cont’d)

4. I (X ;Y ) is a continuous function of p(x).

Based on the form of the function.

5. I (X ;Y ) is a concave function of p(x).

By a previous theorem.

Since I (X ;Y ) is a concave function over a closed convex set, a local
maximum is a global maximum.

From Properties 2 and 3, the maximum is finite.

So we are justified in using the term maximum rather than supremum
in the definition of capacity.
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Channel Capacity Properties of Channel Capacity

Finding Channel Capacity

The maximum can be found by standard nonlinear optimization
techniques such as gradient search.

Some of the methods that can be used include the following:

Constrained maximization using calculus and the Kuhn-Tucker
conditions;
The Frank-Wolfe gradient search algorithm;
An iterative algorithm developed by Arimoto and Blahut.

In general, there is no closed-form solution for the capacity.

However, for many simple channels, such as the ones considered
earlier, it is possible to calculate the capacity using special properties,
such as symmetry.
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Subsection 5

Preview of the Channel Coding Theorem
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Channel Capacity Preview of the Channel Coding Theorem

Intuition Behind Capacity

We give an intuitive idea as to why we can transmit C bits of
information over a channel.

The basic idea is that for large block lengths, every channel looks like
the noisy typewriter channel.

Moreover, the channel has a subset of inputs that produce essentially
disjoint sequences at the output.

For each (typical) input n-sequence, there
are approximately 2nH(Y |X ) possible Y

sequences, all of them equally likely.

We wish to ensure that no two X

sequences produce the same Y output
sequence.

Otherwise, we will not be able to decide which X sequence was sent.
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Channel Capacity Preview of the Channel Coding Theorem

Intuition Behind Capacity (Cont’d)

The total number of possible (typical) Y sequences is ≈ 2nH(Y ).

This set has to be divided into sets of size 2nH(Y |X ) corresponding to
the different input X sequences.

The total number of disjoint sets is less than or equal to

2n(H(Y )−H(Y |X )) = 2nI (X ;Y ).

Hence, we can send at most ≈ 2nI (X ;Y ) distinguishable sequences of
length n.

This derivation outlines an upper bound on the capacity.

A stronger version of the argument can be used to prove that this
rate I is achievable with an arbitrarily low probability of error.
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Subsection 6

Definitions
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Channel Capacity Definitions

The Communication System

We analyze a communication system as shown below.

A message W , drawn from the index set {1, 2, . . . ,M}, results in the
signal X n(W ).

This is received by the receiver as a random sequence Y n ∼ p(yn|xn).

The receiver then guesses the index W by an appropriate decoding
rule Ŵ = g(Y n).

The receiver makes an error if Ŵ is not the same as the index W

that was transmitted.
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Channel Capacity Definitions

Discrete Channels and Extensions

Definition

A discrete channel, denoted by (X , p(y |x),Y), consists of two finite sets
X and Y and a collection of probability mass functions p(y |x), one for
each x ∈ X , such that:

For every x and y , p(y |x) ≥ 0;

For every x ,
∑

y p(y |x) = 1.

We interpret X as the input and Y as the output of the channel.

Definition

The n-th extension of the discrete memoryless channel (DMC) is the
channel (X n, p(yn|xn),Yn), where

p(yk |x
k , yk−1) = p(yk |xk), k = 1, 2, . . . , n.
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Channel Capacity Definitions

Discrete Memoryless Channel without Feedback

Suppose the channel is used without feedback, i.e., if the input
symbols do not depend on the past output symbols, namely,

p(xk |x
k−1, yk−1) = p(xk |x

k−1).

Then the channel transition function for the n-th extension of the
discrete memoryless channel reduces to

p(yn|xn) =
n∏

i=1

p(yi |xi ).

When we refer to the discrete memoryless channel, we mean the
discrete memoryless channel without feedback unless we state
explicitly otherwise.
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Channel Capacity Definitions

Code for a Channel

Definition

An (M, n) code for the channel (X , p(y |x),Y) consists of the following:

1. An index set {1, 2, . . . ,M}.

2. An encoding function X n : {1, 2, . . . ,M} → X n, yielding codewords
xn(1), xn(2), . . . , xn(M).

The set of codewords is called the codebook.

3. A decoding function

g : Yn → {1, 2, . . . ,M},

which is a deterministic rule that assigns a guess to each possible
received vector.
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Channel Capacity Definitions

Conditional and Maximal Probability of Error

Definition (Conditional Probability of Error)

Let

λi = Pr(g(Y n) 6= i |X n = xn(i)) =
∑

yn

p(yn|xn(i))I (g(yn) 6= i)

be the conditional probability of error given that index i was sent, where
I (·) is the indicator function.

Definition

The maximal probability of error λ(n) for an (M, n) code is defined as

λ(n) = max
i∈{1,2,...,M}

λi .
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Channel Capacity Definitions

Average Probability of Error

Definition

The (arithmetic) average probability of error P
(n)
e for an (M, n) code is

defined as

P
(n)
e =

1

M

M∑

i=1

λi .

Note that if the index W is chosen according to a uniform
distribution over the set {1, 2, . . . ,M}, and X n = xn(W ), then

P
(n)
e = Pr(W 6= g(Y n)),

i.e., P
(n)
e is the probability of error.

Also, obviously, P
(n)
e ≤ λ(n).
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Channel Capacity Definitions

Rates, Achievable Rates and Capacity

Definition

The rate R of an (M, n) code is

R =
logM

n
bits per transmission.

Definition

A rate R is said to be achievable if there exists a sequence of (⌈2nR⌉, n)
codes such that the maximal probability of error λ(n) tends to 0 as n → ∞.

Later, we write (2nR , n) codes to mean (⌈2nR⌉, n) codes.

Definition

The capacity of a channel is the supremum of all achievable rates.

Thus, rates less than capacity yield arbitrarily small probability of
error for sufficiently large block lengths.
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Subsection 7

Jointly Typical Sequences
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Channel Capacity Jointly Typical Sequences

Jointly Typical Sequences

Definition

The set A
(n)
ǫ of jointly typical sequences {(xn, yn)} with respect to the

distribution p(x , y) is the set of n-sequences with empirical entropies
ǫ-close to the true entropies:

A
(n)
ǫ = {(xn, yn) ∈ X n × Yn : | − 1

n
log p(xn)− H(X )| < ǫ,

| − 1
n
log p(yn)− H(Y )| < ǫ,

| − 1
n
log p(xn, yn)− H(X ,Y )| < ǫ},

where

p(xn, yn) =
n∏

i=1

p(xi , yi ).
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Channel Capacity Jointly Typical Sequences

Joint AEP Theorem

Theorem (Joint AEP)

Let (X n,Y n) be sequences of length n drawn i.i.d. according to
p(xn, yn) =

∏n
i=1 p(xi , yi ). Then:

1. Pr((X n,Y n) ∈ A
(n)
ǫ ) → 1 as n → ∞.

2. |A
(n)
ǫ | ≤ 2n(H(X ,Y )+ǫ).

3. If (X̃ n, Ỹ n) ∼ p(xn)p(yn), i.e., X̃ n and Ỹ n are independent with the
same marginals as p(xn, yn), then

Pr((X̃ n, Ỹ n) ∈ A(n)
ǫ

) ≤ 2−n(I (X ;Y )−3ǫ).

Also, for sufficiently large n,

Pr((X̃ n, Ỹ n) ∈ A(n)
ǫ

) ≥ (1− ǫ)2−n(I (X ;Y )+3ǫ).
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Channel Capacity Jointly Typical Sequences

Proof of the Joint AEP Theorem (Part 1)

1. We begin by showing that with high probability, the sequence is in the
typical set. By the Weak Law of Large Numbers,

−
1

n
log p(X n) → −E [log p(X )] = H(X ) in probability.

Hence, given ǫ > 0, there exists n1, such that for all n > n1,

Pr

(∣∣∣∣−
1

n
log p(X n)− H(X )

∣∣∣∣ ≥ ǫ

)
<

ǫ

3
.

Similarly, by the Weak Law of Large Numbers, we get

−
1

n
log p(Y n) → −E [log p(Y )] = H(Y ) in probability

and

−
1

n
log p(X n,Y n) → −E [log p(X ,Y )] = H(X ,Y ) in probability.
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Channel Capacity Jointly Typical Sequences

Proof of the Joint AEP Theorem (Part 1 Cont’d)

So there exist n2 and n3, such that for all n ≥ n2,

Pr

(∣∣∣∣−
1

n
log p(Y n)− H(Y )

∣∣∣∣ ≥ ǫ

)
<

ǫ

3
.

And there exist n3, such that for all n ≥ n3,

Pr

(∣∣∣∣−
1

n
log p(X n,Y n)− H(X ,Y )

∣∣∣∣ ≥ ǫ

)
<

ǫ

3
.

Choosing n > max {n1, n2, n3}, the probability of the union of the sets
above must be less than ǫ.

Hence for n sufficiently large, the probability of the set A
(n)
ǫ is greater

than 1− ǫ.
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Channel Capacity Jointly Typical Sequences

Proof of the Joint AEP Theorem (Part 2)

2. To prove the second part, we have

1 =
∑

p(xn, yn)

≥
∑

A
(n)
ǫ

p(xn, yn)

≥ |A
(n)
ǫ |2−n(H(X ,Y )+ǫ).

Hence
|A(n)

ǫ
| ≤ 2n(H(X ,Y )+ǫ).
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Channel Capacity Jointly Typical Sequences

Proof of the Joint AEP Theorem (Part 3)

3. If X̃ n and Ỹ n are independent but have the same marginals as X n

and Y n, then

Pr((X̃ n, Ỹ n) ∈ A
(n)
ǫ ) =

∑

(xn,yn)∈A
(n)
ǫ

p(xn)p(yn)

≤ 2n(H(X ,Y )+ǫ)2−n(H(X )−ǫ)2−n(H(Y )−ǫ)

= 2−n(I (X ;Y )−3ǫ).

For sufficiently large n, Pr(A
(n)
ǫ ) ≥ 1− ǫ. Therefore,

1− ǫ ≤
∑

(xn,yn)∈A
(n)
ǫ

p(xn, yn) ≤ |A(n)
ǫ

|2−n(H(X ,Y )−ǫ).

So
|A(n)

ǫ
| ≥ (1− ǫ)2n(H(X ,Y )−ǫ).
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Channel Capacity Jointly Typical Sequences

Proof of the Joint AEP Theorem (Part 3 Cont’d)

By similar arguments to the upper bound above, we can also show
that for n sufficiently large,

Pr((X̃ n, Ỹ n) ∈ A
(n)
ǫ )

=
∑

A
(n)
ǫ

p(xn)p(yn)

≥ (1− ǫ)2n(H(X ,Y )−ǫ)2−n(H(X )+ǫ)2−n(H(Y )+ǫ)

= (1− ǫ)2−n(I (X ;Y )+3ǫ).

George Voutsadakis (LSSU) Information Theory February 2024 43 / 99



Channel Capacity Jointly Typical Sequences

Illustration and Comments

The jointly typical set is illustrated in
the figure.

There are:

About 2nH(X ) typical X sequences;
About 2nH(Y ) typical Y sequences.

Since there are only 2nH(X ,Y ) jointly typical sequences, not all pairs of
typical X n and typical Y n are also jointly typical.

The probability that any randomly chosen pair is jointly typical is
about 2−nI (X ;Y ).

Hence, we can consider about 2nI (X ;Y ) such pairs before we are likely
to come across a jointly typical pair.

This suggests that there are about 2nI (X ;Y ) distinguishable signals X n.
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Channel Capacity Jointly Typical Sequences

The Fixed Output Point of View

Consider a fixed output sequence Y n, presumably the output
sequence resulting from the true input signal X n.

For this sequence Y n, there are about 2nH(X |Y ) conditionally typical
input signals.

The probability that some randomly chosen (other) input signal X n is
jointly typical with Y n is about

2nH(X |Y )

2nH(X )
= 2−n(H(X )−H(X |Y )) = 2−nI (X ;Y ).

This again suggests that we can choose about 2nI (X ;Y ) codewords
X n(W ) before one of these codewords will get confused with the
codeword that caused the output Y n.
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Channel Capacity Channel Coding Theorem

Subsection 8

Channel Coding Theorem
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Channel Capacity Channel Coding Theorem

Channel Coding Theorem: Ideas of Proof

Shannon used a number of ideas to prove that information can be
sent reliably over a channel at all rates up to the channel capacity.

These ideas include:

Allowing an arbitrarily small but nonzero probability of error;
Using the channel many times in succession, so that the law of large
numbers comes into effect;
Calculating the average of the probability of error over a random choice
of codebooks, which symmetrizes the probability, and which can then
be used to show the existence of at least one good code.
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Channel Capacity Channel Coding Theorem

Channel Coding Theorem: Comments on the Proof

As in all the proofs, we use the same essential ideas:

Random code selection;
Calculation of the average probability of error for a random choice of
codewords;
...

The main difference is in the decoding rule.

We decode by joint typicality:

We look for a codeword that is jointly typical with the received
sequence;
If we find a unique codeword satisfying this property, we declare that
word to be the transmitted codeword.
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Channel Capacity Channel Coding Theorem

Channel Coding: Comments on the Proof (Cont’d)

By the properties of joint typicality, with high probability the
transmitted codeword and the received sequence are jointly typical,
since they are probabilistically related.

Also, the probability that any other codeword looks jointly typical
with the received sequence is 2−nI .

Hence, if we have fewer then 2nI codewords, then, with high
probability, there will be no other codewords that can be confused
with the transmitted codeword.

Although jointly typical decoding is suboptimal, it is simple to analyze
and still achieves all rates below capacity.
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Channel Capacity Channel Coding Theorem

Channel Coding Theorem

Theorem (Channel Coding Theorem)

For a discrete memoryless channel, all rates below capacity C are
achievable. Specifically, for every rate R < C , there exists a sequence of
(2nR , n) codes with maximum probability of error λ(n) → 0.
Conversely, any sequence of (2nR , n) codes with λ(n) → 0 must have
R ≤ C .

For now, we show rates R < C are achievable.

Fix p(x). Generate a (2nR , n) code at random according to the
distribution p(x). Specifically, we generate 2nR codewords
independently according to the distribution p(x) =

∏n
i=1 p(xi).

We exhibit the 2nR codewords as the rows of a matrix:

C =




x1(1) x2(1) · · · xn(1)
...

...
. . .

...
x1(2

nR) x2(2
nR) · · · xn(2

nR)


 .
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Channel Coding Theorem (Process)

Each entry in this matrix is generated i.i.d. according to p(x).

Thus, the probability that we generate a particular code C is

Pr(C) =

2nR∏

w=1

n∏

i=1

p(xi (w)).

Consider the following sequence of events:

1. A random code C is generated as described above according to p(x).
2. The code C is then revealed to both sender and receiver.

Both sender and receiver are also assumed to know the channel
transition matrix p(y |x) for the channel.

3. A message W is chosen according to a uniform distribution

Pr(W = w) = 2−nR , w = 1, 2, . . . , 2nR .

4. The w -th codeword X n(w), corresponding to the w -th row of C, is
sent over the channel.
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Channel Coding Theorem (Process Cont’d)

5. The receiver receives a sequence Y n according to the distribution

P(yn|xn(w)) =

n∏

i=1

p(yi |xi (w)).

6. The receiver guesses which message was sent.

It uses jointly typical decoding, declaring that the index Ŵ was sent, if
the following conditions are satisfied:

(X n(Ŵ ),Y n) is jointly typical;

There is no other index W
′ 6= Ŵ , such that (X n(W ′),Y n) ∈ A

(n)
ǫ .

If no such Ŵ exists or if there is more than one such, an error is
declared.

7. There is a decoding error if Ŵ 6= W .

Let E be the event {Ŵ 6= W }.
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Channel Capacity Channel Coding Theorem

Analysis of the Probability of Error: Outline

Instead of calculating the probability of error for a single code, we
calculate the average over all codes generated at random according to
the chosen distribution.

By the symmetry of the code construction, the average probability of
error does not depend on the particular index that was sent.

For a typical codeword, there are two different sources of error when
we use jointly typical decoding:

The output Y n is not jointly typical with the transmitted codeword;
There is some other codeword that is jointly typical with Y n.

The probability that the transmitted codeword and the received
sequence are jointly typical goes to 1, as shown by the joint AEP.

For any rival codeword, the probability that it is jointly typical with
the received sequence is approximately 2−nI . Hence we can use about
2nI codewords and still have a low probability of error.
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Detailed Calculation of the Probability of Error

We let W be drawn according to a uniform distribution over
{1, 2, . . . , 2nR} and use jointly typical decoding Ŵ (yn).

Let E = {Ŵ (Y n) 6= W } denote the error event.

We will calculate the average probability of error, averaged over all
codewords in the codebook, and averaged over all codebooks:

Pr(E) =
∑

C Pr(C)P
(n)
e (C)

=
∑

C Pr(C)
1

2nR

∑2nR

w=1 λw (C)

= 1
2nR

∑2nR

w=1

∑
C Pr(C)λw (C).

Here, P
(n)
e (C) is defined for jointly typical decoding.
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Detailed Calculation (Cont’d)

By the symmetry of the code construction, the average probability of
error averaged over all codes does not depend on the particular index
that was sent, i.e.,

∑
C Pr(C)λw (C) does not depend on w .

Now we have

Pr(E) = 1
2nR

∑2nR

w=1

∑
C Pr(C)λw (C)

=
∑

C Pr(C)λ1(C)

= Pr(E|W = 1).

Thus, without loss of generality, assume that W = 1 was sent.

Yn is the result of sending the first codeword X n(1) over the channel.

Define the following events:

Ei = {(X n(i),Y n) ∈ A(n)
ǫ

}, i ∈ {1, 2, . . . , 2nR}.

Ei is the event that the i -th codeword and Y n are jointly typical.
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Detailed Calculation (Cont’d)

An error occurs in the decoding scheme if one of the following
happens.

E c
1 occurs (the transmitted codeword and the received sequence are

not jointly typical);
E2 ∪ E3 ∪ · · · ∪ E2nR occurs (a wrong codeword is jointly typical with
the received sequence).

Hence, letting P(E) denote Pr(E|W = 1) and using the union bound,

Pr(E|W = 1) = P(E c
1 ∪ E2 ∪ E3 ∪ · · · ∪ E2nR |W = 1)

≤ P(E c
1 |W = 1) +

∑2nR

i=2 P(Ei |W = 1).

By the joint AEP, P(E c
1 |W = 1) → 0.

Hence, P(E c
1 |W = 1) ≤ ǫ, for n sufficiently large.
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Detailed Calculation (Cont’d)

Since by the code generation process, X n(1) and X n(i) are
independent for i 6= 1, so are Y n and X n(i).

Hence, the probability that X n(i) and Y n are jointly typical is
≤ 2−n(I (X ;Y )−3ǫ) by the joint AEP.

Consequently, if n is sufficiently large and R < I (X ;Y )− 3ǫ,

Pr(E) = Pr(E c
1 |W = 1) +

∑2nR

i=2 P(Ei |W = 1)

≤ ǫ+
∑2nR

i=2 2
−n(I (X ;Y )−3ǫ)

= ǫ+ (2nR − 1)2−n(I (X ;Y )−3ǫ)

≤ ǫ+ 23nǫ2−n(I (X ;Y )−R)

= ǫ+ 2−n(I (X ;Y )−R−3ǫ) ≤ 2ǫ.

Hence, if R < I (X ;Y ), we can choose ǫ and n so that the average
probability of error, averaged over codebooks and codewords, is less
than 2ǫ.
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Detailed Calculation (Selections)

We strengthen this conclusion by a series of code selections.

1. Choose p(x) in the proof to be p∗(x), the distribution on X that
achieves capacity. Then the condition R < I (X ;Y ) can be replaced by
the achievability condition R < C .

2. Get rid of the average over codebooks. Since the average probability of
error over codebooks is small (≤ 2ǫ), there exists at least one
codebook C∗ with a small average probability of error. Thus,
Pr(E|C∗) ≤ 2ǫ. Determination of C∗ can be achieved by an exhaustive
search over all (2nR , n) codes. Note that, since we have chosen W

according to a uniform distribution,

Pr(E|C∗) =
1

2nR

2nR∑

i=1

λi (C
∗).
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Detailed Calculation (Selections Cont’d)

3. Throw away the worst half of the codewords in the best codebook C∗.

Since the arithmetic average probability of error P
(n)
e (C∗) for this code

is less then 2ǫ, we have Pr(E|C∗) ≤ 1
2nR

∑
λi (C

∗) ≤ 2ǫ.
Thus, at least half the indices i and their associated codewords X n(i)
must have conditional probability of error λi less than 4ǫ (otherwise,
these codewords would contribute more than 2ǫ to the sum).
Hence, the best half of the codewords have a maximal probability of
error less than 4ǫ.
If we reindex these codewords, we have 2nR−1 codewords.
Throwing out half the codewords has changed the rate from R to
R − 1

n
, which is negligible for large n.

Combining all these improvements, we have constructed a code of
rate R ′ = R − 1

n
, with maximal probability of error λ(n) ≤ 4ǫ.

This proves the achievability of any rate below capacity.
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Subsection 9

Zero-Error Codes
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Zero-Error Codes

We prove that P
(n)
e = 0 implies that R ≤ C .

Assume that we have a (2nR , n) code with zero probability of error.

I.e., the decoder output g(Y n) is equal to the input index W with
probability 1.

Then the input index W is determined by the output sequence, i.e.,

H(W |Y n) = 0.

To obtain a strong bound, we arbitrarily assume that W is uniformly
distributed over {1, 2, . . . , 2nR}.

Thus, H(W ) = nR .

George Voutsadakis (LSSU) Information Theory February 2024 61 / 99



Channel Capacity Zero-Error Codes

Zero-Error Codes (Cont’d)

We can now write the string of inequalities:

nR = H(W )

= H(W |Y n) + I (W ;Y n)

= I (W ;Y n)
W → Xn(W ) → Y n

≤ I (X n;Y n)
∗

≤
∑n

i=1 I (Xi ;Yi)
C

≤ nC .

Inequality ∗ will be proved in the next section.

Hence, for all n, for any zero-error (2nR , n) code, R ≤ C .
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Subsection 10

Fano’s Inequality and the Converse to the Coding Theorem
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Channel Capacity Fano’s Inequality and the Converse to the Coding Theorem

The Setup

The index W is uniformly distributed on the set W = {1, 2, . . . , 2nR}.

The sequence Y n is related probabilistically to W .

From Y n, we estimate the index W that was sent, and the estimate is
Ŵ = g(Y n).

Thus, W → X n(W ) → Y n → Ŵ forms a Markov chain.

The probability of error is

Pr(Ŵ 6= W ) =
1

2nR

∑

i

λi = P
(n)
e .
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Fano’s Inequality

Lemma (Fano’s Inequality)

For a discrete memoryless channel with a codebook C and the input
message W uniformly distributed over 2nR , we have

H(W |Ŵ ) ≤ 1 + P
(n)
e nR .

Since W is uniformly distributed, we have P
(n)
e = Pr(W 6= Ŵ ).

We apply the weak version of Fano’s inequality

H(X |X̂ ) ≤ 1 + Pr(X 6= X̂ ) log |X |,

for W in an alphabet of size 2nR , to get

H(W |Ŵ ) ≤ 1 + P
(n)
e nR .
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Capacity Per Transmission

Lemma

Let Y n be the result of passing X n through a discrete memoryless channel
of capacity C . Then

I (X n;Y n) ≤ nC , for all p(xn).

By the definition of a discrete memoryless channel, Yi depends only
on Xi and is conditionally independent of everything else. Hence

I (X n;Y n) = H(Y n)− H(Y n|X n)

= H(Y n)−
∑n

i=1H(Yi |Y1, . . . ,Yi−1,X
n)

= H(Y n)−
∑n

i=1H(Yi |Xi)

≤
∑n

i=1H(Yi )−
∑n

i=1H(Yi |Xi)

=
∑n

i=1 I (Xi ;Yi )

≤ nC .
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Converse to the Channel Coding Theorem

We have to show that any sequence of (2nR , n) codes with λ(n) → 0
must have R ≤ C .

If the maximal probability of error tends to zero, the average
probability of error for the sequence of codes also goes to zero.

That is, λ(n) → 0 implies P
(n)
e → 0.

For a fixed encoding rule X n(·) and a fixed decoding rule

Ŵ = g(Y n), we have W → X n(W ) → Y n → Ŵ .

For each n, let W be drawn uniformly over {1, 2, . . . , 2nR}.

Then Pr(Ŵ 6= W ) = P
(n)
e = 1

2nR

∑
i λi . So

nR
uniform W
= H(W )

identity
= H(W |Ŵ ) + I (W ; Ŵ )

Fano

≤ 1 + P
(n)
e nR + I (W ; Ŵ )

data-proc.

≤ 1 + P
(n)
e nR + I (X n;Y n)

Lemma

≤ 1 + P
(n)
e nR + nC .
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Converse to the Channel Coding Theorem (Cont’d)

Dividing by n, we obtain R ≤ P
(n)
e R + 1

n
+ C .

Letting n → ∞ (P
(n)
e → 0, 1

n
→ 0), we get R ≤ C .

Rewriting P
(n)
e ≥ 1− C

R
− 1

nR
we see that, if R > C , the probability of

error is bounded away from 0 for sufficiently large n.

The same holds for all n, since, if P
(n)
e = 0 for small n, we can

construct codes for large n with P
(n)
e = 0 by concatenating these

codes.

Hence, we cannot achieve an arbitrarily low probability of error at
rates above capacity.

This converse is sometimes called the weak converse to the channel
coding theorem.

It is also possible to prove a strong converse, which states that for
rates above capacity, the probability of error goes exponentially to 1.
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Subsection 11

Equality in the Converse to the Channel Coding Theorem
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Channel Capacity Equality in the Converse to the Channel Coding Theorem

Equality in the Channel Coding (Inequalities)

We examine the consequences of equality in the converse, which gives
some ideas as to the kinds of codes that achieve capacity.

Repeating the steps of the converse in the case when Pe = 0, we have

nR = H(W )

= H(W |Ŵ ) + I (W ; Ŵ )

= I (W ; Ŵ )
(a)

≤ I (X n(W );Y n)
= H(Y n)− H(Y n|X n)
= H(Y n)−

∑n
i=1(Yi |Xi)

(b)

≤
∑n

i=1H(Yi )−
∑n

i=1H(Yi |Xi)
=

∑n
i=1 I (Xi ;Yi)

(c)

≤ nC .
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Equality in the Channel Coding (Equalities)

We analyze inequalities (a), (b) and (c).

We have equality in the data-processing inequality (a), only if

I (Y n;X n(W )|W ) = 0 and I (X n;Y n|Ŵ ) = 0.

This is true if all the codewords are distinct and if Ŵ is a sufficient
statistic for decoding.
We have equality in inequality (b) only if the Yi ’s are independent.
We have equality in the inequality (c) only if the distribution of Xi is
p∗(x), the distribution on X that achieves capacity.

We have equality in the converse only if these conditions are satisfied.
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Conclusions

This indicates that a capacity-achieving zero-error code has distinct
codewords and the distribution of the Yi ’s must be i.i.d. with

p∗(y) =
∑

x

p∗(x)p(y |x),

the distribution on Y induced by the optimum distribution on X .

The distribution referred to in the converse is the empirical
distribution on X and Y induced by a uniform distribution over
codewords, that is,

p(xi , yi) =
1

2nR

2nR∑

w=1

I (Xi (w) = xi)p(yi |xi ).
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Subsection 12

Hamming Codes
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Channel Capacity Hamming Codes

Redundancy

The object of coding is to introduce redundancy so that, even if some
of the information is lost or corrupted, it will still be possible to
recover the message at the receiver.

The most obvious coding scheme is to repeat information.
Example: To send a 1, we send 11111, and to send a 0, we send
00000.

This scheme uses five symbols to send 1 bit, and therefore has a rate of
1
5 bit per symbol.
If this code is used on a binary symmetric channel, the optimum
decoding scheme is to take the majority vote of each block of five
received bits.
An error occurs if and only if more than three of the bits are changed.

By using longer repetition codes, we can achieve an arbitrarily low
probability of error.

But the rate of the code also goes to zero with block length.

So, even though the code is “simple”, it is not a very useful code.
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Error-Detection

Instead of simply repeating the bits, we can combine the bits in some
intelligent fashion so that each extra bit checks whether there is an
error in some subset of the information bits.

Example: In a parity check code, starting with a block of n − 1
information bits, we choose the n-th bit so that the parity of the
entire block is 0 (the number of 1’s in the block is even).

Then if there is an odd number of errors during the transmission, the
receiver will notice that the parity has changed and detect the error.

This is the simplest example of an error-detecting code.

Example (Cont’d): The preceding code has limitations.

It does not detect an even number of errors;
It does not give any information about how to correct the errors that
occur.
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Example

Consider a binary code of block length 7.

All operations will be done modulo 2.

Consider the set of all nonzero binary vectors of length 3.

Arrange them in columns to form a matrix:

H =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 .

Consider the set of vectors of length 7 in the null space of H.

These are the vectors which when multiplied by H give 000.

From the theory of linear spaces, since H has rank 3, we expect the
null space of H to have dimension 4.
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Example (Cont’d)

The 24 codewords in the null space of H are

0000000 0100101 1000011 1100110
0001111 0101010 1001100 1101001
0010110 0110011 1010101 1110000
0011001 0111100 1011010 1111111

Since the set of codewords is the null space of a matrix, it is linear in
the sense that the sum of any two codewords is also a codeword.

The set of codewords therefore forms a linear subspace of dimension 4
in the vector space of dimension 7.
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Example (Minimum Weight)

Looking at the codewords, we notice that other than the all-0
codeword, the minimum number of 1’s in any codeword is 3.

This is called the minimum weight of the code.

The following reasoning shows that the minimum weight of this code
has to be exactly 3.

Since all columns of H are different, no two columns can add to 000.
So the minimum weight of a code has to be at least 3.
The sum of any two columns must be one of the columns of the matrix.
So the minimum distance is exactly 3.
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Example (Minimum Distance)

The difference between any two codewords is also a codeword.

Hence, any two codewords differ in at least three places.

The minimum number of places in which two codewords differ is
called the minimum distance of the code.

The minimum distance of the code is a measure of how far apart the
codewords are and will determine how distinguishable the codewords
will be at the output of the channel.

The minimum distance is equal to the minimum weight for a linear
code.

We aim to develop codes that have a large minimum distance.
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Example (Decoding)

We saw that the minimum distance is 3.

So, if a codeword c is corrupted in only one place, it will differ from
any other codeword in at least two places.

It follows that it will be closer to c than to any other codeword.

We can discover which is the closest codeword without searching over
all the codewords by using the structure of the matrix H for decoding.
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Example (Decoding Using H)

The matrix H, called the parity check matrix, has the property that
for every codeword c ,

Hc = 0.

Let e i be a vector with a 1 in the i -th position and 0’s elsewhere.

If the codeword is corrupted at position i , the received vector

r = c + e i .

If we multiply this vector by the matrix H, we obtain

Hr = H(c + e i) = Hc + He i = He i .

This is the vector corresponding to the i -th column of H.

So the product Hr reveals which position of the vector was corrupted.

Reversing this bit will give us a codeword.

This codebook with 16 codewords of block length 7, which can
correct up to one error, is called a Hamming code.
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Example (Encoding Procedure)

For encoding, we could use any mapping from a set of 16 messages
into the codewords.

But if we examine the first 4 bits of the codewords in the table, we
observe that they cycle through all 24 combinations of 4 bits.

Thus, we could use these 4 bits to be the 4 bits of the message we
want to send.

The remaining 3 bits are then determined by the code.

In general, it is possible to modify a linear code so that the mapping
is explicit:

The first k bits in each codeword represent the message;
The last n − k bits are parity check bits.

Such a code is called a systematic code.
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Identifying Features

The code is often identified by:

Its block length n;
The number of information bits k ;
The minimum distance d .

Example: We revisit the code in the example.

It is called a (7, 4, 3) Hamming code.

This terminology refers to the parameters

n = 7, k = 4, d = 3.
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Channel Capacity Hamming Codes

Hamming Codes using Venn Diagrams

Consider the Venn diagram on the left with three circles and with four
intersection regions.

To send the information sequence 1101, we place the 4 information
bits in the four intersection regions as shown.

We then place a parity bit in each of the three remaining regions so
that the parity of each circle is even, i.e., there are an even number of
1’s in each circle.

George Voutsadakis (LSSU) Information Theory February 2024 84 / 99



Channel Capacity Hamming Codes

Hamming Codes using Venn Diagrams (Cont’d)

Now assume that one of the bits is
changed, say from 1 to 0 as shown in the
figure.

Then the parity constraints are violated
for two of the circles (highlighted in the
figure).

It is not hard to see that given these violations, the only single bit
error that could have caused it is at the intersection of the two circles
(i.e., the bit that was changed).

Similarly working through the other error cases, it is not hard to see
that this code can detect and correct any single bit error in the
received codeword.
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Channel Capacity Hamming Codes

Generalization

We can generalize this procedure to construct larger matrices H.

In general, if we use ℓ rows in H, the code that we obtain will have:

Block length n = 2ℓ − 1;
k = 2ℓ − ℓ− 1;
Minimum distance 3.

All these codes are called Hamming codes.

They can correct one error.
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Subsection 13

Feedback Capacity
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Channel with Feedback

A channel with feedback is illustrated below.

We assume that all the received symbols are sent back immediately
and noiselessly to the transmitter.

The transmitter can use them to decide which symbol to send next.

We define a (2nR , n) feedback code as:

A sequence of mappings xi (W ,Y i−1), where each xi is a function only
of the message W ∈ 2nR and the previously received Y1,Y2, . . . ,Yi−1;
A sequence of decoding functions g : Yn → {1, 2, . . . , 2nR}.

We have P
(n)
e = Pr{g(Y n) 6= W }, when W is uniformly distributed

over {1, 2, . . . , 2nR}.
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Feedback Capacity

Definition

The capacity with feedback, CFB, of a discrete memoryless channel is
the supremum of all rates achievable by feedback codes.

Theorem (Feedback Capacity)

We have
CFB = C = max

p(x)
I (X ;Y ).

A nonfeedback code is a special case of a feedback code.

So any rate that can be achieved without feedback can certainly be
achieved with feedback.

Therefore, CFB ≥ C .
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Feedback Capacity (Converse)

Let W be uniformly distributed over {1, 2, . . . , 2nR}.

Then
Pr(W 6= Ŵ ) = P

(n)
e .

Moreover,

nR = H(W )

= H(W |Ŵ ) + I (W ; Ŵ )
Fano

≤ 1 + P
(n)
e nR + I (W ; Ŵ )

data-proc

≤ 1 + P
(n)
e nR + I (W ;Y n).

Now it suffices to bound I (W ;Y n).
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Feedback Capacity (Bounding I (W ;Y n))

I (W ;Y n) = H(Y n)− H(Y n|W )

= H(Y n)−
∑n

i=1H(Yi |Y1,Y2, . . . ,Yi−1,W )

= H(Y n)−
∑n

i=1H(Yi |Y1,Y2, . . . ,Yi−1,W ,Xi )
(Xi is a function of Y1, . . . ,Yi−1 and W )

= H(Y n)−
∑n

i=1H(Yi |Xi )
(Xi conditional on Xi ,Yi is independent
of W and past samples of Y )

≤
∑n

i=1H(Yi )−
∑n

i=1H(Yi |Xi )

=
∑n

i=1 I (Xi ;Yi )

≤ nC (C for a discrete memoryless channel).

Putting these together, we obtain nR ≤ P
(n)
e nR + 1 + nC .

Dividing by n and letting n → ∞, we conclude that R ≤ C .

So we cannot achieve any higher rates with feedback than we can
without feedback, and CFB = C .
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Subsection 14

Source-Channel Separation Theorem

George Voutsadakis (LSSU) Information Theory February 2024 92 / 99



Channel Capacity Source-Channel Separation Theorem

Setup

We have a source V that generates symbols from an alphabet V.

The process V is assumed to be of a finite alphabet and to satisfy the
AEP.

We want to send the sequence of symbols V n = V1,V2, . . . ,Vn over
the channel so that the receiver can reconstruct the sequence.

To do this, we map the sequence onto a codeword X n(V n) and send
the codeword over the channel.

The receiver looks at his received sequence Y n and makes an
estimate V̂ n of the sequence V n that was sent.

The receiver makes an error if V n 6= V̂ n, with probability

Pr(V n 6= V̂ n) =
∑

yn

∑

vn

p(vn)p(yn|xn(vn))I (g(yn) 6= vn),

where I is the indicator function and g(yn) is the decoding function.
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Source-Channel Coding Theorem

Theorem (Source-Channel Coding Theorem)

If V1,V2, . . . ,Vn is a finite alphabet stochastic process that satisfies the
AEP and H(V) < C , there exists a source-channel code with probability of
error Pr(V̂ n 6= V n) → 0.
Conversely, for any stationary stochastic process, if H(V) > C , the
probability of error is bounded away from zero, and it is not possible to
send the process over the channel with arbitrarily low probability of error.

Achievability We rely on a two-stage encoding.

By hypothesis, the stochastic process satisfies the AEP.

So there exists a typical set A
(n)
ǫ of size ≤ 2n(H(V)+ǫ) which contains

most of the probability.

We will encode only the source sequences belonging to the typical set.

All other sequences will result in an error.

This will contribute at most ǫ to the probability of error.
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Source-Channel Coding Theorem (Achievability)

We index all the sequences belonging to A
(n)
ǫ .

There are at most 2n(H+ǫ) such sequences.

Thus, n(H + ǫ) bits suffice to index them.

We can transmit the desired index to the receiver with probability of
error less than ǫ if H(V) + ǫ = R < C .

The receiver can reconstruct V n by enumerating the typical set A
(n)
ǫ

and choosing the sequence corresponding to the estimated index.

It will agree with the transmitted sequence with high probability.

To be precise, for n sufficiently large,

P(V n 6= V̂ n) ≤ P(V n 6∈ A
(n)
ǫ ) + P(g(Y n) 6= V n|V n ∈ A

(n)
ǫ )

≤ ǫ+ ǫ

= 2ǫ.

Hence, we can reconstruct the sequence with low probability of error
for n sufficiently large, if H(V) < C .
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Source-Channel Coding Theorem (Converse)

Converse We wish to show that Pr(V̂ n 6= V n) → 0 implies that
H(V) ≤ C , for any sequence of source-channel codes

X n(V n) : Vn → X n, gn(Y
n) : Yn → Vn.

Thus X n(·) is an arbitrary (perhaps random) assignment of codewords
to data sequences V n, and gn(·) is any decoding function.

By Fano’s inequality, we must have

H(V n|V̂ n) ≤ 1 + Pr(V̂ n 6= V n) log |Vn|

= 1 + Pr(V̂ n 6= V n)n log |V|.
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Source-Channel Coding Theorem (Converse Cont’d)

Hence for the code,

H(V)
entropy

≤ H(V1,V2,...,Vn)
n

= H(V n)
n

= 1
n
H(V n|V̂ n) + 1

n
I (V n; V̂ n)

Fano

≤ 1
n
(1 + Pr(V̂ n 6= V n)n log |V|) + 1

n
I (V n; V̂ n)

data-proc

≤ 1
n
(1 + Pr(V̂ n 6= V n)n log |V|) + 1

n
I (X n;Y n)

memoryless

≤ 1
n
+ Pr(V̂ n 6= V n) log |V|+ C .

Letting n → ∞, we have Pr(V̂ n 6= V n) → 0.

Hence, H(V) ≤ C .
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Problems of Source and Channel Coding

Hence, we can transmit a stationary ergodic source over a channel if
and only if its entropy rate is less than the capacity of the channel.

The joint source-channel separation theorem enables us to consider
the problems of source and channel coding separately.

The source coder tries to find the most efficient representation of the
source;
The channel coder encodes the message to combat the noise and errors
introduced by the channel.

The separation theorem says that the separate encoders

can achieve the same rates as the joint encoder
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Data Compression and Data Transmission

This result ties together the two basic theorems of Information
Theory, Data Compression and Data Transmission.

The Data Compression Theorem is a consequence of the AEP, which
shows that there exists a “small” subset (of size 2nH) of all possible
source sequences that contain most of the probability.
Consequently, we can represent the source, with a small probability of
error, using H bits per symbol.
The Data Transmission theorem is based on the joint AEP.
It uses the fact that for long block lengths:

The output sequence of the channel is very likely to be jointly typical
with the input codeword;
Any other codeword is jointly typical with probability ≈ 2−nI .

Consequently, we can use about 2nI codewords and still have negligible
probability of error.

The Source-Channel Separation Theorem shows that we can design
the source code and the channel code separately and combine the
results to achieve optimal performance.

George Voutsadakis (LSSU) Information Theory February 2024 99 / 99


	Outline
	Channel Capacity
	Channel Capacity
	Examples of Channel Capacity
	Symmetric Channels
	Properties of Channel Capacity
	Preview of the Channel Coding Theorem
	Definitions
	Jointly Typical Sequences
	Channel Coding Theorem
	Zero-Error Codes
	Fano's Inequality and the Converse to the Coding Theorem
	Equality in the Converse to the Channel Coding Theorem
	Hamming Codes
	Feedback Capacity
	Source-Channel Separation Theorem


