Intermediate Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 102

(1) Linear Equations and Inequalities in Two Variables

- Graphing Lines in the Plane
- Slope of a Line
- Three Forms for the Equation of a Line
- Linear Inequalities and their Graphs

Subsection 1

Graphing Lines in the Plane

The Cartesian Coordinate System

- Basic Features:
- The origin;
- x - and y-axes;
- The four Quadrants;

Graphing Lines

- It suffices to plot two points!
- Example: Use the x - and y-intercepts to draw the line $y=2 x+3$;

x	y
0	3
$-\frac{3}{2}$	0

Another Example

- Use the x - and y-intercepts to draw the line $x+2 y=4$;

Graphing Horizontal and Vertical Lines

$$
y=2
$$

$$
x=3
$$

An Application

- A store manager is ordering shirts at \$ 20 each and jackets at $\$ 30$ each. The total cost of the order is going to be $\$ 1,200$. Write an equation for the total cost and graph it. If she orders 15 shirts how many jackets can she order?
Suppose s is the number of shirts and j the number of jackets; The cost of the shirts is 20 s and the cost of the jackets is $30 j$; Thus, the total cost is $20 s+30 j=1200$; Solving for j, we get $j=-\frac{2}{3} s+40$; The graph of j versus s is given below;

Finally, if she orders 15 shirts, she may order $j=-\frac{2}{3} \cdot 15+40=30$ jackets;

Subsection 2

Slope of a Line

Definition of Slope

- Suppose a straight line passes through two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$;

The change $\Delta x=x_{2}-x_{1}$ in the x-coordinate is termed the run and the change $\Delta y=$ $y_{2}-y_{1}$ in the y-coordinate the rise;

- Then, the slope m of the straight line is defined by

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- The slope is a measure of how steeply the line rises (if $m>0$) or descends (if $m<0$);

Computing Slopes

- Compute the slope of the line passing through the points $P(2,5)$ and $Q(6,3)$;

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-5}{6-2}=\frac{-2}{4}=-\frac{1}{2}
$$

- Compute the slope of the line passing through the points $P(-2,3)$ and $Q(-10,-1)$;

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-3}{-10-(-2)}=\frac{-4}{-8}=\frac{1}{2}
$$

- Compute the slope of the horizontal line with y-intercept 5 ; $\mathrm{m}=0$
- How about the slope of the vertical line with x-intercept -2 ? The slope is undefined!

Parallel and Perpendicular Lines

Two lines L_{1} and L_{2} are parallel, Two lines L_{1} and L_{2} are perpenwritten $L_{1} \| L_{2}$, if they have no points in common;

If L_{1} has slope m_{1} and L_{2} has slope m_{2}, we have $L_{1} \| L_{2}$ if and only if $m_{1}=m_{2}$; dicular, written $L_{1} \perp L_{2}$, if they intersect at a right $\left(90^{\circ}\right)$ angle;

If L_{1} has slope m_{1} and L_{2} has slope m_{2}, we have $L_{1} \perp L_{2}$ if and only if $m_{1}=-\frac{1}{m_{2}}$;

Example I

Find the slope of the line $/$ that passes through the origin and that is parallel to the line I^{\prime} passing through the points $(-2,11)$ and $(4,-7)$.

Line I^{\prime} has slope

$$
\begin{aligned}
m^{\prime} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-7-11}{4-(-2)} \\
& =\frac{-18}{6}=-3 ;
\end{aligned}
$$

Since $/ \| I^{\prime}$, we must have $m=m^{\prime}=-3$;

Example II

Find the slope of the line I that passes through the point $(1,4)$ and that is perpendicular to the line I^{\prime} passing through the points $(-2,7)$ and $(3,2)$. Line I^{\prime} has slope

$$
\begin{aligned}
m^{\prime} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2-7}{3-(-2)} \\
& =\frac{-5}{5}=-1
\end{aligned}
$$

Since $I \perp I^{\prime}$, we must have $m=-\frac{1}{m^{\prime}}=1$;

A More Intricate Example

Determine whether $(-3,2),(-2,-1),(4,1)$ and $(3,4)$ are the vertices of a rectangle;

We compute the slopes of the various line segments: Slopes are as follows:

$$
\begin{aligned}
m_{A B} & =\frac{-1-2}{-2-(-3)}=-3 \\
m_{B C} & =\frac{1-(-1)}{4-(-2)}=\frac{1}{3} \\
m_{C D} & =\frac{4-1}{3-4}=-3 \\
m_{A D} & =\frac{4-2}{3-(-3)}=\frac{1}{3}
\end{aligned}
$$

Now it is clear that $A B \perp B C \perp C D \perp A D$; Thus the quadrilateral is indeed a rectangle;

Subsection 3

Three Forms for the Equation of a Line

The Slope-Intercept Form

The equation of a line with slope m and y-intercept $(0, b)$ is

$$
y=m x+b
$$

Example: Find an equation for the line passing through the point $(0,-3)$ and having slope 5;
We have $y=m x+b=5 x-3$;

Example I

- What is the slope and the y-intercept of the line with equation

$$
3 x-2 y=5 ?
$$

We solve for y to convert the equation of the line in the slope-intercept form:

$$
\begin{aligned}
3 x-2 y & =5 \\
-2 y & =-3 x+5 \\
y & =\frac{3}{2} x-\frac{5}{2}
\end{aligned}
$$

Now we compare with $y=m x+b$; We have slope $m=\frac{3}{2}$ and y-intercept $b=-\frac{5}{2}$;

Example II

- Find an equation for the line passing through the points $(-3,7)$ and $(0,-2)$;

First compute the slope:

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-2-7}{0-(-3)} \\
& =-3 ;
\end{aligned}
$$

The y-intercept is $b=-2$;
Therefore the equation is

$$
y=-3 x-2
$$

The Standard Form

- The equation of a line in standard form is

$$
A x+B y=C
$$

where A, B, C are reals, with A and B not both zero;

- Example: Write the equation $y=\frac{1}{2} x-\frac{3}{4}$ in the standard form using only integers and a positive coefficient for x;

$$
\begin{aligned}
y & =\frac{1}{2} x-\frac{3}{4} \\
4 y & =2 x-3 \\
3 & =2 x-4 y \\
2 x-4 y & =3
\end{aligned}
$$

The Point-Slope Form

The equation of a line with slope m and passing through a point $\left(x_{1}, y_{1}\right)$ is

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

Example: Find an equation for the line passing through the point $(-3,7)$ and having slope -2 ;
We have $m=-2$ and $\left(x_{1}, y_{1}\right)=(-3,7)$; Therefore the equation is $y-7=-2(x+3)$;

Example I

- Find an equation for the line passing through $(3,-2)$ and $(4,7)$; Then put it in the slope-intercept form.

We first compute the slope:

$$
\begin{aligned}
m & =\frac{7-(-2)}{4-3} \\
& =9 ;
\end{aligned}
$$

Now using the point-slope form with $m=9$ and $\left(x_{1}, y_{1}\right)=(3,-2)$ we get

$$
y+2=9(x-3)
$$

Thus the slope-intercept form is $y=9 x-29$;

Example II

- Find an equation for the line I passing through $(2,0)$ that is perpendicular to the line I^{\prime} through $(5,-1)$ and $(-1,3)$;

We first compute the slope of the second line:

$$
\begin{aligned}
m^{\prime} & =\frac{3-(-1)}{-1-5} \\
& =-\frac{2}{3}
\end{aligned}
$$

Since $I \perp I^{\prime}$, we get $m=\frac{3}{2}$; Now using the point-slope form with $m=\frac{3}{2}$ and $\left(x_{1}, y_{1}\right)=(2,0)$ we get

$$
y=\frac{3}{2}(x-2)=\frac{3}{2} x-3
$$

Example III

- Find an equation for the line $/$ passing through $(-1,6)$ that is parallel to the line I^{\prime} through $(2,4)$ and $(7,-11)$;

We first compute the slope of I^{\prime} :

$$
\begin{aligned}
m^{\prime} & =\frac{-11-4}{7-2} \\
& =-3 ;
\end{aligned}
$$

Since $I \| I^{\prime}$, we get $m=-3$; Now using the point-slope form with $m=-3$ and $\left(x_{1}, y_{1}\right)=(-1,6)$ we get

$$
y-6=-3(x+1)
$$

Example IV

- Find an equation for the line I passing through $(2,5)$ that is perpendicular to the line I^{\prime} with equation $2 x+3 y=1$;

We first compute the slope of I^{\prime} :

$$
\begin{aligned}
2 x+3 y & =1 \\
3 y & =-2 x+1 \\
y & =-\frac{2}{3} x+\frac{1}{3}
\end{aligned}
$$

Thus, $m^{\prime}=-\frac{2}{3}$; Since $I \perp I^{\prime}$, we get $m=\frac{3}{2}$; Now using the point-slope form with $m=\frac{3}{2}$ and

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(2,5) \text { we get } \\
& \qquad y-5=\frac{3}{2}(x-2)
\end{aligned}
$$

An Application: Fahrenheit versus Celsius

Fahrenheit temperature F is a linear function of Celsius temperature C; Water freezes at $0^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{F}$ and boils at $100^{\circ} \mathrm{C}$ or $212^{\circ} \mathrm{F}$. Find the linear function;

We first compute the slope of the line passing through $(0,32)$ and $(100,212)$:

$$
\begin{aligned}
m & =\frac{212-32}{100-0} \\
& =\frac{180}{100}=\frac{9}{5}
\end{aligned}
$$

Now using the slope-intercept form with $m=\frac{9}{5}$ and $b=32$ we get

$$
F=\frac{9}{5} C+32
$$

Subsection 4

Linear Inequalities and their Graphs

Linear Inequalities and Graphing Strategy

- A linear inequality in two variables is of the form

$$
A x+B y \leq C
$$

where A, B, C are real constants, with A, B not both zero, and possibly with $<, \geq$ or $>$ used in place of \leq;

- Strategy for Graphing the Solution Set:
- Graph the line $A x+B y=C$;
- Pick a point (a, b) not on the line;
- Plug-in $x=a$ and $y=b$ and check whether the inequality is verified;
- If yes, the solution set is the half-plane containing (a, b);
- If not, the solution set is the half-plane not containing (a, b);

Example I

Graph the linear inequality $y<\frac{1}{2} x-1$;
First, graph the line $y=\frac{1}{2} x-1$;

Pick a test point not on the line, say $(0,0)$;
We have $0 \nless \frac{1}{2} \cdot 0-1$;
Therefore, the solution set is the half-plane not containing (0,0);

Example II

Graph the linear inequality $3 x-2 y<6$;
First, graph the line $3 x-2 y=6$;

Pick a test point not on the line, say $(0,0)$;
We have $3 \cdot 0-2 \cdot 0<6$;
Therefore, the solution set is the half-plane containing (0,0);

Example III

Graph the linear inequality $x \leq 2$;
First, graph the line $x=2$;

Pick a test point not on the line, say $(0,0)$;
We have $0 \leq 2$;

Therefore, the solution set is the half-plane containing $(0,0)$;

Example IV

Graph the linear inequality $3 x-4 y>7$;
First, graph the line $3 x-4 y=7$;

Pick a test point not on the line, say $(0,0)$;
We have $3 \cdot 0-4 \cdot 0 \ngtr 7$;
Therefore, the solution set is the half-plane not containing $(0,0)$;

A Compound Inequality With AND

Graph the solution set of the compound inequality

$$
y>x-3 \quad \text { and } \quad y<-\frac{1}{2} x+2
$$

We first graph each of the components on the same system of axes:

Because of the "and" we take as the solution set the set of all points belonging to both of individual solution sets:

A Compound Inequality With OR

Graph the solution set of the compound inequality

$$
2 x-3 y \leq-6 \quad \text { or } \quad x+2 y \geq 4
$$

We first graph each of the components on the same system of axes:

Because of the "or" we take as the solution set the set of all points belonging to at least one of the individual solution sets:

Absolute Value Inequalities I

Graph the solution set of the absolute value inequality

$$
|y-2 x| \leq 3
$$

Recall the given inequality is equivalent to $-3 \leq y-2 x \leq 3$; We first graph each of the components $-3 \leq y-2 x$ and $y-2 x \leq 3$ on the same system of axes:

Because of the "and" we take as the solution set the set of all points belonging to both individual solution sets:

Absolute Value Inequalities II

Graph the solution set of the absolute value inequality

$$
|x-3 y| \geq 6
$$

Recall the given inequality is equivalent to $x-3 y \leq-6$ or $x-3 y \geq 6$; We first graph each of the components $x-3 y \leq-6$ and $x-3 y \geq 6$ on the same system of axes:

Because of the "or" we take as the solution set the set of all points belonging to at least one of the individual solution sets:

