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The Real Numbers The Real Numbers

The Number Systems

The set of natural numbers N is the set

N = {1, 2, 3, . . .};

The set of whole numbers W is the set consisting of the natural
numbers with 0 appended:

W = {0, 1, 2, 3, . . .};

The set of integers Z is the set consisting of the whole numbers
together with the negatives of the natural numbers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .};

The set of rational numbers Q consists of all numbers that can be
written as quotients of integers:

Q = {a
b
: a, b integers, with b 6= 0};
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Alternative Description of the Rationals

Recall
Q = {a

b
: a, b integers, with b 6= 0};

Examples: The following numbers are rational numbers:

5,
11

6
, − 12

17
, 0,

−6

−12
;

Another way to describe this set is by way of their decimal form;
If we divide the numerator by the denominator, the division terminated
for some numbers and continues indefinitely for others;
The rational numbers are those decimal numbers whose digits either
repeat or terminate;

Examples:

37
100 = 0.37, 11

1 = 11 3
5 = 0.6, 1

3 = 0.333 . . . , 37
99 = 0.3737 . . .
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Examples

Consider the set {x : x is a whole number less than 3};
In list notation this set is {0, 1, 2}; In graphical notation, we have

Consider the set {x : x is an integer number between -3 and 4};
In list notation this set is {−2,−1, 0, 1, 2, 3}; In graphical notation,
we have

Consider the set {x : x is an integer greater than -2};
In list notation this set is {−1, 0, 1, 2, 3, . . .}; In graphical notation,
we have
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The Irrationals and the Reals

Recall that Q = {a
b
: a, b integers, with b 6= 0};

Recall also that the rational numbers are those that, when written in
decimal, they either terminate or repeat;

Those numbers that cannot be written as quotients of two integers
or, equivalently, whose decimal representations are infinite and
non-repeating, are called irrational numbers;

Examples: The numbers
√
2,
√
5, 0.15115111511115 . . . and

1.23456789101112 . . . are all irrational numbers;

The sets of rational and irra-
tional numbers taken together
form the set of real numbers

R ;
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Example

Let us decide whether the following numbers belong to the sets listed
in the columns of the table:

Number Whole Integer Rational Real

−
√
7 z z z X

−1
4 z z X X

0 X X X X√
5 z z z X

π z z z X

4.16 z z X X

−12 z X X X
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Interval Notation for Intervals of Reals

The following notation is used for intervals of real numbers: Assume
a < b are two real numbers:

Open Interval: (a, b) = {x real : a < x < b};
Semi-open or Semi-closed Intervals: (a, b] = {x real : a < x ≤ b};
[a, b) = {x real : a ≤ x < b};
Closed Interval: [a, b] = {x real : a ≤ x ≤ b};

Moreover, we have the following types of unbounded intervals:

(−∞, b) = {x real : x < b};
(−∞, b] = {x real : x ≤ b};
(a,+∞) = {x real : x > a};
[a,+∞) = {x real : x ≥ a};
(−∞,+∞) = R ;
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Examples I

Write in set notation, interval notation and graph the following sets:

The set of real numbers greater than or equal to 2;
In set notation {x real : x ≥ 2};
In interval notation [2,+∞);
In graphical form:

The set of real numbers less than -3;
In set notation {x real : x < −3};
In interval notation (−∞,−3);
In graphical form:
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Examples II

Write in set notation, interval notation and graph the following sets:

The set of real numbers between -2 and 7 inclusive;
In set notation {x real : −2 ≤ x ≤ 7};
In interval notation [−2, 7];
In graphical form:

The set of all real numbers greater than 1 and less than or equal to 5;
In set notation {x real : 1 < x ≤ 5};
In interval notation (1, 5];
In graphical form:
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Union and Intersections of Intervals

The union A ∪ B of two sets A and B consists of those elements that
are in at least one of A or B :

The intersection A ∩ B of two sets A and B consists of those
elements that are in both A and B :

These operations apply to intervals:
(2, 4) ∪ (3, 6) = (2, 6);
(2, 4) ∩ (3, 6) = (3, 4);
(−1, 2) ∪ [0,+∞) = (−1,+∞);
(−1, 2) ∩ [0,+∞) = [0, 2);
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Subsection 2

Operations on the Real Numbers
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The Real Numbers Operations on the Real Numbers

Absolute Value

Geometrically, the absolute value |x | of a real number x is its
distance from the origin;

E.g., we have

| − 1.2| = 1.2, |3.7| = 3.7,

∣
∣
∣
∣
−7

4

∣
∣
∣
∣
=

7

4
, | − 128| = 128;

Algebraically, this relationship may be expressed by the formula:

|x | =
{

− x , if x < 0
x , if x ≥ 0

E.g., since −13 < 0, we have | − 13| = − (−13) = 13;
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Addition

The following rules for addition apply:

To find the sum of two numbers with the same sign, we add the
absolute values and assign to the sum the same sign as the original
numbers;
To find the sum of two numbers having opposite signs, we subtract
their absolute values and we assign to the sum the sign of the number
with the largest absolute value;

Examples:

(−9) + (−7) = − 16, − 7 + 10 = 3, − 6 + 13 = 7,
− 9 + (−7) = − 16, − 35.4 + 2.5 = − 32.9,
− 7 + 0.05 = − 6.95, 1

5 + (−3
4 ) = − 11

20 ;
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The Real Numbers Operations on the Real Numbers

Subtraction

For any real numbers a and b

a − b = a + (−b);

Examples:

− 7− 3 = − 7 + (−3) = − 10;
7− (−3) = 7 + 3 = 10;
48− 99 = 48 + (−99) = − 51;
− 3.6− (−7) = − 3.6 + 7 = 3.4;
0.02− 7 = 0.02 + (−7) = − 6.98;
1
5 − (− 1

7) =
1
5 + 1

7 = 12
35 .
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Multiplication and Division

To find the product of two real numbers we multiply the two absolute
values and we assign to the product a positive sign if the two
numbers have the same sign and a negative sign if the two numbers
have different signs;

Examples:

(−2)(−7) = 14, − 4 · 12 = − 48,
(−0.01)(0.7) = − 0.007, 2

7 · (−1
3) = − 2

21 ;

To divide a ÷ b, we multiply a by the reciprocal 1
b
of the number b,

i.e.,

a ÷ b = a · 1
b
;

Examples:
− 60 ÷ (−2) = − 60 · (−1

2 ) = 30,
− 24 ÷ 3

8 = − 24 · 8
3 = − 64,

(−6)÷ (−0.2) = (−6) · (−5) = 30;
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Subsection 3

Evaluating Expressions and Order of Operations
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Arithmetic Expressions

An arithmetic expression is a meaningful combination of numbers
using the ordinary operations of arithmetic; E.g., 5 + (7 · 3) is an
arithmetic expression;

The expression is called a sum, difference, product or quotient if
the last operation to be performed in the expression is addition,
subtraction, multiplication or division, respectively;
E.g. the expression 5 + (7 · 3) is a sum, because the + is the last
operation to be performed;

As in the expression above parentheses, brackets, angle brackets and
other grouping symbols are used to indicate which operations are
supposed to be performed first;

Examples:

5 + (7 · 3) = 5 + 21 = 26;
(5 + 7) · 3 = 12 · 3 = 36;
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Additional Examples

Let us evaluate the following expressions:

8[(5 · 2)− 3] = 8[10− 3] = 8 · 7 = 56;
2{[4 · (−5)]− |5− 19|} = 2{−20− | − 14|} = 2{−20− 14} =
2(−34) = − 68;
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Exponential Expressions and Roots

If a is any real number and n is a natural number,

an = a · a · a · · · · · a;
︸ ︷︷ ︸

n factors

The number a is the base and n the exponent;

Examples: Evaluate the expressions:
23 = 2 · 2 · 2 = 8;
(−3)4 = (−3) · (−3) · (−3) · (−3) = 81;
(− 1

2 )
5 = (− 1

2 )(− 1
2 )(− 1

2 )(− 1
2 )(− 1

2 ) = − 1
32 ;

If a2 = b, then a is called the square root of b; If a > 0, we write√
b = a;

Examples: Evaluate the expressions:√
64 = 8;√
9 + 16 =

√
25 = 5;

√

3(17− 5) =
√
3 · 12 =

√
36 = 6;
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Order of Operations

To simplify expressions, some grouping symbols are omitted;

To avoid ambiguities, we follow the order of operations:
1 Evaluate expressions inside grouping symbols first;
2 Evaluate exponential expressions from left to right;
3 Perform multiplications and divisions from left to right;
4 Perform additions and subtractions from left to right.

Examples: Evaluate the expressions:

5 + 2 · 3 = 5 + 6 = 11;
7 · 32 = 7 · 9 = 63;
(5− 32)2 = (5 − 9)2 = (−4)2 = 16;
40÷ 8 · 2÷ 5 · 3 = 5 · 2÷ 5 · 3 = 10÷ 5 · 3 = 2 · 3 = 6;
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Order of Negative Signs and Fractions

Examples: Evaluate the expressions:

−24 = − 16;
−52 = − 25;
(3− 5)2 = (−2)2 = 4;
−(52 − 4 · 7)2 = − (25− 4 · 7)2 = − (25− 28)2 = − (−3)2 = − 9;

Examples: Evaluate the quotients:
10− 8

6− 8
=

2

−2
= − 1;

−62 + 2 · 7
4− 3 · 2 =

−36 + 2 · 7
4− 6

=
−36 + 14

−2
=

−22

−2
= 11;
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Algebraic Expressions (Expressions with Variables)

Examples: Evaluate the following expressions assuming that
a = 2, b = −3 and c = 4:

a− c2 = 2− 42 = 2− 16 = − 14;
a− b2 = 2− (−3)2 = 2− 9 = − 7;
b2 − 4ac = (−3)2 − 4 · 2 · 4 = 9− 4 · 2 · 4 = 9− 32 = − 23;
a− b

c − b
=

2− (−3)

4− (−3)
=

5

7
;

Examples: Evaluate the following expressions assuming that
a = 5, b = −2 and c = 7:

a− c2 = 5− 72 = 5− 49 = − 44;
a− b2 = 5− (−2)2 = 5− 4 = 1;
b2 − 4ac = (−2)2 − 4 · 5 · 7 = 4− 4 · 5 · 7 = 4− 140 = − 136;
a− b

c − b
=

5− (−2)

7− (−2)
=

7

9
;
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