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Differential Entropy Definitions

Subsection 1

Definitions
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Differential Entropy Definitions

Probability Density Functions

Definition

Let X be a random variable with cumulative distribution function

F (x) = Pr(X ≤ x).

If F (x) is continuous, the random variable is said to be continuous.
Let f (x) = F ′(x), when the derivative is defined.
If ∫ ∞

−∞
f (x)dx = 1,

f (x) is called the probability density function for X .
The set where f (x) > 0 is called the support set of X .
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Differential Entropy Definitions

Differential Entropy

Definition

The differential entropy h(X ) of a continuous random variable X , with
density f (x), is defined as

h(X ) = −
∫

S

f (x) log f (x)dx ,

where S is the support set of the random variable.

As in the discrete case, the differential entropy depends only on the
probability density of the random variable.

Therefore, the differential entropy is sometimes written as h(f ) rather
than h(X ).
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Differential Entropy Definitions

Example: Uniform Distribution

Consider a random variable distributed uniformly from 0 to a.

So its density is 1
a
from 0 to a and 0 elsewhere.

Then its differential entropy is

h(X ) = −
∫ a

0

1

a
log

1

a
dx = log a.

Notes:

For a < 1, log a < 0, and the differential entropy is negative.
Hence, unlike discrete entropy, differential entropy can be negative.
However, 2h(X ) = 2log a = a is the volume of the support set.
This is always nonnegative.
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Differential Entropy Definitions

Example: Normal Distribution

Let X ∼ 1√
2πσ2

e
− x2

2σ2 .

Then calculating the differential entropy in nats, we obtain

h(φ) = −
∫
φ lnφ

= −
∫
φ(x)[− x2

2σ2 − ln
√
2πσ2]

= EX 2

2σ2 + 1
2 ln 2πσ

2

= 1
2 + 1

2 ln 2πσ
2

= 1
2 ln e +

1
2 ln 2πσ

2

= 1
2 ln 2πeσ

2 nats.

Changing the base of the logarithm, we have

h(φ) =
1

2
log 2πeσ2 bits.
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Differential Entropy AEP for Continuous Random Variables

Subsection 2

AEP for Continuous Random Variables
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Differential Entropy AEP for Continuous Random Variables

I.i.d. Sequence and Continuous Entropy

Theorem

Let X1,X2, . . . ,Xn be a sequence of random variables drawn i.i.d.
according to the density f (x). Then

−1

n
log f (X1,X2, . . . ,Xn) → E [− log f (X )] = h(X ) in probability.

The proof follows directly from the weak law of large numbers.
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Differential Entropy AEP for Continuous Random Variables

Typical Sets

Definition

For ǫ > 0 and any n, we define the typical set A
(n)
ǫ with respect to f (x)

as follows:

A(n)
ǫ =

{
(x1, x2, . . . , xn) ∈ Sn :

∣∣∣∣−
1

n
log f (x1, x2, . . . , xn)− h(X )

∣∣∣∣ ≤ ǫ

}
,

where f (x1, x2, . . . , xn) =
∏n

i=1 f (xi).

The properties of the typical set for continuous random variables
parallel those for discrete random variables.
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Differential Entropy AEP for Continuous Random Variables

Volumes

The analog of the cardinality of the typical set for the discrete case is
the volume of the typical set for continuous random variables.

Definition

The volume Vol(A) of a set A ⊆ Rn is defined as

Vol(A) =

∫

A

dx1dx2 · · · dxn.
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Differential Entropy AEP for Continuous Random Variables

AEP for Continuous Random Variables

Theorem

The typical set A
(n)
ǫ has the following properties:

1. Pr(A
(n)
ǫ ) > 1− ǫ, for n sufficiently large.

2. Vol(A
(n)
ǫ ) ≤ 2n(h(X )+ǫ) for all n.

3. Vol(A
(n)
ǫ ) ≥ (1− ǫ)2n(h(X )−ǫ), for n sufficiently large.

1. By the preceding theorem,

−1

n
log f (X n) = −1

n

∑
log f (Xi ) → h(X ) in probability.

This establishes Part 1.
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Differential Entropy AEP for Continuous Random Variables

AEP for Continuous Random Variables (Part 2)

2. For Part 2, we compute

1 =
∫
Sn f (x1, x2, . . . , xn)dx1dx2 · · · dxn

≥
∫
A
(n)
ǫ

f (x1, x2, . . . , xn)dx1dx2 · · · dxn
≥

∫
A
(n)
ǫ

2−n(h(X )+ǫ)dx1dx2 · · · dxn
= 2−n(h(X )+ǫ)

∫
A
(n)
ǫ

dx1dx2 · · · dxn

= 2−n(h(X )+ǫ)Vol(A
(n)
ǫ ).
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Differential Entropy AEP for Continuous Random Variables

AEP for Continuous Random Variables (Part 3)

3. If n is sufficiently large so that Pr(A
(n)
ǫ ) > 1− ǫ, then

1− ǫ ≤
∫
A
(n)
ǫ

f (x1, x2, . . . , xn)dx1dx2 · · · dxn
≤

∫
A
(n)
ǫ

2−n(h(X )−ǫ)dx1dx2 · · · dxn
= 2−n(h(X )−ǫ)

∫
A
(n)
ǫ

dx1dx2 · · · dxn

= 2−n(h(X )−ǫ)Vol(A
(n)
ǫ ).

Thus, for n sufficiently large, we have

(1− ǫ)2n(h(X )−ǫ) ≤ Vol(A(n)
ǫ ) ≤ 2n(h(X )+ǫ).
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Differential Entropy AEP for Continuous Random Variables

Size of the Typical Set

Theorem

The set A
(n)
ǫ is the smallest volume set with probability ≥ 1− ǫ, to first

order in the exponent.

Same as in the discrete case.

This theorem indicates that the volume of the smallest set that
contains most of the probability is approximately 2nh.

This is an n-dimensional volume.

So the corresponding side length is (2nh)
1
n = 2h.

This provides an interpretation of the differential entropy:
It is the logarithm of the equivalent side length of the smallest set that
contains most of the probability.

Hence low entropy implies that the random variable is confined to a
small effective volume and high entropy indicates that the random
variable is widely dispersed.
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Differential Entropy Relation of Differential Entropy to Discrete Entropy

Subsection 3

Relation of Differential Entropy to Discrete Entropy
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Differential Entropy Relation of Differential Entropy to Discrete Entropy

Quantization

Consider a random variable X

with density f (x).

Suppose that we divide the range
of X into bins of length ∆.

Let us assume that the density is
continuous within the bins.

Then, by the Mean Value Theorem, there exists a value xi within
each bin such that

f (xi )∆ =

∫ (i+1)∆

i∆
f (x)dx .

We consider the quantized random variable X∆, which is defined by

X∆ = xi , if i∆ ≤ X < (i + 1)∆.
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Differential Entropy Relation of Differential Entropy to Discrete Entropy

Quantization and Entropy

Theorem

If the density f (x) of the random variable X is Riemann integrable, then

H(X∆) + log∆ → h(f ) = h(X ), as ∆ → 0.

Thus, the entropy of an n-bit quantization of a continuous random
variable X is approximately h(X ) + n.

Note that the probability that X∆ = xi is

pi =

∫ (i+1)∆

i∆
f (x)dx = f (xi)∆.
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Differential Entropy Relation of Differential Entropy to Discrete Entropy

Quantization and Entropy (Cont’d)

The entropy of the quantized version is

H(X∆) = −∑∞
−∞ pi log pi

= −∑∞
−∞ f (xi )∆ log (f (xi )∆)

= −∑
∆f (xi) log f (xi )−

∑
f (xi )∆ log∆

∑
f (xi )∆ = 1
= −∑

∆f (xi) log f (xi )− log∆.

If f (x) log f (x) is Riemann integrable, the first term approaches the
integral of −f (x) log f (x) as ∆ → 0. So in the limit,

H(X∆) + log∆ → h(f ) = h(X ).
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Differential Entropy Relation of Differential Entropy to Discrete Entropy

Examples

1. Let X have uniform distribution on [0, 1] and ∆ = 2−n.

Then then h = 0 and H(X∆) = n.

So n bits suffice to describe X to n bit accuracy.

2. Suppose X is uniformly distributed on
[
0, 18

]
.

Then the first 3 bits to the right of the decimal point must be 0.

To describe X to n-bit accuracy requires only n− 3 bits.

This agrees with h(X ) = −3.
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Differential Entropy Relation of Differential Entropy to Discrete Entropy

Examples (Cont’d)

3. Let X ∼ N (0, σ2) with σ2 = 100.

Describing X to n bit accuracy would require on the average

n+
1

2
log (2πeσ2) = n+ 5.37 bits.

In general, h(X ) + n is the number of bits on the average required to
describe X to n-bit accuracy.

The differential entropy of a discrete random variable can be
considered to be −∞.

We have 2−∞ = 0, agreeing with the idea that the volume of the
support set of a discrete random variable is zero.
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Differential Entropy Joint and Conditional Differential Entropy

Subsection 4

Joint and Conditional Differential Entropy

George Voutsadakis (LSSU) Information Theory February 2024 22 / 44



Differential Entropy Joint and Conditional Differential Entropy

Joint Differential Entropy

Definition

The differential entropy of a set X1,X2, . . . ,Xn of random variables with
density f (x1, x2, . . . , xn) is defined as

h(X1,X2, . . . ,Xn) = −
∫

f (xn) log f (xn)dxn.
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Differential Entropy Joint and Conditional Differential Entropy

Conditional Differential Entropy

Definition

If X ,Y have a joint density function f (x , y), we can define the conditional
differential entropy h(X |Y ) as

h(X |Y ) = −
∫

f (x , y) log f (x |y)dxdy .

Since f (x |y) = f (x ,y)
f (y) , we can also write

h(X |Y ) = −
∫
f (x , y) log f (x ,y)

f (y) dxdy

= −
∫
f (x , y) log f (x , y)dxdy +

∫
f (x , y) log f (y)dxdy

= −
∫
f (x , y) log f (x , y)dxdy +

∫
f (y) log f (y)dy

= h(X ,Y )− h(Y ).

But we must be careful if any of the differential entropies are infinite.
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Differential Entropy Joint and Conditional Differential Entropy

Entropy of a Multivariate Normal Distribution

Theorem (Entropy of a Multivariate Normal Distribution)

Let X1,X2, . . . ,Xn have a multivariate normal distribution with mean µ

and covariance matrix K . Then

h(X1,X2, . . . ,Xn) = h(Nn(µ,K )) =
1

2
log (2πe)n|K | bits,

where |K | denotes the determinant of K .

The probability density function of X1,X2, . . . ,Xn is

f (x) =
1

(
√
2π)n|K | 12

e−
1
2
(x−µ)TK−1(x−µ).
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Differential Entropy Joint and Conditional Differential Entropy

Entropy of a Multivariate Normal Distribution (Cont’d)

Then

h(f ) = −
∫
f (x)[−1

2 (x − µ)TK−1(x − µ)− ln (
√
2π)n|K | 12 ]dx

= 1
2E [

∑
i ,j(Xi − µi)(K

−1)ij(Xj − µj)] +
1
2 ln (2π)

n|K |
= 1

2E [
∑

i ,j(Xi − µi)(Xj − µj)(K
−1)ij ] +

1
2 ln (2π)

n|K |
= 1

2

∑
i ,j E [(Xj − µj)(Xi − µi )](K

−1)ij +
1
2 ln (2π)

n|K |
= 1

2

∑
j

∑
i Kji(K

−1)ij +
1
2 ln (2π)

n|K |
= 1

2

∑
j(KK

−1)jj +
1
2 ln (2π)

n|K |
= 1

2

∑
j Ijj +

1
2 ln (2π)

n|K |
= n

2 + 1
2 ln (2π)

n|K |
= 1

2 ln (2πe)
n|K | nats

= 1
2 log (2πe)

n|K | bits.
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Differential Entropy Relative Entropy and Mutual Information

Subsection 5

Relative Entropy and Mutual Information
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Differential Entropy Relative Entropy and Mutual Information

Relative Entropy or Kullback-Leibler Distance

Definition

The relative entropy (or Kullback-Leibler distance) D(f ‖g) between
two densities f and g is defined by

D(f ‖g) =
∫

f log
f

g
.

Note that D(f ‖g) is finite only if the support set of f is contained in
the support set of g (motivated by continuity, we set 0 log 0

0 = 0).
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Differential Entropy Relative Entropy and Mutual Information

Mutual Information

Definition

The mutual information I (X ;Y ) between two random variables with
joint density f (x , y) is defined as

I (X ;Y ) =

∫
f (x , y) log

f (x , y)

f (x)f (y)
dxdy .

From the definition it is clear that

I (X ;Y ) = h(X )− h(X |Y )

= h(Y )− h(Y |X )

= h(X ) + h(Y )− h(X ,Y ).

Moreover,
I (X ;Y ) = D(f (x , y)‖f (x)f (y)).
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Differential Entropy Relative Entropy and Mutual Information

Mutual Information and Quantization

Claim: The mutual information between two random variables is the
limit of the mutual information between their quantized versions.

We have

I (X∆;Y∆) = H(X∆)− H(X∆|Y∆)

≈ h(X )− log∆− (h(X |Y )− log∆)

= I (X ;Y ).
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Differential Entropy Relative Entropy and Mutual Information

Generalization of Quantization

We can define mutual information in terms of finite partitions of the
range of the random variable.

Let X be the range of a random variable X .

A partition P of X is a finite collection of disjoint sets Pi , such that
⋃

i

Pi = X .

The quantization of X by P, denoted [X ]P , is the discrete random
variable defined by

Pr([X ]P = i) = Pr(X ∈ Pi) =

∫

Pi

dF (x).

For two random variables X and Y with partitions P and Q, we can
calculate the mutual information between the quantized versions of X
and Y using the discrete definition.
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Differential Entropy Relative Entropy and Mutual Information

Generalization of Quantization (Cont’d)

Definition

The mutual information between two random variables X and Y is given
by

I (X ;Y ) = sup
P,Q

I ([X ]P ; [Y ]Q),

where the supremum is over all finite partitions P and Q.

This definition of mutual information always applies, even to joint
distributions with atoms, densities and singular parts.

By continuing to refine the partitions P and Q, one finds a
monotonically increasing sequence I ([X ]P ; [Y ]Q) ր I .

This definition of mutual information is equivalent to:

The one given above for random variables that have a density;
The one given previously for discrete random variables.
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Differential Entropy Relative Entropy and Mutual Information

Example (Correlated Gaussian Random Variables)

Let (X ,Y ) ∼ N (0,K ), where K =

[
σ2 ρσ2

ρσ2 σ2

]
.

Then

h(X ) = h(Y ) = 1
2 log (2πe)σ

2;

h(X ,Y ) = 1
2 log (2πe)

2|K | = 1
2 log (2πe)

2σ4(1− ρ2).

Therefore,

I (X ;Y ) = h(X ) + h(Y )− h(X ,Y ) = − 1

2
log (1− ρ2).

If ρ = 0, X and Y are independent.
Then, the mutual information is 0.
If ρ = ±1, X and Y are perfectly correlated.
Then the mutual information is infinite.
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Differential Entropy Differential and Relative Entropy, and Mutual Information

Subsection 6

Differential and Relative Entropy, and Mutual Information
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Differential Entropy Differential and Relative Entropy, and Mutual Information

Nonnegativity of Relative Entropy

Theorem

D(f ‖g) ≥ 0 with equality iff f = g almost everywhere (a.e.).

Let S be the support set of f . Then

−D(f ‖g) =
∫
S
f log g

f

≤ log
∫
S
f g
f

(by Jensen’s inequality)

= log
∫
S
g

≤ log 1 = 0.

We have equality iff we have equality in Jensen’s inequality.

This occurs iff f = g a.e.
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Differential Entropy Differential and Relative Entropy, and Mutual Information

Consequences

Corollary

I (X ;Y ) ≥ 0, with equality iff X and Y are independent.

We have I (X ;Y ) = D(f (x , y)‖f (x)f (y)) ≥ 0.

Equality holds iff f (x , y) = f (x)f (y) a.e..

That is, iff X and Y are independent.

Corollary

h(X |Y ) ≤ h(X ), with equality iff X and Y are independent.

We have h(X )− h(X |Y ) = I (X ;Y ) ≥ 0.

Equality holds iff X and Y are independent.
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Differential Entropy Differential and Relative Entropy, and Mutual Information

Chain Rule for Differential Entropy

Theorem (Chain Rule for Differential Entropy)

h(X1,X2, . . . ,Xn) =

n∑

i=1

h(Xi |X1,X2, . . . ,Xi−1).

Follows directly from the definitions.

Corollary

h(X1,X2, . . . ,Xn) ≤
∑

h(Xi),

with equality iff X1,X2, . . . ,Xn are independent.

Follows directly from the preceding theorem and the preceding
corollary.

George Voutsadakis (LSSU) Information Theory February 2024 37 / 44



Differential Entropy Differential and Relative Entropy, and Mutual Information

Application: Hadamard’s Inequality

Let X ∼ N (0,K ) be a multivariate normal random variable.

Calculating the entropy in the above inequality gives us

|K | ≤
n∏

i=1

Kii .

This is Hadamard’s inequality.

A number of determinant inequalities can be derived in this fashion
from information-theoretic inequalities.
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Differential Entropy Differential and Relative Entropy, and Mutual Information

Translation Invariance

Theorem

h(X + c) = h(X ).

Translation does not change the differential entropy.

Follows directly from the definition of differential entropy.

George Voutsadakis (LSSU) Information Theory February 2024 39 / 44



Differential Entropy Differential and Relative Entropy, and Mutual Information

Scaling

Theorem

h(aX ) = h(X ) + log |a|.

Let Y = aX . Then fY (y) =
1
|a| fX (

y
a
). Therefore,

h(aX ) = −
∫
fY (y) log fY (y)dy

= −
∫

1
|a| fX (

y
a
) log

(
1
|a| fX (

y
a
)
)
dy

= −
∫
fX (x) log fX (x)dx + log |a|

= h(X ) + log |a|.
Similarly, we can prove the following corollary for vector-valued
random variables.

Corollary

h(AX ) = h(X ) + log |det(A)|.
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Differential Entropy Differential and Relative Entropy, and Mutual Information

Maximization Property of Normal Distribution

The multivariate normal distribution maximizes the entropy over all
distributions with the same covariance.

Theorem

Let the random vector X ∈ Rn have 0 mean and covariance K = EXX
t ,

i.e., Kij = EXiXj , 1 ≤ i , j ≤ n. Then h(X ) ≤ 1
2 log (2πe)

n|K |, with
equality iff X ∼ N (0,K ).

Let g(x) be any density satisfying
∫

g(x)xixjdx = Kij , for all i , j .

Let φK be the density of a N (0,K ) vector, with

f (x) =
1

(
√
2π)n|K | 12

e−
1
2
xTK−1x .

Note that log φK (x) is a quadratic form and
∫
xixjφK (x)dx = Kij .
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Differential Entropy Differential and Relative Entropy, and Mutual Information

Maximization Property of Normal Distribution (Cont’d)

Now we have
0 ≤ D(g‖φK )

=
∫
g log g

φK

= − h(g)−
∫
g log φK

= − h(g)−
∫
φK log φK

= − h(g) + h(φK ).

The equality
∫
g log φK =

∫
φK log φK holds since g and φK yield the

same moments of the quadratic form log φK (x).
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Differential Entropy Differential and Relative Entropy, and Mutual Information

Estimation Error and Differential Entropy

Let X be a random variable with differential entropy h(X ).

Let X̂ be an estimate of X .

Let E (X − X̂ )2 be the expected prediction error.

Let h(X ) be in nats.

Theorem (Estimation Error and Differential Entropy)

For any random variable X and estimator X̂ ,

E (X − X̂ )2 ≥ 1

2πe
e2h(X ),

with equality if and only if X is Gaussian and X̂ is the mean of X .
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Differential Entropy Differential and Relative Entropy, and Mutual Information

Estimation Error and Differential Entropy (Proof)

Let X̂ be any estimator of X . Then

E (X − X̂ )2 ≥ min
X̂
E (X − X̂ )2

= E (X − E (X ))2 (mean is best estimator)

= var(X )

≥ 1
2πe e

2h(X ). (h(X ) ≤ 1
2 ln 2πevar(X ))

We have equality only if X̂ is the mean of X and X is Gaussian.

Corollary

Given side information Y and estimator X̂ (Y ), it follows that

E (X − X̂ (Y ))2 ≥ 1

2πe
e2h(X |Y ).
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