Intermediate Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 102

(1) The Real Numbers

- The Real Numbers
- Operations on the Real Numbers
- Evaluating Expressions and Order of Operations

Subsection 1

The Real Numbers

The Number Systems

- The set of natural numbers N is the set

$$
N=\{1,2,3, \ldots\}
$$

- The set of whole numbers W is the set consisting of the natural numbers with 0 appended:

$$
W=\{0,1,2,3, \ldots\}
$$

- The set of integers Z is the set consisting of the whole numbers together with the negatives of the natural numbers:

$$
Z=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- The set of rational numbers Q consists of all numbers that can be written as quotients of integers:

$$
Q=\left\{\frac{a}{b}: a, b \text { integers, with } b \neq 0\right\} ;
$$

Alternative Description of the Rationals

- Recall

$$
Q=\left\{\frac{a}{b}: a, b \text { integers, with } b \neq 0\right\}
$$

- Examples: The following numbers are rational numbers:

$$
5, \quad \frac{11}{6}, \quad-\frac{12}{17}, \quad 0, \quad \frac{-6}{-12}
$$

- Another way to describe this set is by way of their decimal form;
- If we divide the numerator by the denominator, the division terminated for some numbers and continues indefinitely for others;
- The rational numbers are those decimal numbers whose digits either repeat or terminate;
- Examples:

$$
\frac{37}{100}=0.37, \quad \frac{11}{1}=11 \quad \frac{3}{5}=0.6, \quad \frac{1}{3}=0.333 \ldots, \quad \frac{37}{99}=0.3737 \ldots
$$

Examples

- Consider the set $\{x: x$ is a whole number less than 3$\}$; In list notation this set is $\{0,1,2\}$; In graphical notation, we have

- Consider the set $\{x: x$ is an integer number between -3 and 4$\}$; In list notation this set is $\{-2,-1,0,1,2,3\}$; In graphical notation, we have

- Consider the set $\{x: x$ is an integer greater than -2$\}$; In list notation this set is $\{-1,0,1,2,3, \ldots\}$; In graphical notation, we have

The Irrationals and the Reals

- Recall that $Q=\left\{\frac{a}{b}: a, b\right.$ integers, with $\left.b \neq 0\right\}$;
- Recall also that the rational numbers are those that, when written in decimal, they either terminate or repeat;
- Those numbers that cannot be written as quotients of two integers or, equivalently, whose decimal representations are infinite and non-repeating, are called irrational numbers;
- Examples: The numbers $\sqrt{2}, \sqrt{5}, 0.15115111511115 \ldots$ and $1.23456789101112 \ldots$ are all irrational numbers;
- The sets of rational and irrational numbers taken together form the set of real numbers R;

Example

- Let us decide whether the following numbers belong to the sets listed in the columns of the table:

Number	Whole	Integer	Rational	Real
$-\sqrt{7}$				\checkmark
$-\frac{1}{4}$			\checkmark	\checkmark
0	\checkmark	\checkmark	\checkmark	\checkmark
$\sqrt{5}$				\checkmark
π				\checkmark
4.16			\checkmark	\checkmark
-12		\checkmark	\checkmark	\checkmark

Interval Notation for Intervals of Reals

- The following notation is used for intervals of real numbers: Assume $a<b$ are two real numbers:
- Open Interval: $(a, b)=\{x$ real : $a<x<b\}$;
- Semi-open or Semi-closed Intervals: $(a, b]=\{x$ real : $a<x \leq b\}$; $[a, b)=\{x$ real : $a \leq x<b\}$;
- Closed Interval: $[a, b]=\{x$ real : $a \leq x \leq b\}$;
- Moreover, we have the following types of unbounded intervals:
- $(-\infty, b)=\{x$ real : $x<b\}$;
- $(-\infty, b]=\{x$ real : $x \leq b\}$;
- $(a,+\infty)=\{x$ real : $x>a\}$;
- $[a,+\infty)=\{x$ real : $x \geq a\}$;
- $(-\infty,+\infty)=R$;

Examples I

- Write in set notation, interval notation and graph the following sets:
- The set of real numbers greater than or equal to 2 ;

In set notation $\{x$ real : $x \geq 2\}$;
In interval notation [2, $+\infty$);
In graphical form:

- The set of real numbers less than -3 ; In set notation $\{x$ real : $x<-3\}$; In interval notation ($-\infty,-3$); In graphical form:

Examples II

- Write in set notation, interval notation and graph the following sets:
- The set of real numbers between -2 and 7 inclusive; In set notation $\{x$ real : $-2 \leq x \leq 7\}$;
In interval notation [-2,7];
In graphical form:

- The set of all real numbers greater than 1 and less than or equal to 5 ; In set notation $\{x$ real : $1<x \leq 5\}$;
In interval notation (1,5];
In graphical form:

-4	-2	0	2	4	6

Union and Intersections of Intervals

- The union $A \cup B$ of two sets A and B consists of those elements that are in at least one of A or B :

- The intersection $A \cap B$ of two sets A and B consists of those elements that are in both A and B :
- These operations apply to intervals:
- $(2,4) \cup(3,6)=(2,6)$;
- $(2,4) \cap(3,6)=(3,4)$;
- $(-1,2) \cup[0,+\infty)=(-1,+\infty)$;
- $(-1,2) \cap[0,+\infty)=[0,2)$;

Subsection 2

Operations on the Real Numbers

Absolute Value

- Geometrically, the absolute value $|x|$ of a real number x is its distance from the origin;
- E.g., we have

$$
|-1.2|=1.2, \quad|3.7|=3.7, \quad\left|-\frac{7}{4}\right|=\frac{7}{4}, \quad|-128|=128 ;
$$

- Algebraically, this relationship may be expressed by the formula:

$$
|x|=\left\{\begin{aligned}
-x, & \text { if } x<0 \\
x, & \text { if } x \geq 0
\end{aligned}\right.
$$

- E.g., since $-13<0$, we have $|-13|=-(-13)=13$;

Addition

- The following rules for addition apply:
- To find the sum of two numbers with the same sign, we add the absolute values and assign to the sum the same sign as the original numbers;
- To find the sum of two numbers having opposite signs, we subtract their absolute values and we assign to the sum the sign of the number with the largest absolute value;
- Examples:

$$
\begin{aligned}
& (-9)+(-7)=-16, \quad-7+10=3, \quad-6+13=7, \\
& -9+(-7)=-16, \quad-35.4+2.5=-32.9 \\
& -7+0.05=-6.95, \quad \frac{1}{5}+\left(-\frac{3}{4}\right)=-\frac{11}{20}
\end{aligned}
$$

Subtraction

- For any real numbers a and b

$$
a-b=a+(-b)
$$

- Examples:
- $-7-3=-7+(-3)=-10$;
- $7-(-3)=7+3=10$;
- $48-99=48+(-99)=-51$;
- $-3.6-(-7)=-3.6+7=3.4$;
- $0.02-7=0.02+(-7)=-6.98$;
- $\frac{1}{5}-\left(-\frac{1}{7}\right)=\frac{1}{5}+\frac{1}{7}=\frac{12}{35}$.

Multiplication and Division

- To find the product of two real numbers we multiply the two absolute values and we assign to the product a positive sign if the two numbers have the same sign and a negative sign if the two numbers have different signs;
- Examples:

$$
\begin{aligned}
& (-2)(-7)=14, \quad-4 \cdot 12=-48 \\
& (-0.01)(0.7)=-0.007, \quad \frac{2}{7} \cdot\left(-\frac{1}{3}\right)=-\frac{2}{21}
\end{aligned}
$$

- To divide $a \div b$, we multiply a by the reciprocal $\frac{1}{b}$ of the number b, i.e.,

$$
a \div b=a \cdot \frac{1}{b}
$$

- Examples:

$$
\begin{aligned}
& -60 \div(-2)=-60 \cdot\left(-\frac{1}{2}\right)=30 \\
& -24 \div \frac{3}{8}=-24 \cdot \frac{8}{3}=-64 \\
& (-6) \div(-0.2)=(-6) \cdot(-5)=30
\end{aligned}
$$

Subsection 3

Evaluating Expressions and Order of Operations

Arithmetic Expressions

- An arithmetic expression is a meaningful combination of numbers using the ordinary operations of arithmetic; E.g., $5+(7 \cdot 3)$ is an arithmetic expression;
- The expression is called a sum, difference, product or quotient if the last operation to be performed in the expression is addition, subtraction, multiplication or division, respectively;
E.g. the expression $5+(7 \cdot 3)$ is a sum, because the + is the last operation to be performed;
- As in the expression above parentheses, brackets, angle brackets and other grouping symbols are used to indicate which operations are supposed to be performed first;
- Examples:
- $5+(7 \cdot 3)=5+21=26$;
- $(5+7) \cdot 3=12 \cdot 3=36$;

Additional Examples

- Let us evaluate the following expressions:
- $8[(5 \cdot 2)-3]=8[10-3]=8 \cdot 7=56$;
- $2\{[4 \cdot(-5)]-|5-19|\}=2\{-20-|-14|\}=2\{-20-14\}=$ $2(-34)=-68$;

Exponential Expressions and Roots

- If a is any real number and n is a natural number,

$$
a^{n}=\underbrace{a \cdot a \cdot a \cdots \cdots \cdot a ;}_{n \text { factors }}
$$

- The number a is the base and n the exponent;
- Examples: Evaluate the expressions:
- $2^{3}=2 \cdot 2 \cdot 2=8$;
- $(-3)^{4}=(-3) \cdot(-3) \cdot(-3) \cdot(-3)=81$;
- $\left(-\frac{1}{2}\right)^{5}=\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)=-\frac{1}{32}$;
- If $a^{2}=b$, then a is called the square root of b; If $a>0$, we write $\sqrt{b}=a ;$
- Examples: Evaluate the expressions:
- $\sqrt{64}=8$;
- $\sqrt{9+16}=\sqrt{25}=5$;
- $\sqrt{3(17-5)}=\sqrt{3 \cdot 12}=\sqrt{36}=6$;

Order of Operations

- To simplify expressions, some grouping symbols are omitted;
- To avoid ambiguities, we follow the order of operations:
(1) Evaluate expressions inside grouping symbols first;
(2) Evaluate exponential expressions from left to right;
(3) Perform multiplications and divisions from left to right;
(a) Perform additions and subtractions from left to right.
- Examples: Evaluate the expressions:
- $5+2 \cdot 3=5+6=11$;
- $7 \cdot 3^{2}=7 \cdot 9=63$;
- $\left(5-3^{2}\right)^{2}=(5-9)^{2}=(-4)^{2}=16$;
- $40 \div 8 \cdot 2 \div 5 \cdot 3=5 \cdot 2 \div 5 \cdot 3=10 \div 5 \cdot 3=2 \cdot 3=6$;

Order of Negative Signs and Fractions

- Examples: Evaluate the expressions:
- $-2^{4}=-16$;
- $-5^{2}=-25$;
- $(3-5)^{2}=(-2)^{2}=4$;
- $-\left(5^{2}-4 \cdot 7\right)^{2}=-(25-4 \cdot 7)^{2}=-(25-28)^{2}=-(-3)^{2}=-9$;
- Examples: Evaluate the quotients:
- $\frac{10-8}{6-8}=\frac{2}{-2}=-1$;
$\frac{-6^{2}+2 \cdot 7}{4-3 \cdot 2}=\frac{-36+2 \cdot 7}{4-6}=\frac{-36+14}{-2}=\frac{-22}{-2}=11$;

Algebraic Expressions (Expressions with Variables)

- Examples: Evaluate the following expressions assuming that

$$
a=2, b=-3 \text { and } c=4
$$

- $a-c^{2}=2-4^{2}=2-16=-14$;
- $a-b^{2}=2-(-3)^{2}=2-9=-7$;
- $b^{2}-4 a c=(-3)^{2}-4 \cdot 2 \cdot 4=9-4 \cdot 2 \cdot 4=9-32=-23$;
- $\frac{a-b}{c-b}=\frac{2-(-3)}{4-(-3)}=\frac{5}{7}$;
- Examples: Evaluate the following expressions assuming that $a=5, b=-2$ and $c=7$:
- $a-c^{2}=5-7^{2}=5-49=-44$;
- $a-b^{2}=5-(-2)^{2}=5-4=1$;
- $b^{2}-4 a c=(-2)^{2}-4 \cdot 5 \cdot 7=4-4 \cdot 5 \cdot 7=4-140=-136$;
- $\frac{a-b}{c-b}=\frac{5-(-2)}{7-(-2)}=\frac{7}{9}$;

