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Gaussian Channel

The Gaussian Channel

The most important continuous alphabet channel is the Gaussian
channel.

This is a time-discrete channel with
output Yi at time i , where Yi is the
sum of the input Xi and the noise Zi .

Zi is drawn i.i.d. from a Gaussian distribution with variance N.

Thus, Yi = Xi + Zi , Zi ∼ N (0,N).

The noise Zi is assumed to be independent of the signal Xi .

Without further conditions, the capacity of this channel may be
infinite.
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Gaussian Channel

Case of Infinite Capacity

If the noise variance is zero, the receiver receives the transmitted
symbol perfectly.

Since X can take on any real value, the channel can transmit an
arbitrary real number with no error.

Suppose, next, that:

The noise variance is nonzero;
There is no constraint on the input.

Then we can choose an infinite subset of inputs arbitrarily far apart,
so that they are distinguishable at the output with arbitrarily small
probability of error.

Such a scheme has an infinite capacity as well.

Thus, if the noise variance is zero or the input is unconstrained, the
capacity of the channel is infinite.
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Gaussian Channel

Energy Constraint and Gaussian Noise

The most common limitation on the input is an energy or power
constraint.

We assume an average power constraint.

For any codeword (x1, x2, . . . , xn) transmitted over the channel, we
require that

1

n

n∑

i=1

x2i ≤ P .

The additive noise may be due to a variety of causes.

However, by the Central Limit Theorem, the cumulative effect of a
large number of small random effects will be approximately normal.

So the Gaussian assumption is valid in a large number of situations.
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Gaussian Channel

Use as a Discrete Binary Channel

We want to send 1 bit over the channel in one use of the channel.

Given the power constraint, we send one of two levels,

+
√
P ;

−
√
P .

The receiver:

Looks at the corresponding Y received;
Tries to decide which of the two levels was sent.

Assuming that both levels are equally likely (this would be the case if
we wish to send exactly 1 bit of information), the optimum decoding
rule is to decide that:

+
√
P was sent, if Y > 0;

−
√
P was sent, if Y < 0.
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Gaussian Channel

Use as a Discrete Binary Channel (Cont’d)

The probability of error with such a decoding scheme is

Pe = 1
2Pr(Y < 0|X = +

√
P) + 1

2Pr(Y > 0|X = −
√
P)

= 1
2Pr(Z < −

√
P |X = +

√
P) + 1

2Pr(Z >
√
P|X = −

√
P)

= Pr(Z >
√
P)

= 1−Φ

(√
P
N

)
.

Here

Φ(x) =

∫ x

−∞

1√
2π

e
−t2

2 dt.

Using such a scheme, we have converted the Gaussian channel into a
discrete binary symmetric channel with crossover probability Pe .
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Gaussian Channel Gaussian Channel: Definitions

Subsection 1

Gaussian Channel: Definitions
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Gaussian Channel Gaussian Channel: Definitions

Information Capacity

Definition

The information capacity of the Gaussian channel with power constraint
P is

C = max
f (x):EX 2≤P

I (X ;Y ).

We can calculate the information capacity as follows:

I (X ;Y ) = h(Y )− h(Y |X )

= h(Y )− h(X + Z |X )

= h(Y )− h(Z |X )
indep.
= h(Y )− h(Z ).
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Gaussian Channel Gaussian Channel: Definitions

Information Capacity (Cont’d)

We have

h(Z ) =
1

2
log 2πeN .

Moreover, recall that:

X and Z are independent;
EZ = 0.

Therefore,

EY 2 = E (X + Z )2 = EX 2 + 2EXEZ + EZ 2 = P + N.

The normal distribution maximizes the entropy for a given variance.

It follows that the entropy of Y is bounded by

1

2
log 2πe(P + N).
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Gaussian Channel Gaussian Channel: Definitions

Bound for the Mutual Information

We bound the mutual information:

I (X ;Y ) = h(Y )− h(Z )

≤ 1
2 log 2πe(P + N) − 1

2 log 2πeN

= 1
2 log (1 +

P
N
).

Hence, the information capacity of the Gaussian channel is

C = max
EX 2≤P

I (X ;Y ) =
1

2
log

(
1 +

P

N

)
.

The maximum is attained when X ∼ N (0,P).

We will show that this capacity is also the supremum of the rates
achievable for the channel.

George Voutsadakis (LSSU) Information Theory February 2024 11 / 41



Gaussian Channel Gaussian Channel: Definitions

Codes for the Gaussian Channel

Definition

An (M, n) code for the Gaussian channel with power constraint P consists
of the following:

1. An index set {1, 2, . . . ,M};
2. An encoding function x : {1, 2, . . . ,M} → X n, yielding codewords

xn(1), xn(2), . . . , xn(M), satisfying the power constraint P , i.e., for
every codeword

n∑

i=1

x2i (w) ≤ nP , w = 1, 2, . . . ,M;

3. A decoding function g : Yn → {1, 2, . . . ,M}.
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Gaussian Channel Gaussian Channel: Definitions

Capacity of a Gaussian Channel

The rate is given by R = logM
n

.

The probability of error is λi = Pr(g(Y n) 6= i |X n = xn(i)).

The arithmetic average of the probability of error is defined by

P
(n)
e =

1

2nR

∑
λi .

Definition

A rate R is said to be achievable for a Gaussian channel with a power
constraint P if there exists a sequence of (2nR , n) codes, with codewords
satisfying the power constraint, such that the maximal probability of error
λ(n) tends to zero.
The capacity of the channel is the supremum of the achievable rates.
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Gaussian Channel Gaussian Channel: Definitions

Capacity Theorem for a Gaussian Channel

Theorem (Capacity Theorem for a Gaussian Channel)

The capacity of a Gaussian channel with power constraint P and noise
variance N is

C =
1

2
log

(
1 +

P

N

)
bits per transmission.
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Gaussian Channel Gaussian Channel: Definitions

Capacity Theorem (Plausibility Argument)

We first present a plausibility argument as to why we may be able to
construct (2nC , n) codes with a low probability of error.

Consider any codeword of length n.

The received vector is normally distributed with mean equal to the
true codeword and variance equal to the noise variance.

So, with high probability, the received vector is contained in a sphere
of radius

√
n(N + ǫ) around the true codeword.

We can assign everything within this sphere to the given codeword.

When this codeword is sent, there will be an error only if the received
vector falls outside the sphere, which happens with low probability.

Similarly, we can choose other codewords and their corresponding
decoding spheres.
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Gaussian Channel Gaussian Channel: Definitions

Capacity Theorem (Plausibility Argument Cont’d)

The volume of an n-dimensional sphere is of the form Cnr
n, where r

is the radius of the sphere.

In this case, each decoding sphere has radius
√
nN .

The spheres are scattered throughout the space of received vectors.

The received vectors have energy no greater than n(P + N).

So they lie in a sphere of radius
√
n(P + N).

The maximum number of nonintersecting decoding spheres in this
volume is no more than

Cn(n(P + N))
n
2

Cn(nN)
n
2

=

(
1 +

P

N

) n
2

.

The rate of the code is
log (1+ P

N
)
n
2

n
= 1

2 log (1 +
P
N
).
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Gaussian Channel Gaussian Channel: Definitions

Capacity Theorem (Achievability 1)

Achievability: We will use the same ideas as in the proof of the
channel coding theorem in the case of discrete channels.

Namely, we use random codes and joint typicality decoding.

However, we must make some modifications to take into account the
power constraint and the continuity of the variables.

1. Generation of the Codebook: We wish to generate a codebook in
which all the codewords satisfy the power constraint.

To ensure this, we generate the codewords with each element i.i.d.
according to a normal distribution with variance P − ǫ.

Since for large n, 1
n

∑
X 2
i → P − ǫ, the probability that a codeword

does not satisfy the power constraint will be small.

Let Xi(w), i = 1, 2, . . . , n, w = 1, 2, . . . , 2nR be i.i.d. ∼ N (0,P − ǫ),
forming codewords X n(1),X n(2), . . . ,X n(2nR) ∈ Rn.
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Gaussian Channel Gaussian Channel: Definitions

Capacity Theorem (Achievability 2-3)

2. Encoding: After the generation of the codebook, the codebook is
revealed to both the sender and the receiver.

To send the message index w , the transmitter sends the w -th
codeword X n(w) in the codebook.

3. Decoding: The receiver looks down the list of codewords {X n(w)}
and searches for one that is jointly typical with the received vector.

If there is one and only one such codeword X n(w), the receiver

declares Ŵ = w to be the transmitted codeword.
Otherwise, the receiver declares an error.

The receiver also declares an error if the chosen codeword does not
satisfy the power constraint.
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Gaussian Channel Gaussian Channel: Definitions

Capacity Theorem (Achievability 4)

4. Probability of Error: Without loss of generality, assume that
codeword 1 was sent. Thus, Y n = X n(1) + Z n.

Define the following events:

E0 =





1
n

n∑

j=1

X 2
j (1) > P



 ;

Ei = {(X n(i),Y n) is in A
(n)
ǫ }.

Then an error occurs if one of the following happens:
E0 occurs (the power constraint is violated);
E c
1 occurs (the transmitted codeword and the received sequence are

not jointly typical);
E2 ∪ E3 ∪ · · · ∪ E2nR occurs (some wrong codeword is jointly typical
with the received sequence).

Let E denote the event Ŵ 6= W .

Let P denote the conditional probability given that W = 1.
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Gaussian Channel Gaussian Channel: Definitions

Capacity Theorem (Achievability 4 Cont’d)

We have

Pr(E|W = 1) = P(E)
= P(E0 ∪ E c

1 ∪ E2 ∪ E3 ∪ · · · ∪ E2nR )
union

≤ P(E0) + P(E c
1 ) +

∑2nR

i=2 P(Ei ).

By the Law of Large Numbers, P(E0) → 0 as n → ∞.
By the joint AEP (which can be proved using the same argument as
that used in the discrete case), P(E c

1 ) → 0. Hence P(E c
1 ) ≤ ǫ, for n

sufficiently large.
By the code generation process, X n(1) and X n(i) are independent.
Thus, so are Y n and X n(i). Hence, the probability that X n(i) and Y n

will be jointly typical is ≤ 2−n(I (X ;Y )−3ǫ) by the joint AEP.
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Gaussian Channel Gaussian Channel: Definitions

Capacity Theorem (Achievability 4 Cont’d)

Now let W be uniformly distributed over {1, 2, . . . , 2nR}. Then

Pr(E) = 1

2nR

∑
λi = P

(n)
e .

So, for n sufficiently large and R < I (X ;Y )− 3ǫ, we have

P
(n)
e = Pr(E) = Pr(E|W = 1)

≤ P(E0) + P(E c
1 ) +

∑2nR

i=2 P(Ei )

≤ ǫ+ ǫ+
∑2nR

i=2 2
−n(I (X ;Y )−3ǫ)

= 2ǫ+ (2nR − 1)2−n(I (X ;Y )−3ǫ)

≤ 2ǫ+ 23nǫ2−n(I (X ;Y )−R)

≤ 3ǫ.

This proves the existence of a good (2nR , n) code.
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Gaussian Channel Gaussian Channel: Definitions

Capacity Theorem (Achievability Conclusion)

Choosing a good codebook and deleting the worst half of the
codewords, we obtain a code with low maximal probability of error.

The codewords that do not satisfy the power constraint have
probability of error 1.

So they must belong to the worst half of the codewords.

So the power constraint is satisfied by each of the non-deleted
codewords.

Hence we have constructed a code that achieves a rate arbitrarily
close to capacity.

The next task is to show that the achievable rate cannot exceed the
capacity.
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Gaussian Channel Converse to the Coding Theorem for Gaussian Channels

Subsection 2

Converse to the Coding Theorem for Gaussian Channels
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Gaussian Channel Converse to the Coding Theorem for Gaussian Channels

Converse to the Coding Theorem

We complete the proof that the capacity of a Gaussian channel is
C = 1

2 log (1 +
P
N
) by proving that rates R > C are not achievable.

We show, if P
(n)
e → 0 for a sequence of (2nR , n) codes for a Gaussian

channel with power constraint P , then R ≤ C = 1
2 log (1 +

P
N
).

Consider any (2nR , n) code that satisfies the power constraint

1

n

n∑

i=1

x2i (w) ≤ P , w = 1, 2, . . . , 2nR .

Let W be distributed uniformly over {1, 2, . . . , 2nR}.
The uniform distribution over the index set W ∈ {1, 2, . . . , 2nR}
induces a distribution on the input codewords.

This, in turn, induces a distribution over the input alphabet.

We get a joint distribution on W → X n(W ) → Y n → Ŵ .
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Gaussian Channel Converse to the Coding Theorem for Gaussian Channels

Converse to the Coding Theorem (Error)

To relate probability of error and mutual information, we can apply

Fano’s Inequality to obtain H(W |Ŵ ) ≤ 1 + nRP
(n)
ǫ = nǫn, where

ǫn → 0 as P
(n)
ǫ → 0. Hence,

nR = H(W ) = I (W ; Ŵ ) + H(W |Ŵ )

≤ I (W ; Ŵ ) + nǫn
≤ I (X n;Y n) + nǫn
= h(Y n)− h(Y n|X n) + nǫn
= h(Y n)− h(Z n) + nǫn
≤ ∑n

i=1 h(Yi)− h(Z n) + nǫn
=

∑n
i=1 h(Yi)−

∑n
i=1 h(Zi) + nǫn

=
∑n

i=1 I (Xi ;Yi) + nǫn.

Here Xi = xi(W ), where W is drawn according to the uniform
distribution on {1, 2, . . . , 2nR}.
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Gaussian Channel Converse to the Coding Theorem for Gaussian Channels

Converse to the Coding Theorem (Capacity)

Let

Pi =
1

2nR

∑

w

x2i (w).

Now we have:
Yi = Xi + Zi ;
Xi and Zi are independent.

So the average power EY 2
i of Yi is Pi + N.

Hence, since entropy is maximized by the normal distribution,

h(Yi) ≤
1

2
log 2πe(Pi + N).

Continuing with the inequalities of the converse, we obtain

nR ≤ ∑
(h(Yi )− h(Zi)) + nǫn

≤ ∑
(12 log (2πe(Pi + N))− 1

2 log 2πeN) + nǫn

=
∑ 1

2 log (1 +
Pi

N
) + nǫn.
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Gaussian Channel Converse to the Coding Theorem for Gaussian Channels

Converse to the Coding Theorem (Capacity)

Each of the codewords satisfies the power constraint.

Thus, so does their average,

1

n

∑

i

Pi ≤ P .

Now f (x) = 1
2 log (1 + x) is a concave function of x .

So we can apply Jensen’s inequality to obtain

1
n

∑n
i=1

1
2 log (1 +

Pi

N
) ≤ 1

2 log (1 +
1
n

∑n
i=1

Pi

N
)

≤ 1
2 log (1 +

P
N
).

Thus, we get

R ≤ 1

2
log

(
1 +

P

N

)
+ ǫn, ǫn → 0.
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Gaussian Channel Parallel Gaussian Channels

Subsection 3

Parallel Gaussian Channels
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Gaussian Channel Parallel Gaussian Channels

Parallel Gaussian Channels

In this section we consider k independent Gaussian channels in
parallel with a common power constraint.

The objective is to distribute the total power among the channels so
as to maximize the capacity.

Assume that we have a set of Gaussian
channels in parallel.

The output of each channel is the sum of the
input and Gaussian noise.

For channel j , Yj = Xj + Zj , j = 1, 2, . . . , k ,
with Zj ∼ N (0,Nj ), and the noise is assumed
to be independent from channel to channel.

We assume that there is a common power constraint on the total
power used, that is, E

∑k
j=1 X

2
j ≤ P .
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Gaussian Channel Parallel Gaussian Channels

Information Capacity of Parallel Gaussian Channels

The information capacity of the channel C is

C = max
f (x1,x2,...,xk):

∑
EX 2

i
≤P

I (X1,X2, . . . ,Xk ;Y1,Y2, . . . ,Yk).

We calculate the distribution that achieves the information capacity.

Since Z1,Z2, . . . ,Zk are independent,

I (X1,X2, . . . ,Xk ;Y1,Y2, . . . ,Yk)

= h(Y1,Y2, . . . ,Yk)− h(Y1,Y2, . . . ,Yk |X1,X2, . . . ,Xk)

= h(Y1,Y2, . . . ,Yk)− h(Z1,Z2, . . . ,Zk |X1,X2, . . . ,Xk)

= h(Y1,Y2, . . . ,Yk)− h(Z1,Z2, . . . ,Zk)

= h(Y1,Y2, . . . ,Yk)−
∑

i h(Zi)

≤ ∑
i (h(Yi)− h(Zi))

≤ ∑
i
1
2 log (1 +

Pi

Ni
),

where Pi = EX 2
i and

∑
Pi = P .
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Gaussian Channel Parallel Gaussian Channels

The Case of Equality

Equality is achieved by

(X1,X2, . . . ,Xk) ∼ N


0,




P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · Pk





 .
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Gaussian Channel Parallel Gaussian Channels

Maximization of Information Capacity

The problem is reduced to finding the power allotment that
maximizes the capacity subject to the constraint that

∑
Pi = P .

This is a standard optimization problem and can be solved using
Lagrange multipliers.

We write

J(P1, . . . ,Pk) =
∑ 1

2
log

(
1 +

Pi

Ni

)
+ λ

(∑
Pi

)
.

Differentiate with respect to Pi :

1

2

1

Pi + Ni

+ λ = 0.

Equivalently, Pi = ν − Ni , where ν = − 1
2λ .
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Gaussian Channel Parallel Gaussian Channels

Maximization of Information Capacity (Cont’d)

We found

Pi = ν − Ni , ν = − 1

2λ
.

Since the Pi ’s must be nonnegative, it may not always be possible to
find a solution of this form.

In this case, we use the Kuhn-Tucker conditions to verify that the
solution

Pi = (ν − Ni)
+

is the assignment that maximizes capacity, where ν is chosen so that
∑

(ν − Ni )
+ = P

and we have used the notation

(x)+ =

{
x , if x ≥ 0
0, if x < 0

.
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Gaussian Channel Parallel Gaussian Channels

The Solution

This solution is illustrated on the
right.

The vertical levels indicate the
noise levels in the various channels.

As the signal power is increased
from zero, we allot the power to
the channels with the lowest noise.

When the available power is increased still further, some of the power
is put into noisier channels.

The process by which the power is distributed among the various bins
is identical to the way in which water distributes itself in a vessel.

So this process is sometimes referred to as water-filling.
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Gaussian Channel Channels with Colored Gaussian Noise

Subsection 4

Channels with Colored Gaussian Noise
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Gaussian Channel Channels with Colored Gaussian Noise

Channels with Colored Gaussian Noise

We consider the case of a set of parallel Gaussian channels in which
the noise samples from different channels is dependent.

This represents not only the case of parallel channels, but also the
case when the channel has Gaussian noise with memory.

For channels with memory, we can consider a block of n consecutive
uses of the channel as n channels in parallel with dependent noise.

We will calculate only the information capacity for this channel.
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Gaussian Channel Channels with Colored Gaussian Noise

Parameters

Let KZ be the covariance matrix of the noise.

Let KX be the input covariance matrix.

The power constraint on the input can be written as

1

n

∑

i

EX 2
i ≤ P .

Equivalently,
1

n
tr(KX ) ≤ P .

The power constraint here depends on n.

So the capacity has to be calculated for each n.
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Gaussian Channel Channels with Colored Gaussian Noise

Maximizing the Entropy

Just as in the case of independent channels, we can write

I (X1,X2, . . . ,Xn;Y1,Y2, . . . ,Yn) = h(Y1,Y2, . . . ,Yn)− h(Z1,Z2, . . . ,Zn).

Here h(Z1,Z2, . . . ,Zn) is determined only by the distribution of the
noise and is not dependent on the choice of input distribution.

So finding the capacity amounts to maximizing h(Y1,Y2, . . . ,Yn).

The entropy of the output is maximized when Y is normal.

This is achieved when the input is normal.
We are working under the hypotheses that:

The input and the noise are independent;
The covariance of the output Y is KY = KX + KZ .

So the entropy is

h(Y1,Y2, . . . ,Yn) =
1

2
log ((2πe)n |KX + KZ |).

Now the problem is reduced to choosing KX so as to maximize
|KX + KZ |, subject to a trace constraint on KX .
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Gaussian Channel Channels with Colored Gaussian Noise

Maximizing |KX + KZ |

To maximize |KX + KZ |, we decompose KZ into its diagonal form,
KZ = QΛQt , where QQt = I .

Then
|KX + KZ | = |KX + QΛQt |

= |Q||QtKXQ + Λ||Qt |
= |QtKXQ + Λ|
= |A+ Λ|,

where A = QtKXQ.

Since for any matrices B and C , tr(BC ) = tr(CB), we have

tr(A) = tr(QtKXQ) = tr(QQtKX ) = tr(KX ).

Now the problem is reduced to maximizing |A+ Λ| subject to a trace
constraint tr(A) ≤ nP .
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Gaussian Channel Channels with Colored Gaussian Noise

Maximizing |A+ Λ| Subject to tr(A) ≤ nP

We apply Hadamard’s inequality that states that the determinant of
any positive definite matrix K is less than the product of its diagonal
elements, i.e., |K | ≤ ∏

i Kii , with equality iff the matrix is diagonal.

Thus,
|A+ Λ| ≤

∏

i

(Aii + λi ),

with equality iff A is diagonal.

Now Aii ≥ 0 and A is subject to a trace constraint, 1
n

∑
i Aii ≤ P .

So the maximum value of
∏

i (Aii + λi ) is attained when

Aii + λi = ν.
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Gaussian Channel Channels with Colored Gaussian Noise

Maximizing |A+ Λ| Subject to tr(A) ≤ nP (Cont’d)

Given the constraints, it may not always be possible to satisfy this
equation with positive Aii .

In such cases, we can show by the standard Kuhn-Tucker conditions
that the optimum solution corresponds to setting

Aii = (ν − λi )
+,

where the water level ν is chosen so that
∑

Aii = nP .

This value of A maximizes the entropy of Y .

Hence, it also maximizes the mutual information.
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