Intermediate Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 102

(1) Exponential and Logarithmic Functions

- Exponential Functions and Applications
- Logarithmic Functions and Applications
- Properties of Logarithms
- Solving Equations and Applications

Subsection 1

Exponential Functions and Applications

Exponential Functions

- An exponential function is one of the form

$$
f(x)=a^{x}
$$

where $0<a \neq 1$ and x is a real number;

- Example: Consider $f(x)=2^{x}, g(x)=\left(\frac{1}{4}\right)^{1-x}$ and $h(x)=-3^{x}$; Compute the following values:
- $f\left(\frac{3}{2}\right)=2^{3 / 2}=\sqrt{2^{3}}=\sqrt{2^{2}} \sqrt{2}=2 \sqrt{2}$;
- $f(-3)=2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$;
- $g(3)=\left(\frac{1}{4}\right)^{1-3}=\left(\frac{1}{4}\right)^{-2}=4^{2}=16$;
- $h(2)=-3^{2}=-9$;
- Two important exponentials for applications are the base 10 exponential $f(x)=10^{x}$ (called common base), and the base e exponential $f(x)=e^{x}$ (called natural base);

Graphs of Exponentials (Exponential Growth)

- When the base a is such that $a>1$, then $f(x)=a^{x}$ has an increasing graph (going up as we move from left to right);
- As an example, we'll use a few points to sketch the graph of $f(x)=2^{x}$;

x	$y=2^{x}$
-2	$1 / 4$
-1	$1 / 2$
0	1
1	2
2	4

- Note that the x-axis is a horizontal asymptote as $x \rightarrow-\infty$;

Graphs of Exponentials (Exponential Decay)

- When the base a is such that $0<a<1$, then $f(x)=a^{x}$ has a decreasing graph (going down as we move from left to right);
- As an example, we'll use a few points to sketch the graph of $f(x)=\left(\frac{1}{3}\right)^{x}$;

x	$y=\left(\frac{1}{3}\right)^{x}$
-2	9
-1	3
0	1
1	$1 / 3$
2	$1 / 9$

- Note that the x-axis is a horizontal asymptote as $x \rightarrow+\infty$;

Another Graph of an Exponential

- Let us use a few points to sketch the graph of $f(x)=5^{-x}$;

x	$y=5^{-x}$
-2	25
-1	5
0	1
1	$1 / 5$
2	$1 / 25$

- The x-axis is a horizontal asymptote as $x \rightarrow+\infty$;

Using Transformations to Graph

- This method of graphing starts with a known graph and through a series of reflections, shifts and, possibly, expansions/contractions leads to the graph of a function not known in advance;
- We illustrate with an example;

The graph of $y=2^{x}$ is known to us; Suppose that, based on it, we would like to obtain the graph of $f(x)=-2^{x-3}-4$, which is not known to us; From $y=2^{x}$, by shifting 3 to the right, we get $y=2^{x-3}$;

Then, by reflecting with respect to the x-axis, we get $y=-2^{x-3}$; Finally, by shifting down 4 , we get $y=-2^{x-3}-4$;

Exponential Equations

One-to-One Property of Exponentials

$$
a^{m}=a^{n} \quad \text { implies } \quad m=n
$$

- Example: Solve each equation:
- $3^{2 x-1}=243$
$3^{2 x-1}=243 \Rightarrow 3^{2 x-1}=3^{5} \Rightarrow 2 x-1=5 \Rightarrow 2 x=6 \Rightarrow x=3$;
- $8^{|x|}=2$
$8^{|x|}=2 \Rightarrow\left(2^{3}\right)^{|x|}=2^{1} \Rightarrow 2^{3|x|}=2^{1} \Rightarrow 3|x|=1 \Rightarrow|x|=\frac{1}{3} \Rightarrow x=$ $-\frac{1}{3}$ or $x=\frac{1}{3}$;
- $\frac{1}{125}=25^{x+7}$
$\frac{1}{125}=25^{x+7} \Rightarrow \frac{1}{5^{3}}=\left(5^{2}\right)^{x+7} \Rightarrow 5^{-3}=5^{2(x+7)} \Rightarrow-3=2 x+14 \Rightarrow$
$2 x=-17 \Rightarrow x=-\frac{17}{2}$;
- Example: Suppose $f(x)=2^{x}$ and $g(x)=\left(\frac{1}{3}\right)^{1-x}$; Find x if
- $f(x)=128$
$f(x)=128 \Rightarrow 2^{x}=2^{7} \Rightarrow x=7$;
- $g(x)=81$
$g(x)=81 \Rightarrow\left(\frac{1}{3}\right)^{1-x}=3^{4} \Rightarrow 3^{-(1-x)}=3^{4} \Rightarrow-1+x=4 \Rightarrow x=5 ;$

Application: Compounding of Interest

- If P is the principal amount invested, i the interest rate per period and n the number of periods, then the amount A accrued at the end of n periods is

$$
A=P(1+i)^{n} ;
$$

- Example: If $\$ 1,200$ is deposited in an account paying 2% compounded quarterly, how much will be in the account at the end of 5 years?
We have $P=1200, i=\frac{0.02}{4}=0.005$ and $n=5 \cdot 4=20$;
Therefore

$$
A=P(1+i)^{n}=1200(1+0.005)^{20}=1200 \cdot 1.005^{20} \approx 1,325.87
$$

Application: Continuous Compounding of Interest

- If P is the principal amount invested, r the annual interest rate compounded continuously and t the number of years, then the amount A accrued at the end of t years is

$$
A=P e^{r t}
$$

- Example: If $\$ 1,200$ is deposited in an account paying annually 2% compounded continuously, how much will be in the account at the end of 5 years?

We have $P=1200, r=0.02$ and $t=5$;
Therefore

$$
A=P e^{r t}=1200 \cdot e^{0.02 \cdot 5}=1200 \cdot e^{0.1} \approx 1,326.21 ;
$$

Subsection 2

Logarithmic Functions and Applications

Logarithmic Functions

- The logarithm $y=\log _{a} x$ (read logarithm to base a of x) is the exponent to which one must raise the base a to get x;
- More formally,

$$
y=\log _{a} x \quad \text { if and only if } a^{y}=x
$$

- Example: Convert each logarithmic equation to an exponential one and vice-versa:
- $5^{3}=125 \quad \Longleftrightarrow \quad \log _{5} 125=3$;
- $\left(\frac{1}{4}\right)^{6}=x \quad \Longleftrightarrow \quad 6=\log _{1 / 4} x$;
- $\left(\frac{1}{2}\right)^{m}=8 \quad \Longleftrightarrow \quad m=\log _{1 / 2} 8$;
- $7=3^{z} \quad \Longleftrightarrow \quad z=\log _{3} 7$;

Evaluating Logarithms

- Evaluate each logarithm:
- $\log _{5} 25=2 ; \quad\left(\right.$ since $\left.5^{2}=25\right)$
- $\log _{2} \frac{1}{8}=-3 ;\left(\right.$ since $2^{-3}=\frac{1}{8}$)
- $\log _{1 / 2} 4=-2 ;\left(\right.$ since $\left.\left(\frac{1}{2}\right)^{-2}=4\right)$
- $\log _{10} 0.001=-3 ;\left(\right.$ since $\left.10^{-3}=0.001\right)$
- $\log _{9} 3=\frac{1}{2} ;\left(\right.$ since $\left.9^{1 / 2}=3\right)$
- The logarithm to base 10 is called the common logarithm, denoted $\log x$ (i.e., this means $\log _{10} x$); The logarithm to base e is called the natural logarithm, denoted $\ln x$ (i.e., this means $\log _{e} x$);
- Evaluate each logarithm:
- $\log 1000=3 ;\left(\right.$ since $\left.10^{3}=1000\right)$
- $\ln e=1$; (since $\left.e^{1}=e\right)$
- $\log \frac{1}{10}=-1 ;\left(\right.$ since $\left.10^{-1}=\frac{1}{10}\right)$

Graphs of Logarithmic Functions to Base a > 1

- When the base a is such that $a>1$, then $f(x)=\log _{a} x$ has an increasing graph (going up as we move from left to right);
- As an example, we'll use a few points to sketch the graph of $f(x)=\log _{2} x$;

x	$y=\log _{2} x$
$1 / 4$	-2
$1 / 2$	-1
1	0
2	1
4	2

- Note that the y-axis is a vertical asymptote;

Graphs of Logarithmic Functions to Base $0<a<1$

- When the base a is such that $0<a<1$, then $f(x)=\log _{a} x$ has a decreasing graph (going down as we move from left to right);
- As an example, we'll use a few points to sketch the graph of $f(x)=\log _{1 / 3} x$;

x	$y=\log _{1 / 3} x$
$1 / 9$	2
$1 / 3$	1
1	0
3	-1
9	-2

- Note that the y-axis is a vertical asymptote;

Logarithmic Equations

One-to-One Property of Logarithms

$$
\log _{a} m=\log _{a} n \quad \text { implies } \quad m=n .
$$

- Example: Solve each equation:
- $\log _{3} x=-2$

$$
\log _{3} x=-2 \Rightarrow x=3^{-2} \Rightarrow x=\frac{1}{9}
$$

- $\log _{x} 8=-3$

$$
\log _{x} 8=-3 \Rightarrow x^{-3}=8 \Rightarrow\left(x^{-3}\right)^{-1 / 3}=8^{-1 / 3} \Rightarrow x=\frac{1}{8^{1 / 3}} \Rightarrow x=
$$

$$
\frac{1}{\sqrt[3]{8}} \Rightarrow x=\frac{1}{2}
$$

- $\log \left(x^{2}\right)=\log 4$ $\log \left(x^{2}\right)=\log 4 \Rightarrow x^{2}=4 \Rightarrow x= \pm \sqrt{4} \Rightarrow x=-2$ or $x=2$;

Application: Find Time in Continuous Compounding

- Recall: If P is the principal amount invested, r the annual interest rate compounded continuously and t the number of years, then the amount A accrued at the end of t years is

$$
A=P e^{r t}
$$

- Example: How long does it take for $\$ 200$ to grow to $\$ 600$ at 3% annually compounded continuously?

We have $P=200, r=0.03$ and $A=600$;
We would like to compute t;

$$
\begin{aligned}
A=P e^{r t} & \Rightarrow 600=200 e^{0.03 t} \\
& \Rightarrow e^{0.03 t}=3 \\
& \Rightarrow 0.03 t=\ln 3 \\
& \Rightarrow t=\frac{100}{3} \ln 3 \approx 36.62 \text { years; }
\end{aligned}
$$

Subsection 3

Properties of Logarithms

The Inverse Properties

- Recall the definition of the logarithm to base a of x :

$$
y=\log _{a} x \text { if and only if } a^{y}=x
$$

- This property gives

$$
a^{\log _{a} x}=x \quad \text { and } \quad \log _{a}\left(a^{y}\right)=y
$$

- Example: Simplify:
- $\operatorname{In}\left(e^{7}\right)=7$; (recall this means $\left.\log _{e}\left(e^{7}\right)\right)$
- $2^{\log _{2} 13}=13$;

The Product Rule for Logarithms

- For $M>0$ and $N>0$, we have

$$
\log _{a}(M \cdot N)=\log _{a} M+\log _{a} N .
$$

- Example: Write as a single logarithm:
- $\log _{2} 7+\log _{2} 5=\log _{2}(7 \cdot 5)=\log _{2} 35$;
- $\ln (\sqrt{2})+\ln (\sqrt{3})=\ln (\sqrt{2} \cdot \sqrt{3})=\ln (\sqrt{2 \cdot 3})=\ln (\sqrt{6})$;

The Quotient Rule for Logarithms

- For $M>0$ and $N>0$, we have

$$
\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N
$$

- Example: Write as a single logarithm:
- $\log _{2} 3-\log _{2} 7=\log _{2}\left(\frac{3}{7}\right)$;
- $\ln \left(w^{8}\right)+\ln \left(w^{2}\right)=\ln \left(\frac{w^{8}}{w^{2}}\right)=\ln \left(w^{8-2}\right)=\ln \left(w^{6}\right) ;$

The Power Rule for Logarithms

- For $M>0$, we have

$$
\log _{a}\left(M^{N}\right)=N \cdot \log _{a} M
$$

- Example: Write in terms of $\log 2$:
- $\log \left(2^{10}\right)=10 \log 2 ;$
- $\log (\sqrt{2})=\log \left(2^{1 / 2}\right)=\frac{1}{2} \log 2$;
- $\log \left(\frac{1}{2}\right)=\log \left(2^{-1}\right)=-\log 2$;

Summary of the Properties of Logarithms

Properties of Logarithms

Assuming M, N and a are positive, with $a \neq 1$, we have
(1) $\log _{a} a=1$;
(2) $\log _{a} 1=0$;
(3) $\log _{a}\left(a^{y}\right)=y ; \quad$ (y any real)
(3) $a^{\log _{a} x}=x ; \quad(x$ any positive real $)$
(3) $\log _{a}(M \cdot N)=\log _{a} M+\log _{a} N$;
(c) $\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N$;
(2) $\log _{a}\left(\frac{1}{N}\right)=-\log _{a} N$;
(8) $\log _{a}\left(M^{N}\right)=N \log _{a} M$;

Using the Properties

- Rewrite each expression in terms of $\log 2$ and/or $\log 3:$
- $\log 6=\log (2 \cdot 3)=\log 2+\log 3 ;$
- $\log 16=\log \left(2^{4}\right)=4 \log 2$;
- $\log \left(\frac{9}{2}\right)=\log 9-\log 2=\log \left(3^{2}\right)-\log 2=2 \log 3-\log 2$;
- $\log \left(\frac{1}{3}\right)=-\log 3 ;$
- Rewrite each expression as a sum or difference of multiples of logarithms:
- $\log \left(\frac{x z}{y}\right)=\log (x z)-\log y=\log x+\log z-\log y ;$
- $\log _{3}\left(\frac{(x-3)^{2 / 3}}{\sqrt{x}}\right)=\log _{3}\left((x-3)^{2 / 3}\right)-\log _{3}\left(x^{1 / 2}\right)=$

$$
\frac{2}{3} \log _{3}(x-3)-\frac{1}{2} \log _{3} x
$$

- Rewrite each expression as a single logarithm:
- $\frac{1}{2} \log x-2 \log (x+1)=\log \left(x^{1 / 2}\right)-\log \left((x+1)^{2}\right)=\log \left(\frac{\sqrt{x}}{(x+1)^{2}}\right)$;
- $3 \log y+\frac{1}{2} \log z-\log x=\log \left(y^{3}\right)+\log \left(z^{1 / 2}\right)-\log x=$

$$
\log \left(y^{3} \sqrt{z}\right)-\log x=\log \left(\frac{y^{3} \sqrt{z}}{x}\right) ;
$$

Subsection 4

Solving Equations and Applications

Logarithmic Equations with Only One Logarithm

- Solve $\log (x+3)=2$;

The technique involves rewriting as an exponential equation using the property

$$
\begin{aligned}
y= & \log _{a} x \quad \text { if and only if } a^{y}=x \\
& \log (x+3)=2 \\
& \Rightarrow \quad 10^{2}=x+3 \\
& \Rightarrow \quad x=100-3=97
\end{aligned}
$$

Now check whether the solution is admissible; i.e., is $\log (97+3)=2$? Yes! since $10^{2}=100$; So, the solution $x=97$ is admissible.

Using the Product Rule to Solve an Equation

- Solve $\log _{2}(x+3)+\log _{2}(x-3)=4$;

The technique involves using the Product Rule $\log _{a}(M \cdot N)=\log _{a} M+\log _{a} N$ to combine the sum into a single logarithm; Then, we apply the technique for solving equations involving a single logarithm;

$$
\begin{aligned}
& \log _{2}(x+3)+\log _{2}(x-3)=4 \\
& \Rightarrow \quad \log _{2}((x+3)(x-3))=4 \\
& \Rightarrow \quad 2^{4}=(x+3)(x-3) \\
& \Rightarrow \quad 16=x^{2}-9 \\
& \Rightarrow \quad x^{2}=25 \\
& \Rightarrow \quad x= \pm \sqrt{25}= \pm 5 ;
\end{aligned}
$$

Now check whether the solutions are admissible; $x=-5$ is not admissible; Therefore, $x=5$ is the only admissible solution!

Using the One-to-One Property to Solve an Equation

- Solve $\log x+\log (x-1)=\log (8 x-12)-\log 2 ;$

The technique involves using the Product/Quotient Rule for Logarithms to combine the sum/difference into a single logarithm and, then, the One-to-One Property

$$
\begin{aligned}
& \quad \log _{a} m=\log _{a} n \quad \text { implies } \quad m=n ; \\
& \log x+\log (x-1)=\log (8 x-12)-\log 2 \\
& \Rightarrow \quad \log (x(x-1))=\log \left(\frac{8 x-12}{2}\right) \\
& \Rightarrow \quad x(x-1)=4 x-6 \\
& \Rightarrow \quad x^{2}-x=4 x-6 \\
& \Rightarrow \quad x^{2}-5 x+6=0 \\
& \Rightarrow \quad(x-2)(x-3)=0 \\
& \Rightarrow \quad x=2 \text { or } x=3 ;
\end{aligned}
$$

Now check whether the solutions are admissible; Both $x=2$ and $x=3$ are admissible solutions!

A Single Exponential Equation

- Solve $2^{x}=10$;

The technique involves rewriting as a logarithmic equation using the property

$$
\begin{gathered}
y=\log _{a} x \text { if and only if } a^{y}=x ; \\
\qquad 2^{x}=10 \\
\Rightarrow \quad x=\log _{2} 10
\end{gathered}
$$

Now check whether the solution is admissible; The solution $x=\log _{2} 10$ is admissible.

Powers of the Same Base

- Solve $2^{\left(x^{2}\right)}=4^{3 x-4}$;

The technique involves rewriting the two sides as powers over the same base and, then, using the One-to-One Property

$$
\begin{aligned}
& a^{m}=a^{n} \quad \text { implies } \quad m=n ; \\
& 2^{\left(x^{2}\right)}=4^{3 x-4} \\
& \Rightarrow \quad 2^{\left(x^{2}\right)}=\left(2^{2}\right)^{3 x-4} \\
& \Rightarrow \quad 2^{\left(x^{2}\right)}=2^{2(3 x-4)} \\
& \Rightarrow \quad x^{2}=6 x-8 \\
& \Rightarrow \quad x^{2}-6 x+8=0 \\
& \Rightarrow \quad(x-2)(x-4)=0 \\
& \Rightarrow \quad x=2 \text { or } x=4 ;
\end{aligned}
$$

Now check whether the solutions are admissible; Both $x=2$ and $x=4$ are admissible solutions;

Exponential Equations Involving Different Bases

- Solve $2^{x-1}=3^{x}$;

The technique involves taking logarithms of both sides and, then, using the Power Property

$$
\begin{aligned}
& \log _{a}\left(M^{N}\right)=N \log _{a} M ; \\
& 2^{x-1}=3^{x} \\
& \Rightarrow \log \left(2^{x-1}\right)=\log \left(3^{x}\right) \\
& \Rightarrow(x-1) \log 2=x \log 3 \\
& \Rightarrow x \log 2-\log 2=x \log 3 \\
& \Rightarrow x \log 2-x \log 3=\log 2 \\
& \Rightarrow x(\log 2-\log 3)=\log 2 \\
& \Rightarrow x=\frac{\log 2}{\log 2-\log 3}
\end{aligned}
$$

It is more difficult now to check whether the solution(s) is admissible.

Changing the Base

Change-Of-Base Formula

If a, b are positive numbers not equal to 1 and $M>0$,

$$
\log _{a} M=\frac{\log _{b} M}{\log _{b} a}
$$

- Example: Use your calculator to compute $\log _{7} 99$ to four decimal places;

Calculators usually allow us to compute common logarithms (base 10) and natural logarithms (base e);
Thus, we need to use Change-Of-Base to convert $\log _{7} 99$ to an expression involving either common or natural logarithms:

$$
\log _{7} 99=\frac{\ln 99}{\ln 7} \approx 2.3614
$$

Strategy for Solving Equations

(1) If the equation has a single logarithm or a single exponential, rewrite using

$$
y=\log _{a} x \text { if and only if } a^{y}=x
$$

(2) Use the rules to combine logarithms as much as possible;
(3) Use the One-to-One Properties

$$
\begin{gathered}
\log _{a} m=\log _{a} n \text { implies } m=n ; \\
a^{m}=a^{n} \text { implies } m=n ;
\end{gathered}
$$

(3) For exponential equations with different bases, take the common or natural logarithms of both sides of the equation;

Application:Finding Time in Finance

- If $\$ 1,000$ is deposited into an account paying 4% compounded quarterly, in how many quarters will the account have $\$ 2,000$ in it?

Recall $A=P(1+i)^{n}$;
We have $P=1000, i=\frac{0.04}{4}=0.01$ and $A=2000$;
We would like to determine the number of periods (quarters) n;

$$
\begin{aligned}
& 2000=1000(1+0.01)^{n} \\
& \Rightarrow \quad 2=1.01^{n} \\
& \Rightarrow \quad n=\log _{1.01} 2 \\
& \stackrel{\ln 2}{\Rightarrow} \quad \text { Chase } \quad n=\frac{\ln 1.01}{\ln 1.06}
\end{aligned}
$$

Thus, the account will have $\$ 2,000$ in approximately 70 quarters, i.e., in 17-and-a-half years;

Application: Finding the Rate of Radioactive Decay

- The number of grams of a radioactive substance that is present in an old bone after t years is given by

$$
A=8 e^{r t}
$$

where r is the decay rate.
(a) How many grams were present when the bone was in a living organism at $t=0$?
(b) If it took 6300 years for the substance to decay from 8 grams to 4 grams, what is its decay rate?
(a) Plugging-in $t=0$, we get $A=8 e^{r \cdot 0}=8 \cdot e^{0}=8 \cdot 1=8$; Thus, when the organism was living the bone had 8 grams of the substance;
(b)

$$
\begin{aligned}
& 4=8 e^{6300 r} \\
& \Rightarrow \quad \frac{1}{2}=e^{6300 r} \\
& \Rightarrow \quad 6300 r=\ln \left(\frac{1}{2}\right) \\
& \Rightarrow \quad r=\frac{1}{6300} \ln \left(\frac{1}{2}\right) \approx-0.00011 ;
\end{aligned}
$$

