Intermediate Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 102

(1) Radicals and Rational Exponents

- Radicals
- Rational Exponents
- Adding, Subtracting and Multiplying Radicals
- Quotients, Powers and Rationalizing Denominators
- Solving Equations With Radicals and Exponents

Subsection 1

Radicals

Roots

- If $a=b^{n}$ for some positive integer n, then b is an n-th root of a; In particular, if $a=b^{2}$, then b is a square root of a and if $a=b^{3}$, then b is a cube root of a;
- If n is even and $a>0$, then there are two real n-th roots of a, called the even roots; The positive one is called the principal root;
- The principal square root of 9 is 3 ; the principal fourth root of 16 is 2 ;
- If n is odd and a is any real (not necessarily positive), then there is only one n-th root of a, called the odd root;

The Symbol $\sqrt[n]{a}$

- If n is a positive even integer and $a>0$, then $\sqrt[n]{a}$ denotes the principal n-th root of a;
- If n is a positive odd integer, then $\sqrt[n]{a}$ is the n-th root of a;
- For n any integer, $\sqrt[n]{0}=0$;
- In $\sqrt[n]{a}, n$ is the index of the radical and a is called the radicand;

Evaluating Radical Expressions

- Find the following roots:
- $\sqrt{25}=5 ;\left(\right.$ Because $\left.5^{2}=25 ;\right)$
- $\sqrt[3]{-27}=-3 ;\left(\right.$ Because $(-3)^{3}=-27$;)
- $\sqrt[6]{64}=2 ; \quad\left(\right.$ Because $\left.2^{6}=64 ;\right)$
- $-\sqrt{4}=-2 ;\left(\right.$ Because $\left.2^{2}=4 ;\right)$

Roots and Variables

Perfect Powers

- Perfect Squares: $x^{2}, x^{4}, x^{6}, \ldots$, i.e., exponent divisible by 2 ;
- Perfect Cubes: $x^{3}, x^{6}, x^{9}, \ldots$, i.e., exponent divisible by 3 ;
- Perfect Fourth Powers: $x^{4}, x^{8}, x^{12}, \ldots$, i.e., exponent divisible by 4 ;
- To find the square root of a perfect square, we divide the exponent by 2 :
- Assuming $x \geq 0, \sqrt{x^{2}}=x, \quad \sqrt{x^{4}}=x^{2}, \quad \sqrt{x^{6}}=x^{3}$, etc.;
- If we are not sure $x \geq 0$, we must add an absolute value, e.g., $\sqrt{x^{2}}=|x|$ and $\sqrt{x^{6}}=\left|x^{3}\right|$;
- To find the cube root of a perfect cube, divide the exponent by 3 :
- $\sqrt[3]{x^{3}}=x, \quad \sqrt[3]{x^{6}}=x^{2}, \quad \sqrt[3]{x^{9}}=x^{3}$, etc.;

Roots of Exponential Expressions

- Find each of the following roots, assuming that the variables can represent any real number (not necessarily positive):
- $\sqrt{a^{2}}=|a| ;\left(\right.$ Because $\left.(a)^{2}=a^{2} ;\right)$
- $\sqrt{x^{22}}=\left|x^{11}\right| ;\left(\right.$ Because $\left(x^{11}\right)^{2}=x^{22} ;$)
- $\sqrt[4]{w^{40}}=\left|w^{10}\right|=w^{10} ;\left(\right.$ Because $\left.\left(w^{10}\right)^{4}=w^{40} ;\right)$
- $\sqrt[3]{t^{18}}=t^{6} ;\left(\right.$ Because $\left.\left(t^{6}\right)^{3}=t^{18} ;\right)$
- $\sqrt[5]{s^{30}}=s^{6} ;\left(\right.$ Because $\left.\left(s^{6}\right)^{5}=s^{30} ;\right)$

Product Rule for Radicals

Product Rule for Radicals

The n-th root of a product is equal to the product of the n-th roots:

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

- Example: Simplify each radical (assume all variables represent nonnegative reals):
- $\sqrt{4 y}=\sqrt{4} \sqrt{y}=2 \sqrt{y}$;
- $\sqrt{3 y^{8}}=\sqrt{3} \sqrt{y^{8}}=\sqrt{3} y^{4}$;
- $\sqrt[3]{125 w^{2}}=\sqrt[3]{125} \sqrt[3]{w^{2}}=5 \sqrt[3]{w^{2}}$;
- $\sqrt{12}=\sqrt{4 \cdot 3}=\sqrt{4} \sqrt{3}=2 \sqrt{3}$;
- $\sqrt[3]{54}=\sqrt[3]{27 \cdot 2}=\sqrt[3]{27} \sqrt[3]{2}=3 \sqrt[3]{2}$;
- $\sqrt[4]{80}=\sqrt[4]{16 \cdot 5}=\sqrt[4]{16} \sqrt[4]{5}=2 \sqrt[4]{5}$;
- $\sqrt[5]{64}=\sqrt[5]{32 \cdot 2}=\sqrt[5]{32} \sqrt[5]{2}=2 \sqrt[5]{2}$;

Some Additional Examples

- Simplify each radical; Again assume that all variables represent nonnegative reals;
- $\sqrt{20 x^{3}}=\sqrt{4 \cdot x^{2} \cdot 5 x}=\sqrt{4} \sqrt{x^{2}} \sqrt{5 x}=2 x \sqrt{5 x} ;$
- $\sqrt[3]{40 a^{8}}=\sqrt[3]{8 \cdot a^{6} \cdot 5 a^{2}}=\sqrt[3]{8} \sqrt[3]{a^{6}} \sqrt[3]{5 a^{2}}=2 a^{2} \sqrt[3]{5 a^{2}} ;$
- $\sqrt[4]{48 a^{4} b^{11}}=\sqrt[4]{16 \cdot a^{4} \cdot b^{8} \cdot 3 b^{3}}=\sqrt[4]{16} \sqrt[4]{a^{4}} \sqrt[4]{b^{8}} \sqrt[4]{3 b^{3}}=2 a b^{2} \sqrt[4]{3 b^{3}} ;$
- $\sqrt[5]{w^{12}}=\sqrt[5]{w^{10} \cdot w^{2}}=\sqrt[5]{w^{10}} \sqrt[5]{w^{2}}=w^{2} \sqrt[5]{w^{2}}$;

Quotient Rule for Radicals

Quotient Rule for Radicals

The n-th root of a quotient is equal to the quotient of the n-th roots:

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

- Example: Simplify each radical, assuming that all variables represent positive real numbers:
- $\sqrt{\frac{25}{9}}=\frac{\sqrt{25}}{\sqrt{9}}=\frac{5}{3}$;
- $\frac{\sqrt{15}}{\sqrt{3}}=\sqrt{\frac{15}{3}}=\sqrt{5}$;
- $\sqrt[3]{\frac{b}{125}}=\frac{\sqrt[3]{b}}{\sqrt[3]{125}}=\frac{\sqrt[3]{b}}{5}$;
- $\sqrt[3]{\frac{x^{21}}{y^{6}}}=\frac{\sqrt[3]{x^{21}}}{\sqrt[3]{y^{6}}}=\frac{x^{7}}{y^{2}}$;

Using Both the Product and the Quotient Rule

- Simplify each radical (all variables represent positive real numbers):
- $\sqrt{\frac{50}{49}}=\frac{\sqrt{25 \cdot 2}}{\sqrt{49}}=\frac{\sqrt{25} \sqrt{2}}{\sqrt{49}}=\frac{5 \sqrt{2}}{7}$;
- $\sqrt[3]{\frac{x^{5}}{8}}=\frac{\sqrt[3]{x^{3} \cdot x^{2}}}{\sqrt[3]{8}}=\frac{\sqrt[3]{x^{3}} \sqrt[3]{x^{2}}}{\sqrt[3]{8}}=\frac{x \sqrt[3]{x^{2}}}{2}$;
$-\sqrt[4]{\frac{a^{5}}{b^{8}}}=\frac{\sqrt[4]{a^{4} \cdot a}}{\sqrt[4]{b^{8}}}=\frac{\sqrt[4]{a^{4}} \sqrt[4]{a}}{\sqrt[4]{b^{8}}}=\frac{a \sqrt[4]{a}}{b^{2}} ;$

Domains of Radical Functions

- Find the domain of each function:
- $f(x)=\sqrt{x-5}$;

We must have $x-5 \geq 0$; Therefore $x \geq 5$; So $\operatorname{Dom}(f)=[5, \infty)$;

- $f(x)=\sqrt[3]{x+7}$;

Since the root is an odd-indexed root, there are no restrictions on the values of $x: \operatorname{Dom}(f)=\mathbb{R}=(-\infty, \infty)$;

- $f(x)=\sqrt[4]{2 x+6}$;

We must have $2 x+6 \geq 0$; Therefore $2 x \geq-6$, i.e., $x \geq-3$; So $\operatorname{Dom}(f)=[-3, \infty)$;

Subsection 2

Rational Exponents

Rational Exponents I

Definition of $a^{1 / n}$

If n is a positive integer, then

$$
a^{1 / n}=\sqrt[n]{a} ;
$$

- Example: Rewrite radical expressions as exponential expressions and exponential expressions as radical expressions:
- $\sqrt[3]{35}=35^{1 / 3}$
- $\sqrt[4]{x y}=(x y)^{1 / 4}$;
- $5^{1 / 2}=\sqrt{5}$;
- $a^{1 / 5}=\sqrt[5]{a}$
- Example: Evaluate each expression:
- $4^{1 / 2}=\sqrt{4}=2$;
- $(-8)^{1 / 3}=\sqrt[3]{-8}=-2$;
- $81^{1 / 4}=\sqrt[4]{81}=3$;
- $(-9)^{1 / 2}=\sqrt{-9}=$ undefined;
- $-9^{1 / 2}=-\sqrt{9}=-3$;

Rational Exponents II

Definition of $a^{m / n}$

If m, n are positive integers, and $a^{1 / n}$ is defined,

$$
a^{m / n}=\left(a^{1 / n}\right)^{m}=(\sqrt[n]{a})^{m} ;
$$

Evaluation of $a^{m / n}$ in Either Order

If m, n are positive integers, and $a^{1 / n}$ is defined,

$$
a^{m / n}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}
$$

In other words taking first root and then power or first power and then root leads to the same result;

Definition of $a^{-m / n}$
If m, n are positive integers, $a \neq 0$ and $a^{1 / n}$ is defined, then

$$
a^{-m / n}=\frac{1}{a^{m / n}}=\frac{1}{(\sqrt[n]{a})^{m}} ;
$$

Examples

- Example: Rewrite radical expressions as exponential expressions and exponential expressions as radical expressions:
- $\sqrt[3]{x^{2}}=x^{2 / 3}$;
- $\frac{1}{\sqrt[4]{m^{3}}}=\frac{1^{\prime}}{m^{3 / 4}}=m^{-3 / 4}$;
- $5^{2 / 3}=\sqrt[3]{5^{2}}$;
- $a^{-2 / 5}=\frac{1}{a^{2 / 5}}=\frac{1}{\sqrt[5]{a^{2}}} ;$
- Example: Evaluate each expression:
- $27^{2 / 3}=(\sqrt[3]{27})^{2}=3^{2}=9$;
- $4^{-3 / 2}=\frac{1}{4^{3 / 2}}=\frac{1}{(\sqrt{4})^{3}}=\frac{1}{2^{3}}=\frac{1}{8}$;
- $81^{-3 / 4}=\frac{1}{81^{3 / 4}}=\frac{1}{(\sqrt[4]{81})^{3}}=\frac{1}{3^{3}}=\frac{1}{27}$;
- $(-8)^{-5 / 3}=\frac{1}{(-8)^{5 / 3}}=\frac{1}{(\sqrt[3]{-8})^{5}}=\frac{1}{(-2)^{5}}=\frac{1}{-32}=-\frac{1}{32}$;

Rules for Rational Exponents

If a, b are nonzero real numbers and r, s rational numbers,
(1) Product Rule: $a^{r} a^{s}=a^{r+s}$;
(2) Quotient Rule: $\frac{a^{r}}{a^{s}}=a^{r-s}$;
(3) Power of a Power: $\left(a^{r}\right)^{s}=a^{r s}$;
(9) Power of a Product: $(a b)^{r}=a^{r} b^{r}$;
(5) Power of a Quotient: $\left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}}$;

Using Rules of Exponents

- Example: Simplify each expression:
- $27^{1 / 6} \cdot 27^{1 / 2}=27^{\frac{1}{6}+\frac{1}{2}}=27^{\frac{1}{6}+\frac{3}{6}}=27^{4 / 6}=27^{2 / 3}=\sqrt[3]{27^{2}}=3^{2}=9$;
- $\frac{5^{3 / 4}}{5^{1 / 4}}=5^{\frac{3}{4}-\frac{1}{4}}=5^{2 / 4}=5^{1 / 2}=\sqrt{5}$;
- Example: Simplify each expression:
- $3^{1 / 2} \cdot 12^{1 / 2}=(3 \cdot 12)^{1 / 2}=36^{1 / 2}=\sqrt{36}=6$;
- $\left(3^{10}\right)^{1 / 2}=3^{10 \cdot(1 / 2)}=3^{5}=243$;
- $\left(\frac{2^{6}}{3^{9}}\right)^{-1 / 3}=\frac{\left(2^{6}\right)^{-1 / 3}}{\left(3^{9}\right)^{-1 / 3}}=\frac{2^{6 \cdot(-1 / 3)}}{3^{9 \cdot(-1 / 3)}}=\frac{2^{-2}}{3^{-3}}=\frac{3^{3}}{2^{2}}=\frac{27}{4}$;

Simplifying Expressions Involving Variables

- Example: Simplify each expression (assume all variables represent positive real numbers):
- $\left(x^{8} y^{4}\right)^{1 / 4}=\left(x^{8}\right)^{1 / 4}\left(y^{4}\right)^{1 / 4}=x^{8 \cdot(1 / 4)} y^{4 \cdot(1 / 4)}=x^{2} y ;$
- $\left(\frac{x^{9}}{8}\right)^{1 / 3}=\frac{\left(x^{9}\right)^{1 / 3}}{8^{1 / 3}}=\frac{x^{9 \cdot(1 / 3)}}{\sqrt[3]{8}}=\frac{x^{3}}{2}$
- Example: Simplify each expression, writing all answers with positive exponents (assume all variables represent positive real numbers):

$$
\begin{aligned}
& x^{2 / 3} x^{4 / 3}=x^{\frac{2}{3}+\frac{4}{3}}=x^{6 / 3}=x^{2} \\
& \frac{a^{1 / 2}}{a^{1 / 4}}=a^{\frac{1}{2}-\frac{1}{4}}=a^{1 / 4}=\sqrt[4]{a} \\
& \left(x^{1 / 2} y^{-3}\right)^{1 / 2}=\left(x^{1 / 2}\right)^{1 / 2}\left(y^{-3}\right)^{1 / 2}=x^{1 / 4} y^{-3 / 2}=\frac{x^{1 / 4}}{y^{3 / 2}} \\
& \left(\frac{x^{2}}{y^{1 / 3}}\right)^{-1 / 2}=\frac{\left(x^{2}\right)^{-1 / 2}}{\left(y^{1 / 3}\right)^{-1 / 2}}=\frac{x^{-1}}{y^{-1 / 6}}=\frac{y^{1 / 6}}{x}
\end{aligned}
$$

Subsection 3

Adding, Subtracting and Multiplying Radicals

Adding/Subtracting Radicals

- Example: Simplify the following expressions:
- $3 \sqrt{5}+4 \sqrt{5}=7 \sqrt{5}$;
- $\sqrt[4]{w}-6 \sqrt[4]{w}=-5 \sqrt[4]{w}$;
- $\sqrt{3}+\sqrt{5}-4 \sqrt{3}+6 \sqrt{5}=(\sqrt{3}-4 \sqrt{3})+(\sqrt{5}+6 \sqrt{5})=-3 \sqrt{3}+7 \sqrt{5}$;
- $3 \sqrt[3]{6 x}+2 \sqrt[3]{x}+\sqrt[3]{6 x}+\sqrt[3]{x}=(3 \sqrt[3]{6 x}+\sqrt[3]{6 x})+(2 \sqrt[3]{x}+\sqrt[3]{x})=4 \sqrt[3]{6 x}+3 \sqrt[3]{x}$;
- Example: Perform the operations (first simplify and then combine like radicals):
- $\sqrt{8}+\sqrt{18}=\sqrt{4 \cdot 2}+\sqrt{9 \cdot 2}=\sqrt{4} \sqrt{2}+\sqrt{9} \sqrt{2}=2 \sqrt{2}+3 \sqrt{2}=5 \sqrt{2}$;
- $\sqrt{2 x^{3}}-\sqrt{4 x^{2}}+5 \sqrt{18 x^{3}}=\sqrt{x^{2} \cdot 2 x}-\sqrt{(2 x)^{2}}+5 \sqrt{(3 x)^{2} \cdot 2 x}=$ $\sqrt{x^{2}} \sqrt{2 x}-2 x+5 \sqrt{(3 x)^{2}} \sqrt{2 x}=x \sqrt{2 x}-2 x+5 \cdot 3 x \sqrt{2 x}=$ $x \sqrt{2 x}-2 x+15 x \sqrt{2 x}=16 x \sqrt{2 x}-2 x$;
- $\sqrt[3]{16 x^{4} y^{3}}-\sqrt[3]{54 x^{4} y^{3}}=\sqrt[3]{(2 x y)^{3} \cdot 2 x}-\sqrt[3]{(3 x y)^{3} \cdot 2 x}=$ $\sqrt[3]{(2 x y)^{3}} \sqrt[3]{2 x}-\sqrt[3]{(3 x y)^{3}} \sqrt[3]{2 x}=2 x y \sqrt[3]{2 x}-3 x y \sqrt[3]{2 x}=-x y \sqrt[3]{2 x} ;$

Multiplying Radicals

- Here we exploit the rule $\sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a b}$ to multiply radicals with the same index;
- Example: Multiply and simplify the following expressions:

$$
\begin{aligned}
& 5 \sqrt{6} \cdot 4 \sqrt{3}=20 \sqrt{6 \cdot 3}=20 \sqrt{18}=20 \sqrt{9 \cdot 2}=20 \sqrt{9} \sqrt{2}=20 \cdot 3 \sqrt{2}= \\
& 60 \sqrt{2}
\end{aligned}
$$

- $\sqrt{3 a^{2}} \cdot \sqrt{6 a}=\sqrt{3 a^{2} \cdot 6 a}=\sqrt{(3 a)^{2} \cdot 2 a}=\sqrt{(3 a)^{2}} \sqrt{2 a}=3 a \sqrt{2 a}$;
- $\sqrt[3]{4} \sqrt[3]{4}=\sqrt[3]{4 \cdot 4}=\sqrt[3]{2^{3} \cdot 2}=\sqrt[3]{2^{3} \sqrt[3]{2}}=2 \sqrt[3]{2}$;
- $\sqrt[4]{\frac{x^{3}}{2}} \cdot \sqrt[4]{\frac{x^{2}}{8}}=\sqrt[4]{\frac{x^{3}}{2} \cdot \frac{x^{2}}{8}}=\sqrt[4]{\left(\frac{x}{2}\right)^{4} \cdot x}=\sqrt[4]{\left(\frac{x}{2}\right)^{4}} \sqrt[4]{x}=\frac{x}{2} \sqrt[4]{x}$;
- Example: Multiply and simplify:
- $3 \sqrt{2}(4 \sqrt{2}-\sqrt{3})=3 \sqrt{2} \cdot 4 \sqrt{2}-3 \sqrt{2} \sqrt{3}=12 \cdot \sqrt{2}^{2}-3 \sqrt{2 \cdot 3}=24-3 \sqrt{6}$;
- $\sqrt[3]{a}\left(\sqrt[3]{a}-\sqrt[3]{a^{2}}\right)=\sqrt[3]{a} \sqrt[3]{a}-\sqrt[3]{a} \sqrt[3]{a^{2}}=\sqrt[3]{a \cdot a}-\sqrt[3]{a \cdot a^{2}}=\sqrt[3]{a^{2}}-a$;
- $(2 \sqrt{3}+\sqrt{5})(3 \sqrt{3}-2 \sqrt{5})=2 \sqrt{3} \cdot 3 \sqrt{3}-2 \sqrt{3} \cdot 2 \sqrt{5}+\sqrt{5} \cdot 3 \sqrt{3}-\sqrt{5} \cdot 2 \sqrt{5}=$ $6 \sqrt{3^{2}}-4 \sqrt{3 \cdot 5}+3 \sqrt{3 \cdot 5}-2 \sqrt{5^{2}}=18-4 \sqrt{15}+3 \sqrt{15}-10=8-\sqrt{15}$;
- $(3+\sqrt{x-9})^{2}=3^{2}+2 \cdot 3 \cdot \sqrt{x-9}+(\sqrt{x-9})^{2}=$ $9+6 \sqrt{x-9}+x-9=x+6 \sqrt{x-9} ;$

Conjugates

- Recall the special product rule $(a+b)(a-b)=a^{2}-b^{2}$;
- Because of this rule, when two expression containing roots and differing only in sign, such as $5+2 \sqrt{3}$ and $5-2 \sqrt{3}$ are multiplied together, we get an expression not containing a root:

$$
(5+2 \sqrt{3})(5-2 \sqrt{3})=5^{2}-(2 \sqrt{3})^{2}=25-4 \cdot 3=13
$$

- Expressions of this form are called conjugates;
- Example: Compute the products:
- $(2+3 \sqrt{5})(2-3 \sqrt{5})=2^{2}-(3 \sqrt{5})^{2}=4-9 \cdot 5=4-45=-41$;
- $(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})=(\sqrt{3})^{2}-(\sqrt{2})^{2}=3-2=1$;
- $(\sqrt{2 x}-\sqrt{y})(\sqrt{2 x}+\sqrt{y})=(\sqrt{2 x})^{2}-(\sqrt{y})^{2}=2 x-y$;

Multiplying Radicals with Different Indices

- Here, apart from the product rule for exponents: $a^{m} \cdot a^{n}=a^{m+n}$, we will also need the product rule for radicals $\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}$ and the power of power rule $\left(a^{m}\right)^{n}=a^{m n}$;
- Example: Write each product as a single radical expression:
- $\sqrt[3]{2} \cdot \sqrt[4]{2}=2^{1 / 3} \cdot 2^{1 / 4}=2^{\frac{1}{3}+\frac{1}{4}}=2^{\frac{4}{12}+\frac{3}{12}}=2^{7 / 12}=\sqrt[12]{2^{7}}=\sqrt[12]{128} ;$
- $\sqrt[3]{2} \cdot \sqrt{3}=2^{1 / 3} \cdot 3^{1 / 2}=2^{2 / 6} \cdot 3^{3 / 6}=\left(2^{2}\right)^{1 / 6} \cdot\left(3^{3}\right)^{1 / 6}=(4 \cdot 27)^{1 / 6}=\sqrt[6]{108}$;

Subsection 4

Quotients, Powers and Rationalizing Denominators

Rationalizing the Denominator

- Rationalizing a denominator means rewriting a given fraction so as not to contain any radicals in the denominator;
- Example: Rewrite each expression with a rational denominator:
- $\frac{\sqrt{3}}{\sqrt{5}}=\frac{\sqrt{3} \cdot \sqrt{5}}{\sqrt{5} \cdot \sqrt{5}}=\frac{\sqrt{3 \cdot 5}}{\sqrt{5}^{2}}=\frac{\sqrt{15}}{5}$;
- $\frac{3}{\sqrt[3]{2}}=\frac{3 \sqrt[3]{2}^{2}}{\sqrt[3]{2} \cdot \sqrt[3]{2}^{2}}=\frac{3{\sqrt[3]{2^{2}}}_{\sqrt[3]{2}^{3}}}{=\frac{3 \sqrt[3]{4}}{2} ; ~ ; ~ ; ~ ; ~}$

Simplifying Radicals

- We agree to consider a radical expression of index n simplified if
(1) no perfect n-th powers as factors of the radicand;
(2) no fractions inside the radical;
(3) no radicals in the denominator;
- Example: Simplify (all conditions above need apply at the end):
- $\frac{\sqrt{10}}{\sqrt{6}}=\frac{\sqrt{2 \cdot 5}}{\sqrt{2 \cdot 3}}=\frac{\sqrt{2} \sqrt{5}}{\sqrt{2} \sqrt{3}}=\frac{\sqrt{5}}{\sqrt{3}}=\frac{\sqrt{5} \sqrt{3}}{\sqrt{3}^{2}}=\frac{\sqrt{15}}{3}$;
- $\sqrt{\frac{x^{3}}{y^{5}}}=\frac{\sqrt{x^{2} x}}{\sqrt{y^{4} y}}=\frac{\sqrt{x^{2}} \sqrt{x}}{\sqrt{y^{4}} \sqrt{y}}=\frac{x \sqrt{x}}{y^{2} \sqrt{y}}=\frac{x \sqrt{x} \sqrt{y}}{y^{2} \sqrt{y^{2}}}=\frac{x \sqrt{x y}}{y^{3}}$;
- $\sqrt[3]{\frac{x}{y}}=\frac{\sqrt[3]{x}}{\sqrt[3]{y}}=\frac{\sqrt[3]{x} \sqrt[3]{y^{2}}}{\sqrt[3]{y^{3}}}=\frac{\sqrt[3]{x y^{2}}}{y} ;$

Dividing Radicals

- To divide two radical expressions, we rewrite the quotient as a ratio and then simplify, for instance, $\sqrt[n]{a} \div \sqrt[n]{b}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}$;
- Example: Divide and simplify:

$$
\begin{aligned}
& \sqrt{10} \div \sqrt{5}=\frac{\sqrt{5 \cdot 2}}{\sqrt{5}}=\frac{\sqrt{5} \sqrt{2}}{\sqrt{5}}=\sqrt{2} \\
& (3 \sqrt{2}) \div(2 \sqrt{3})=\frac{3 \sqrt{2}}{2 \sqrt{3}}=\frac{3 \sqrt{2} \sqrt{3}}{2 \sqrt{3}^{2}}=\frac{3 \sqrt{2 \cdot 3}}{2 \cdot 3}=\frac{\sqrt{6}}{2} \\
& -\sqrt[3]{10 x^{2}} \div \sqrt[3]{5 x}=\frac{\sqrt[3]{10 x^{2}}}{\sqrt[3]{5 x}}=\sqrt[3]{\frac{10 x^{2}}{5 x}}=\sqrt[3]{2 x}
\end{aligned}
$$

- Example: Divide and simplify:
- $\sqrt{12} \div \sqrt{72 x}=\frac{\sqrt{12}}{\sqrt{72 x}}=\frac{\sqrt{4 \cdot 3}}{\sqrt{36 \cdot 2 x}}=\frac{2 \sqrt{3}}{6 \sqrt{2 x}}=\frac{\sqrt{3} \sqrt{2 x}}{3 \sqrt{2 x}^{2}}=\frac{\sqrt{6 x}}{6 x}$;
$-\sqrt[4]{16 a} \div \sqrt[4]{a^{5}}=\frac{\sqrt[4]{16 a}}{\sqrt[4]{a^{4} a}}=\frac{2 \sqrt[4]{a}}{a \sqrt[4]{a}}=\frac{2}{a} ;$

Dividing Radicals: One More Example

- Example: Simplify:

$$
\begin{aligned}
& \frac{4-\sqrt{12}}{4}=\frac{4-\sqrt{4 \cdot 3}}{4}=\frac{4-2 \sqrt{3}}{4}=\frac{2(2-\sqrt{3})}{4}=\frac{2-\sqrt{3}}{2} \\
& \frac{-6+\sqrt{20}}{-2}=\frac{-6+\sqrt{4 \cdot 5}}{-2}=\frac{-6+2 \sqrt{5}}{-2}=\frac{-2(3-\sqrt{5})}{-2}=3-\sqrt{5}
\end{aligned}
$$

Rationalizing Denominators Using Conjugates

- Recall that multiplying a sum including radicals by the conjugate results in an expression without radicals;
- This property may be used to simplify fractions;
- Example: Write in simplified form:

$$
\begin{aligned}
& \frac{2+\sqrt{3}}{4-\sqrt{3}}=\frac{(2+\sqrt{3})(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}=\frac{8+2 \sqrt{3}+4 \sqrt{3}+\sqrt{3}^{2}}{4^{2}-\sqrt{3}^{2}}= \\
& \frac{8+2 \sqrt{3}+4 \sqrt{3}+3}{16-3}=\frac{11+6 \sqrt{3}}{13} ; \\
& \frac{\sqrt{5}}{\sqrt{6}+\sqrt{2}}=\frac{\sqrt{5}(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}=\frac{\sqrt{5} \sqrt{6}-\sqrt{5} \sqrt{2}}{\sqrt{6}^{2}-\sqrt{2}^{2}}= \\
& \frac{\sqrt{30}-\sqrt{10}}{6-2}=\frac{\sqrt{30}-\sqrt{10}}{4}
\end{aligned}
$$

Powers of Radical Expressions

- Recall, once more, the following rules:
- $(a b)^{n}=a^{n} b^{n}$;
- $\left(a^{m}\right)^{n}=a^{m n}$;
- $\sqrt[n]{a}^{m}=\sqrt[n]{a^{m}}$;
- Example: Simplify the following expressions:
- $(5 \sqrt{2})^{3}=5^{3} \sqrt{2}^{3}=125 \cdot 2 \sqrt{2}=250 \sqrt{2}$;
- $\left(2 \sqrt{x^{3}}\right)^{4}=2^{4} \sqrt{x^{3}}=16 \sqrt{x^{12}}=16 x^{6}$;
- $(3 w \sqrt[3]{2 w})^{3}=3^{3} w^{3} \sqrt[3]{2 w}^{3}=27 w^{3} \cdot 2 w=54 w^{4}$;
- $(2 t \sqrt[4]{3 t})^{3}=2^{3} t^{3} \sqrt[4]{3 t}^{3}=8 t^{3} \sqrt[4]{27 t^{3}}$;

Subsection 5

Solving Equations With Radicals and Exponents

The Odd-Root Property

Odd-Root Property

If n is odd, then for any k,

$$
x^{n}=k \quad \text { implies } \quad x=\sqrt[n]{k}
$$

- Example: Solve each equation:
- $x^{3}=27$

According to the Odd-Root Property, we get

$$
x^{3}=27 \Rightarrow x=\sqrt[3]{27} \Rightarrow x=3 ;
$$

- $x^{5}+32=0$

$$
x^{5}+32=0 \Rightarrow x^{5}=-32 \Rightarrow x=\sqrt[5]{-32} \Rightarrow x=-2 ;
$$

- $(x-2)^{3}=24$
$(x-2)^{3}=24 \Rightarrow x-2=\sqrt[3]{24} \Rightarrow x=2+\sqrt[3]{8 \cdot 3} \Rightarrow x=2+\sqrt[3]{8} \sqrt[3]{3} \Rightarrow$ $x=2+2 \sqrt[3]{3}$;

The Even-Root Property

Even-Root Property

If n is even, then

- If $k>0$, then $x^{n}=k$ is equivalent to $x= \pm \sqrt[n]{k}$;
- If $k=0$, then $x^{n}=k(=0)$ is equivalent to $x=0$;
- If $k<0$, then $x^{n}=k$ has no real solution;
- Example: Solve each equation:
- $x^{2}=10$
$x^{2}=10 \Rightarrow x= \pm \sqrt{10} ;$
- $w^{8}=0$
$w^{8}=0 \Rightarrow w=0 ;$
- $x^{4}=-4$

This equation has no real solutions!

The Even-Root Property: More Examples

- Solve each of the following equations:
- $(x-3)^{2}=4$ $(x-3)^{2}=4 \Rightarrow x-3= \pm \sqrt{4} \Rightarrow x=3 \pm 2 \Rightarrow x=1$ or $x=5$;
- $2(x-5)^{2}-7=0$

$$
\begin{aligned}
& 2(x-5)^{2}-7=0 \Rightarrow 2(x-5)^{2}=7 \Rightarrow(x-5)^{2}=\frac{7}{2} \Rightarrow x-5= \pm \sqrt{\frac{7}{2}} \Rightarrow \\
& x=5 \pm \frac{\sqrt{7}}{\sqrt{2}} \Rightarrow x=5 \pm \frac{\sqrt{7} \sqrt{2}}{\sqrt{2}^{2}} \Rightarrow x=5 \pm \frac{\sqrt{14}}{2} \Rightarrow x=\frac{10 \pm \sqrt{14}}{2} ;
\end{aligned}
$$

- $x^{4}-1=80$
$x^{4}-1=80 \Rightarrow x^{4}=81 \Rightarrow x= \pm \sqrt[4]{81} \Rightarrow x= \pm 3 ;$

Equations Involving Radicals

- Sometimes in solving equations involving radicals, one obtains solutions that are not solutions of the original equation;
- This makes it necessary to check all solutions and discard all those that do not satisfy the original equation;
- Example: Solve the following equations:
- $\sqrt{2 x-3}-5=0$
$\sqrt{2 x-3}-5=0 \Rightarrow \sqrt{2 x-3}=5 \Rightarrow(\sqrt{2 x-3})^{2}=5^{2} \Rightarrow 2 x-3=$
$25 \Rightarrow 2 x=28 \Rightarrow x=14$; This is an admissible solution!
- $\sqrt[3]{3 x+5}=\sqrt[3]{x-1}$
$\sqrt[3]{3 x+5}=\sqrt[3]{x-1} \Rightarrow(\sqrt[3]{3 x+5})^{3}=(\sqrt[3]{x-1})^{3} \Rightarrow 3 x+5=x-1 \Rightarrow$
$2 x=-6 \Rightarrow x=-3$; This is an admissible solution!
- $\sqrt{3 x+18}=x$
$\sqrt{3 x+18}=x \Rightarrow(\sqrt{3 x+18})^{2}=x^{2} \Rightarrow 3 x+18=x^{2} \Rightarrow$
$x^{2}-3 x-18=0 \Rightarrow(x+3)(x-6)=0 \Rightarrow x=-3$ or $x=6$; Test whether they satisfy the original equation: $x=-3$ does not work; Only $x=6$ is an admissible solution!

Equations Involving Radicals: Squaring Twice

- Sometimes to solve an equation involving radicals, we need to square twice;
- Example: Solve the radical equation $\sqrt{5 x-1}-\sqrt{x+2}=1$;

$$
\begin{aligned}
& \sqrt{5 x-1}-\sqrt{x+2}=1 \Rightarrow \sqrt{5 x-1}=1+\sqrt{x+2} \\
& \Rightarrow(\sqrt{5 x-1})^{2}=(1+\sqrt{x+2})^{2} \\
& \Rightarrow 5 x-1=1^{2}+2 \sqrt{x+2}+(\sqrt{x+2})^{2} \\
& \Rightarrow 5 x-1=1+2 \sqrt{x+2}+x+2 \\
& \Rightarrow 4 x-4=2 \sqrt{x+2} \Rightarrow 2 x-2=\sqrt{x+2} \\
& \Rightarrow(2 x-2)^{2}=(\sqrt{x+2})^{2} \Rightarrow 4 x^{2}-2 \cdot 2 x \cdot 2+2^{2}=x+2 \\
& \Rightarrow 4 x^{2}-8 x+4=x+2 \Rightarrow 4 x^{2}-9 x+2=0 \\
& \Rightarrow(x-2)(4 x-1)=0 \Rightarrow x=\frac{1}{4} \text { or } x=2 ;
\end{aligned}
$$

Check the solutions for admissibility: $x=\frac{1}{4}$ is not admissible; Only $x=2$ is an admissible solution!

Equations Involving Rational Exponents

- Recall that $a^{m / n}=\sqrt[n]{a^{m}}=\sqrt[n]{a^{m}}$;
- Example: Solve the following equations:
- $x^{2 / 3}=4$ $x^{2 / 3}=4 \Rightarrow \sqrt[3]{x^{2}}=4 \Rightarrow\left(\sqrt[3]{x^{2}}\right)^{3}=4^{3} \Rightarrow x^{2}=64 \Rightarrow x= \pm \sqrt{64} \Rightarrow x=$ -8 or $x=8$; Both are admissible solutions!
- $(w-1)^{-2 / 5}=4$ $(w-1)^{-2 / 5}=4 \Rightarrow\left((w-1)^{-2 / 5}\right)^{-5}=4^{-5} \Rightarrow(w-1)^{\left(-\frac{2}{5}\right) \cdot(-5)}=$ $4^{-5} \Rightarrow(w-1)^{2}=\frac{1}{4^{5}} \Rightarrow(w-1)^{2}=\frac{1}{1024} \Rightarrow w-1= \pm \sqrt{\frac{1}{1024}} \Rightarrow w=$ $1 \pm \frac{1}{32} \Rightarrow w=\frac{31}{32}$ or $w=\frac{33}{32}$; Both are admissible solutions!

One More Example

- Solve $(2 x-3)^{-2 / 3}=-1$;

$$
\begin{aligned}
& (2 x-3)^{-2 / 3}=-1 \\
& \Rightarrow\left((2 x-3)^{-2 / 3}\right)^{-3}=(-1)^{-3} \\
& \Rightarrow(2 x-3)^{\left(-\frac{2}{3}\right) \cdot(-3)}=\frac{1}{(-1)^{3}} \\
& \Rightarrow(2 x-3)^{2}=-1
\end{aligned}
$$

This equation does not have any real solutions!

Application: Baseball Diamond

- A baseball diamond is a square, 90 feet on each side; What is the distance from third to first base?

Let x denote the distance from third to first base; We use the Pythagorean Theorem to get

$$
\begin{aligned}
& 90^{2}+90^{2}=x^{2} \quad \Rightarrow \quad 2 \cdot 90^{2}=x^{2} \\
& \Rightarrow \quad \pm \sqrt{2 \cdot 90^{2}}=x \quad \Rightarrow \quad x=+\sqrt{2} \sqrt{90^{2}} \\
& \Rightarrow \quad x=90 \sqrt{2}
\end{aligned}
$$

Therefore the distance from third to first is $90 \sqrt{2}$ feet;

