Intermediate Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 102

(1) Systems of Linear Equations

- Solving by Graphing and by Substitution
- The Addition Method
- Systems of Linear Equations in Three Variables
- The Matrix Method

Subsection 1

Solving by Graphing and by Substitution

Systems of Equations and Solutions

- A system of equations is any collection of two or more equations;
- A solution of a system of equations in two variables x and y is a pair (a, b) that satisfies all equations in the system;
- The solution set is the set of all pairs satisfying the system;
- Example: Is $(2,5)$ a solution of $\left\{\begin{aligned} x+y & =7 \\ 3 x-5 y & =-19\end{aligned}\right\}$;

To check, we must plug-in $x=2$ and $y=5$ and verify that both equations of the system are satisfied:
We have $2+5=7$, which is true, and $3 \cdot 2-5 \cdot 5=-19$, which is also true!
Therefore, $(2,5)$ is a solution of the given system;

Solving a System by Graphing

- The graph of a linear equation in two variables is a line in the plane;
- Thus, a given system of two linear equations in two variables represents a pair of straight lines in the plane;
- A solution of the system is a point that lies on both lines, i.e., it is the point of intersection, if such a point exists;
- The graphical method of solving a system consists of graphing the straight lines and discovering their points of intersection, if any!

Example: Solve the system $\left\{\begin{array}{l}x-y=-2 \\ x+y=4\end{array}\right\} ;$
We graph the two lines: Their point of intersection is $(1,3)$.

Another Example

Solve the system $\left\{\begin{aligned} 2(y+2) & =x \\ x-2 y & =4\end{aligned}\right\}$;
We simplify to have a nicer form to graph: $\left\{\begin{array}{l}x-2 y=4 \\ x-2 y=4\end{array}\right\}$;
The two equations in the system coincide, i.e., the graphs are identical lines;
Therefore, there are infinitely may intersection points: for any y,
$x=2 y+4$;
So the solution set may be expressed as

$$
(2 y+4, y), y \text { any real number; }
$$

An Inconsistent System

Solve the system $\left\{\begin{array}{l}2 x-3 y=6 \\ 3 y-2 x=3\end{array}\right\}$;
We simplify to have a nicer form to graph: $\left\{\begin{aligned} y & =\frac{2}{3} x-2 \\ y & =\frac{2}{3} x+1\end{aligned}\right\}$; The two equations in the system represent two different parallel lines,

i.e., the graphs do not have any points of intersection; Therefore, there are no solutions for the given system!

The Substitution Method

- Suppose we would like to solve the system

$$
\left\{\begin{array}{l}
y=2 x-3 \\
y=x+5
\end{array}\right\}
$$

- Solve one of the two equations for one of two variables, say the second for y :

$$
y=x+5
$$

- Substitute this value in the other equation:

$$
x+5=2 x-3
$$

- Solve this equation for x :

$$
x=8
$$

- Now plug-in into the equation we solved first:

$$
y=x+5=8+5=13
$$

- The system has the unique solution $(x, y)=(8,13)$;

Another Example

- Suppose we would like to solve the system

$$
\left\{\begin{array}{r}
2 x+3 y=8 \\
y+2 x=6
\end{array}\right\}
$$

- Solve one of the two equations for one of two variables, say the second for y :

$$
y=6-2 x
$$

- Substitute this value in the other equation:

$$
2 x+3(6-2 x)=8
$$

- Solve this equation for x :

$$
2 x+18-6 x=8 \quad \Rightarrow \quad-4 x=-10 \quad \Rightarrow \quad x=\frac{5}{2}
$$

- Now plug-in into the equation we solved first: $y=6-2 \cdot \frac{5}{2}=1$;
- The system has the unique solution $(x, y)=\left(\frac{5}{2}, 1\right)$;

A Dependent System (Infinite Solutions)

- Suppose we would like to solve the system

$$
\left\{\begin{aligned}
2 x+3 y & =5+x+4 y \\
y & =x-5
\end{aligned}\right\}
$$

- Solve one of the two equations for one of two variables, say the second for y :

$$
y=x-5
$$

- Substitute this value in the other equation:

$$
2 x+3(x-5)=5+x+4(x-5)
$$

- Solve this equation for x :

$$
2 x+3 x-15=5+x+4 x-20 \Rightarrow 5 x-15=5 x-15
$$

- The system reduces to just the equation $y=x-5$;
- Thus, it has infinitely many solutions $(x, x-5)$, for any real x;

An Inconsistent System (No Solutions)

- Suppose we would like to solve the system

$$
\left\{\begin{array}{r}
x-2 y=3 \\
2 x-4 y=7
\end{array}\right\}
$$

- Solve one of the two equations for one of two variables, say the first for x :

$$
x=2 y+3
$$

- Substitute this value in the other equation:

$$
2(2 y+3)-4 y=7
$$

- Solve this equation for x :

$$
4 y+6-4 y=7 \quad \Rightarrow \quad 6=7
$$

- Thus, we obtained a false equation;
- So this system is inconsistent (has no solutions);

Application: Perimeter of a Rectangle

The length of a rectangular swimming pool is twice its width. If the perimeter is 120 feet, what are its length and its width?

Suppose that I is the length and w is the width; The length being twice the width may be expressed as $I=2 w$; The perimeter being 120 feet gives $2 l+2 w=120$; Therefore, we get

$$
\begin{aligned}
2(2 w)+2 w & =120 \\
4 w+2 w & =120 \\
6 w & =120 \\
w & =20
\end{aligned}
$$

Hence, the pool has length 40 feet and width 20 feet;

Application: An Investment Problem

Last year Sonya made $\$ 2160$ income on a $\$ 20,000$ investment. This year she wants to split the $\$ 20,000$ between two funds; one is expected to have a 10% return and the other, more risky, a 12% return. If she wants to have again a total return of $\$ 2160$, how much should she invest in each fund?

Suppose that $\$ x$ is to be invested in the 10% fund and $\$ y$ in the 12% fund; Then, since the total to be invested in $\$ 20,000$, we must have

$$
x+y=20000
$$

Moreover, the return from the first investment will be $0.1 x$ and that from the second $0.12 y$; Therefore, since the total return is to be $\$ 2160$, we must have

$$
0.1 x+0.12 y=2160
$$

Solve the first equation for y :

$$
y=20000-x
$$

Example (Cont'd)

We obtained:

$$
x+y=20000 \text { and } 0.1 x+0.12 y=2160
$$

Also $y=20000-x$;
Substitute into the second equation and solve for x :

$$
\begin{aligned}
0.1 x+0.12(20000-x) & =2160 \\
0.1 x+2400-0.12 x & =2160 \\
-0.02 x & =-240 \\
x & =12,000
\end{aligned}
$$

Thus, Sonya needs to invest $\$ 12,000$ in the first fund and $\$ 8,000$ in the second fund for a total return of $\$ 2160$;

Subsection 2

The Addition Method

The Addition Method

- Apply carefully the following steps:
(1) Rewrite both equations in form $A x+B y=C$;
(2) Multiply one or both equations by the appropriate integer to obtain opposite coefficients on one of the variables;
(3) Add the equations to eliminate one variable;
(3) Solve the equation for the remaining variable;
(5) Substitute the value in one of the original equations and solve for the other variable;
- Example: Solve $\left\{\begin{aligned} 2 x & =y+12 \\ x+3 y & =13\end{aligned}\right\}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 x-y=12 \\
x+3 y=13
\end{array}\right\} \Rightarrow\left\{\begin{array}{r}
6 x-3 y=36 \\
x+3 y=13
\end{array}\right\} \Rightarrow \\
& \left\{\begin{aligned}
7 x & =49 \\
x+3 y & =13
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
x & =7 \\
x+3 y & =13
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{aligned}
x & =7 \\
7+3 y & =13
\end{aligned}\right\} \Rightarrow\left\{\begin{array}{l}
x=7 \\
y=2
\end{array}\right\}
\end{aligned}
$$

Example I

Solve $\left\{\begin{aligned} & 2 x-3 y= \\ & 5 x-13 \\ & 5 x=-46\end{aligned}\right\}$

$$
\begin{aligned}
& \left\{\begin{aligned}
2 x-3 y & =-13 \\
5 x-12 y & =-46
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
-8 x+12 y & =52 \\
5 x-12 y & =-46
\end{aligned}\right\} \Rightarrow \\
& \left.\left\{\begin{aligned}
-3 x & =6 \\
5 x-12 y & =-46
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
x & =-2 \\
5 x-12 y & =
\end{aligned}\right\} \Rightarrow \text { - } 6\right\} \\
& \left\{\begin{aligned}
x & =-2 \\
5 \cdot(-2)-12 y & =-46
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
x & =-2 \\
-12 y & =-36
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{array}{l}
x=-2 \\
y=3
\end{array}\right\}
\end{aligned}
$$

Example II

Solve $\left\{\begin{aligned}-2 x+3 y & =6 \\ 3 x-5 y & =-11\end{aligned}\right\}$

$$
\begin{aligned}
& \left\{\begin{aligned}
-2 x+3 y & =6 \\
3 x-5 y & =-11
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
-6 x+9 y & =18 \\
6 x-10 y & =-22
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{aligned}
-y & =-4 \\
6 x-10 y & =-22
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
y & =4 \\
6 x-10 y & =-22
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{aligned}
y & =4 \\
6 x-10 \cdot 4 & =-22
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
y & =4 \\
6 x & =18
\end{aligned}\right\} \Rightarrow\left\{\begin{array}{l}
x=3 \\
y=4
\end{array}\right\}
\end{aligned}
$$

Example Involving Fractions

Solve $\left\{\begin{aligned} \frac{1}{2} x-\frac{2}{3} y & =7 \\ \frac{2}{3} x-\frac{3}{4} y & =11\end{aligned}\right\}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{1}{2} x-\frac{2}{3} y=7 \\
\frac{2}{3} x-\frac{3}{4} y=11
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
3 x-4 y=42 \\
8 x-9 y=132
\end{array}\right\} \Rightarrow \\
& \left\{\begin{array}{r}
-24 x+32 y=-336 \\
24 x-27 y=396
\end{array}\right\} \Rightarrow\left\{\begin{array}{r}
5 y=60 \\
3 x-4 y=42
\end{array}\right\} \Rightarrow \\
& \left\{\begin{array}{r}
y=12 \\
y=12 \\
3 x-4 y=42
\end{array}\right\} \Rightarrow\left\{\begin{array}{r}
3 x-4 \cdot 12=42
\end{array}\right\} \Rightarrow \\
& \left\{\begin{array}{r}
y=12 \\
3 x=90
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
x=30 \\
3=12
\end{array}\right\}
\end{aligned}
$$

Example Involving Decimals

Solve $\left\{\begin{aligned} 0.05 x+0.7 y & =40 \\ x+0.4 y & =120\end{aligned}\right\}$

$$
\begin{aligned}
& \left\{\begin{aligned}
0.05 x+0.7 y & =40 \\
x+0.4 y & =120
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
5 x+70 y=4000 \\
10 x+4 y=1200
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{aligned}
-10 x-140 y & =-8000 \\
10 x+4 y & =1200
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
-136 y & =-6800 \\
10 x+4 y & =1200
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{aligned}
y & =50 \\
10 x+4 y & =1200
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
y & =50 \\
10 x+4 \cdot 50 & =1200
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{aligned}
y & =50 \\
10 x & =1000
\end{aligned}\right\} \Rightarrow\left\{\begin{array}{l}
x=100 \\
y=50
\end{array}\right\}
\end{aligned}
$$

Application: Flautas and Burritos at "La Posta" de Mesilla

Suppose that at "La Posta" the total price for four flauta dinners and three burrito dinners is $\$ 57$ and the total price for three flauta dinners and two burrito dinners is $\$ 41$. What is the price of each type of dinner?

Suppose that each flauta dinner costs $\$ x$ and each burrito dinner costs $\$ y$; Then, the data yield the following system: $\left\{\begin{array}{ll}4 x+3 y=57 \\ 3 x+2 y & =41\end{array}\right\}$; We solve this system as before

$$
\begin{aligned}
& \left\{\begin{array}{l}
4 x+3 y=57 \\
3 x+2 y=41
\end{array}\right\} \Rightarrow\left\{\begin{aligned}
-12 x-9 y & =-171 \\
12 x+8 y & =164
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{aligned}
-y & =-7 \\
3 x+2 y & =41
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
y & =7 \\
3 x+2 y & =41
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{aligned}
y & =7 \\
3 x+2 \cdot 7 & =41
\end{aligned}\right\} \Rightarrow\left\{\begin{array}{c}
y=7 \\
3 x=27
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
x=9 \\
y=7
\end{array}\right\} \text { Thus, }
\end{aligned}
$$

each flauta dinner costs $\$ 9$ and each burrito dinner costs $\$ 7$; Bon Appetit!

Application: Mixing Cooking Oil

Canola oil is 7% saturated fat and corn oil is 14% saturated fat. A blend sold by "Spartan" is 11% saturated fat. How many gallons of each type should be mixed to get 280 gallons of this blend?

Suppose we need to mix x gallons of canola and y gallons of corn oil; Then, the data yield the following system:

$$
\begin{aligned}
& \left\{\begin{aligned}
x+y & =280 \\
0.07 x+0.14 y & =0.11 \cdot 280
\end{aligned}\right\} \text {; We solve this system as before } \\
& \left\{\begin{aligned}
x+y & =280 \\
0.07 x+0.14 y & =30.8
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
x+y & =280 \\
7 x+14 y & =3080
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{aligned}
-7 x-7 y & =-1960 \\
7 x+14 y & =3080
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
7 y & =1120 \\
x+y & =280
\end{aligned}\right\} \Rightarrow \\
& \left\{\begin{array}{r}
y=160 \\
x+y=280
\end{array}\right\} \Rightarrow\left\{\begin{array}{r}
y=160 \\
x+160=280
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
x=120 \\
y=160
\end{array}\right\}
\end{aligned}
$$

Thus, we must mix 120 gallons of canola with 160 gallons of corn;

Subsection 3

Systems of Linear Equations in Three Variables

Example I

Solve the system of three linear equations in three unknowns
$\left\{\begin{aligned} x+y-z & =-1 \\ 2 x-2 y+3 z & =8 \\ 2 x-y+2 z & =9\end{aligned}\right\}$;
Take the first two equations and eliminate x :
$\left\{\begin{aligned} x+y-z & =-1 \\ 2 x-2 y+3 z & =8\end{aligned}\right\} \Rightarrow\left\{\begin{aligned} &-2 x-2 y+2 z= \\ & 2 x-2 y+3 z= \\ & 2\end{aligned}\right\} \Rightarrow$
$-4 y+5 z=10$. Take the first and third equations and eliminate x :
$\left\{\begin{aligned} x+y-z & =-1 \\ 2 x-y+2 z & =9\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}-2 x-2 y+2 z= & 2 \\ 2 x-y+2 z= & 9\end{aligned}\right\} \Rightarrow$
$-3 y+4 z=11$. Take the system $\left\{\begin{aligned}-4 y+5 z & =10 \\ -3 y+4 z & =11\end{aligned}\right\}$ and eliminate y :
$\left\{\begin{array}{r}-4 y+5 z=10 \\ -3 y+4 z=11\end{array}\right\} \Rightarrow\left\{\begin{aligned}-12 y+15 z & =30 \\ 12 y-16 z & =-44\end{aligned}\right\} \Rightarrow$
$\left\{\begin{aligned}-z & =-14 \\ -3 y+4 z & =11\end{aligned}\right\} \Rightarrow\left\{\begin{array}{ll}z=14 \\ y & =15\end{array}\right\}$ So, $(x, y, z)=(-2,15,14)$;

Example II

Solve the system of three linear equations in three unknowns
$\left\{\begin{aligned} x+y & =4 \\ 2 x-3 z & =14 \\ 2 y+z & =2\end{aligned}\right\}$;
Take the first two equations and eliminate x :
$\left\{\begin{aligned} x+y & =4 \\ 2 x-3 z & =14\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}-2 x-2 y & =-8 \\ 2 x-3 z & =14\end{aligned}\right\} \Rightarrow-2 y-3 z=6$.
Take this with the third equation and eliminate y :
$\left\{\begin{array}{r}2 y+z=2 \\ -2 y-3 z=6\end{array}\right\} \Rightarrow-2 z=8 \Rightarrow z=-4$. So $y=3$ and $x=1$, i.e., $(x, y, z)=(1,3,-4)$;

Application: Tim's Rentals

Tim took in a total of $\$ 1240$ from renting three condos. For updates, he had to pay 10% of the rent of the one-bedroom, 20% of the rent of the two-bedroom and 30% of the rent of the three-bedroom. If the three bedroom rents for twice as much as the one-bedroom and the total update bill was $\$ 276$, how much does Tim charge for each condo?
Assume x, y and z are the rents for the 1-,2- and 3-bedroom condos;
Then: $\left\{\begin{aligned} x+y+z & =1240 \\ 0.1 x+0.2 y+0.3 z & =276 \\ z & =2 x\end{aligned}\right\}$; Substitute $z=2 x$:
$\left\{\begin{aligned} 3 x+y & =1240 \\ 0.7 x+0.2 y & =276\end{aligned}\right\} \Rightarrow\left\{\begin{aligned} 3 x+y & =1240 \\ 7 x+2 y & =2760\end{aligned}\right\} \Rightarrow$
$\left\{\begin{aligned}-6 x-2 y & =-2480 \\ 7 x+2 y & =2760\end{aligned}\right\} \Rightarrow\left\{\begin{aligned} x & =280 \\ 3 x+y & =1240\end{aligned}\right\} \Rightarrow$
$\left\{\begin{array}{l}x=280 \\ y=400\end{array}\right\}$ So $(x, y, z)=(280,400,560)$;

Subsection 4

The Matrix Method

Matrices

- A matrix is an array of numbers enclosed in brackets;
- The rows run horizontally; the columns run vertically;
- If a matrix has m rows and n columns, we say that its size is $m \times n$;
- Each of the numbers in the matrix is called an element or an entry of the matrix;
- Example: $\left[\begin{array}{rr}-1 & 2 \\ 5 & \sqrt{2} \\ 0 & 3\end{array}\right]$ is a 3×2 matrix; $\left[\begin{array}{lll}-1 & 3 & 6\end{array}\right]$ is a 1×3
- A matrix with the same number of rows and columns is called a square matrix; E.g., $\left[\begin{array}{rr}2 & 3 \\ -1 & 5\end{array}\right]$ is a 2×2 square matrix;

The Augmented Matrix

- Consider a system of linear equation, like, e.g., $\left\{\begin{array}{l}x-2 y=-5 \\ 3 x+y=6\end{array}\right\}$;
- The matrix $\left[\begin{array}{rr}1 & -2 \\ 3 & 1\end{array}\right]$ is called the matrix of the coefficients;
- If we also attach the column of the constants, we get the augmented matrix of the system: $\left[\begin{array}{rr|r}1 & -2 & -5 \\ 3 & 1 & 6\end{array}\right]$;
- Two systems of equations are equivalent if they have the same solution sets;
- Two augmented matrices are equivalent if they correspond to equivalent systems of linear equations;

Some More Examples

- Write the augmented matrix of the following system:
- $\left\{\begin{array}{ll}3 x-5 y= & 11 \\ 7 x-2 y= & 21\end{array}\right\}$; The augmented matrix is $\left[\begin{array}{ll|l}3 & -5 & 11 \\ 7 & -2 & 21\end{array}\right]$;
- $\left\{\begin{array}{r}x+y-z=5 \\ 2 x+z=3 \\ 2 x-y+4 z=0\end{array}\right\}$; The augmented matrix is
$\left[\begin{array}{rrr|r}1 & 1 & -1 & 5 \\ 2 & 0 & 1 & 3 \\ 2 & -1 & 4 & 0\end{array}\right] ;$
- Write the system represented by the following augmented matrix:
$-\left[\begin{array}{rr|r}1 & 4 & -2 \\ 1 & -3 & 7\end{array}\right]$; We get $\left\{\begin{aligned} x+4 y=-2 \\ x-3 y=7\end{aligned}\right\} ;$
$\left[\begin{array}{rrr|r}2 & 3 & 4 & 6 \\ -1 & 0 & 5 & -2 \\ 1 & -2 & 0 & 1\end{array}\right]$; We get $\left\{\begin{aligned} 2 x+3 y+4 z & =6 \\ -x+5 z & =-2 \\ x-2 y & =1\end{aligned}\right\} ;$

The Gauss-Jordan Method

- The following row operations on an augmented matrix give an equivalent augmented matrix, i.e., resulting in a system with exactly the same solution set as the original:
(1) Interchange two rows of the matrix;
(2) Multiply every element in a row by a nonzero real number;
(3) Add to a row a multiple of another row;
- Example: We practice with one operation of each kind:
- Consider $\left[\begin{array}{rrr|r}2 & 3 & 4 & 6 \\ -1 & 0 & 5 & -2 \\ 1 & -2 & 0 & 1\end{array}\right]$; Perform $R_{1} \leftrightarrow R_{3}$; The result is

$$
\left[\begin{array}{rrr|r}
1 & -2 & 0 & 1 \\
-1 & 0 & 5 & -2 \\
2 & 3 & 4 & 6
\end{array}\right] ;
$$

- Consider $\left[\begin{array}{rr|r}1 & 0 & 5 \\ 0 & 3 & -6\end{array}\right]$; Perform $R_{2} \leftarrow \frac{1}{3} R_{2}$; We get $\left[\begin{array}{rr|r}1 & 0 & 5 \\ 0 & 1 & -2\end{array}\right]$;
- Consider $\left[\begin{array}{ll|l}1 & 1 & 4 \\ 2 & 3 & 6\end{array}\right]$; Perform $R_{2} \leftarrow R_{2}-2 R_{1}$; Get $\left[\begin{array}{rr|r}1 & 1 & 4 \\ 0 & 1 & -2\end{array}\right]$;

Gauss-Jordan Elimination for 2×2 Systems

Example: Solve the system $\left\{\begin{array}{l}x-3 y=11 \\ 2 x+y=1\end{array}\right\}$;
$\left[\begin{array}{rr|r}1 & -3 & 11 \\ 2 & 1 & 1\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}-2 R_{1}}\left[\begin{array}{rr|r}1 & -3 & 11 \\ 0 & 7 & -21\end{array}\right] \xrightarrow{R_{3} \leftarrow \frac{1}{7} R_{3}}$
$\left[\begin{array}{rr|r}1 & -3 & 11 \\ 0 & 1 & -3\end{array}\right] \xrightarrow{R_{1} \leftarrow R_{1}+3 R_{2}}\left[\begin{array}{rr|r}1 & 0 & 2 \\ 0 & 1 & -3\end{array}\right]$ Thus, the system has the solution $(x, y)=(2,-3)$;
Example: Solve the system $\left\{\begin{aligned} 3 x-2 y & =4 \\ 2 x+y & =5\end{aligned}\right\}$;

$$
\left[\begin{array}{rr|r}
3 & -2 & 4 \\
2 & 1 & 5
\end{array}\right] \xrightarrow{R_{1} \leftarrow \frac{1}{3} R_{1}}\left[\begin{array}{rr|r}
1 & -\frac{2}{3} & \frac{4}{3} \\
2 & 1 & 5
\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}-2 R_{1}}\left[\begin{array}{rr|r}
1 & -\frac{2}{3} & \frac{4}{3} \\
0 & \frac{7}{3} & \frac{7}{3}
\end{array}\right] \xrightarrow{R_{2} \leftarrow \frac{3}{3} R_{2}}
$$

$\left[\begin{array}{rr|r}1 & -\frac{2}{3} & \frac{4}{3} \\ 0 & 1 & 1\end{array}\right] \xrightarrow{R_{1} \leftarrow R_{1}+\frac{2}{3} R_{2}}\left[\begin{array}{ll|l}1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right]$ Thus, the system has the
solution $(x, y)=(2,1)$;

Gauss-Jordan Elimination for 3×3 Systems

Example: Solve the system $\left\{\begin{aligned} 2 x-y+z & =-3 \\ x+y-z & =6 \\ 3 x-y-z & =4\end{aligned}\right\}$;

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
2 & -1 & 1 & -3 \\
1 & 1 & -1 & 6 \\
3 & -1 & -1 & 4
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{rrr|r}
1 & 1 & -1 & 6 \\
2 & -1 & 1 & -3 \\
3 & -1 & -1 & 4
\end{array}\right] \begin{array}{l}
R_{2} \leftarrow R_{2}-2 R_{1} \\
R_{3} \leftarrow R_{3}-3 R_{1}
\end{array}} \\
& {\left[\begin{array}{rrr|r}
1 & 1 & -1 & 6 \\
0 & -3 & 3 & -15 \\
0 & -4 & 2 & -14
\end{array}\right] \xrightarrow{R_{2} \leftarrow-\frac{1}{3} R_{2}}\left[\begin{array}{rrr|r}
1 & 1 & -1 & 6 \\
0 & 1 & -1 & 5 \\
0 & -4 & 2 & -14
\end{array}\right] \begin{array}{c}
\substack{ \\
R_{1} \leftarrow R_{1}-R_{2} \\
R_{3} \leftarrow R_{3}+4 R_{2}}
\end{array}} \\
& {\left[\begin{array}{rrr|r}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 5 \\
0 & 0 & -2 & 6
\end{array}\right] \xrightarrow{R_{3} \leftarrow-\frac{1}{2} R_{3}}\left[\begin{array}{rrr|r}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 5 \\
0 & 0 & 1 & -3
\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}+R_{3}}}
\end{aligned}
$$

$\left[\begin{array}{lll|r}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3\end{array}\right]$ Thus, the solution is $(x, y, z)=(1,2,-3)$;

