Intermediate Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 102

(1) Quadratic Equations, Functions and Inequalities

- Factoring and Completing the Square
- The Quadratic Formula
- More on Quadratic Equations
- Quadratic Functions and Graphs
- Quadratic Inequalities

Subsection 1

Factoring and Completing the Square

Review of Factoring

Zero-Factor Property

$a b=0$ is equivalent to $a=0$ or $b=0$.

- To solve a quadratic equation $a x^{2}+b x+c=0$ for x,
(1) Write the equation with 0 on one side;
(2) Factor the other side;
(3) Use the Zero-Factor Property;
(9) Solve the simpler equations;
- Example: Solve $3 x^{2}-4 x=15$ by factoring;

$$
\begin{aligned}
& 3 x^{2}-4 x=15 \Rightarrow 3 x^{2}-4 x-15=0 \\
& \Rightarrow(3 x+5)(x-3)=0 \\
& \Rightarrow 3 x+5=0 \text { or } x-3=0 \\
& \Rightarrow x=-\frac{5}{3} \text { or } x=3
\end{aligned}
$$

Review of the Even-Root Property

Even-Root Property

If n is even, then

- If $k>0$, then $x^{n}=k$ is equivalent to $x= \pm \sqrt[n]{k}$;
- If $k=0$, then $x^{n}=k(=0)$ is equivalent to $x=0$;
- If $k<0$, then $x^{n}=k$ has no real solution;
- Example: Solve $(x-1)^{2}=9$;

$$
\begin{aligned}
& (x-1)^{2}=9 \\
& \Rightarrow x-1= \pm \sqrt{9} \\
& \Rightarrow x=1 \pm 3 \\
& \Rightarrow x=-2 \text { or } x=4 ;
\end{aligned}
$$

Completing the Square I

- If we start with the binomial $x^{2}+b x$ and add $\left(\frac{b}{2}\right)^{2}$, then we get

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}=x^{2}+2 \cdot x \cdot \frac{b}{2}+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}
$$

- This process is called completing the square;
- Note we are adding the square of one-half of b;
- Example: Find the perfect square trinomial whose first two terms are given:
- $x^{2}+8 x$

We must add the square of one-half of 8 , i.e. $\left(\frac{8}{2}\right)^{2}=16$. Thus, the perfect square trinomial is $x^{2}+8 x+16=(x+4)^{2}$;

- $x^{2}-5 x$

We must add the square of one-half of 5 , i.e. $\left(\frac{5}{2}\right)^{2}=\frac{25}{4}$. Thus, the perfect square trinomial is $x^{2}-5 x+\frac{25}{4}=\left(x-\frac{5}{2}\right)^{2}$;

- $x^{2}+\frac{4}{7} x$

We must add the square of one-half of $\frac{4}{7}$, i.e. $\left(\frac{2}{7}\right)^{2}=\frac{4}{49}$. Thus, the perfect square trinomial is $x^{2}+\frac{4}{7} x+\frac{4}{49}=\left(x+\frac{2}{7}\right)^{2}$;

Factoring Perfect Square Trinomials

- To factor a trinomial, we must keep in mind the forms:

$$
(a+b)^{2}=a^{2}+2 \cdot a \cdot b+b^{2} \quad \text { and } \quad(a-b)^{2}=a^{2}-2 \cdot a \cdot b+b^{2}
$$

- Example: Factor each trinomial:
- $x^{2}+12 x+36$

We attempt to match one of the right-hand sides above:

$$
x^{2}+12 x+36=x^{2}+2 \cdot x \cdot 6+6^{2}=(x+6)^{2}
$$

- $y^{2}-7 y+\frac{49}{4}$

We attempt to match one of the right-hand sides above:

$$
y^{2}-7 y+\frac{49}{4}=y^{2}-2 \cdot y \cdot \frac{7}{2}+\left(\frac{7}{2}\right)^{2}=\left(y-\frac{7}{2}\right)^{2}
$$

- $z^{2}-\frac{4}{3} z+\frac{4}{9}$

We attempt to match one of the right-hand sides above:

$$
z^{2}-\frac{4}{3} z+\frac{4}{9}=z^{2}-2 \cdot z \cdot \frac{2}{3}+\left(\frac{2}{3}\right)^{2}=\left(z-\frac{2}{3}\right)^{2}
$$

Solving an Equation by Completing the Square

- Solve $x^{2}+6 x+5=0$ by completing the square;

We consider $x^{2}+6 x$; To complete this square, we must add the square of one-half of 6 , i.e., 9 ; We must do this to both sides so as to obtain an equivalent equation!

$$
\begin{aligned}
& x^{2}+6 x+5=0 \\
& \Rightarrow\left(x^{2}+6 x+9\right)+5=9 \\
& \Rightarrow x^{2}+2 \cdot x \cdot 3+3^{2}=9-5 \\
& \Rightarrow(x+3)^{2}=4 \\
& \Rightarrow x+3= \pm \sqrt{4} \\
& \Rightarrow x+3=-2 \text { or } x+3=2 \\
& \Rightarrow x=-5 \text { or } x=-1 ;
\end{aligned}
$$

Strategy for Solving by Completing the Square

- To solve a quadratic equation $a x^{2}+b x+c=0$ by completing the square, we apply the following steps:
(1) If $a \neq 1$, divide each side of the equation by a;
(2) Leave only the x^{2} and x terms on the left;
(3) Add to both sides the square of one-half the coefficient of x;
(9) Factor the left-hand side as the square of a binomial;
(5) Apply the even-root property;
(0) Solve for x;
- Example: Solve $2 x^{2}+3 x-2=0$ by completing the square;

$$
\begin{aligned}
& 2 x^{2}+3 x-2=0 \quad \Rightarrow \quad x^{2}+\frac{3}{2} x-1=0 \\
& \quad \Rightarrow \quad x^{2}+\frac{3}{2} x=1 \quad \Rightarrow \quad x^{2}+\frac{3}{2} x+\left(\frac{3}{4}\right)^{2}=1+\frac{9}{16} \\
& \quad \Rightarrow \quad\left(x+\frac{3}{4}\right)^{2}=\frac{25}{16} \quad \Rightarrow \quad x+\frac{3}{4}= \pm \sqrt{\frac{25}{16}} \\
& \quad \Rightarrow \quad x+\frac{3}{4}=-\frac{5}{4} \text { or } x+\frac{3}{4}=\frac{5}{4} \\
& \quad \Rightarrow \quad x=-2 \text { or } x=\frac{1}{2} ;
\end{aligned}
$$

Completing the Square II

- Example: Solve $x^{2}-3 x-6=0$ by completing the square;

$$
\begin{aligned}
x^{2} & -3 x-6=0 \\
& \Rightarrow \quad x^{2}-3 x=6 \\
& \Rightarrow \quad x^{2}-3 x+\left(\frac{3}{2}\right)^{2}=6+\frac{9}{4} \\
& \Rightarrow \quad\left(x-\frac{3}{2}\right)^{2}=\frac{33}{4} \\
& \Rightarrow \quad x-\frac{3}{2}= \pm \sqrt{\frac{33}{4}} \\
& \Rightarrow \quad x-\frac{3}{2}=-\frac{\sqrt{33}}{2} \\
& \text { or } x-\frac{3}{2}=\frac{\sqrt{33}}{2} \\
& \Rightarrow \quad x=\frac{3-\sqrt{33}}{2} \text { or } x=\frac{3+\sqrt{33}}{2} ;
\end{aligned}
$$

Equations Containing Radicals

- Solve $x+3=\sqrt{153-x}$;

$$
\begin{aligned}
& x+3=\sqrt{153-x} \\
& \Rightarrow(x+3)^{2}=(\sqrt{153-x})^{2} \\
& \Rightarrow x^{2}+6 x+9=153-x \\
& \Rightarrow x^{2}+7 x-144=0 \\
& \Rightarrow(x+16)(x-9)=0 \\
& \Rightarrow x+16=0 \text { or } x-9=0 \\
& \Rightarrow x=-16 \text { or } x=9 ;
\end{aligned}
$$

Check the solutions! $x=-16$ is not admissible! Only $x=9$ is an admissible solution!

Equations Containing Rational Expressions

- Solve the equation $\frac{1}{x}+\frac{3}{x-2}=\frac{5}{8}$;

$$
\begin{aligned}
& \frac{1}{x}+\frac{3}{x-2}=\frac{5}{8} \\
& \Rightarrow 8 x(x-2)\left(\frac{1}{x}+\frac{3}{x-2}\right)=8 x(x-2) \cdot \frac{5}{8} \\
& \Rightarrow 8(x-2)+24 x=5 x(x-2) \\
& \Rightarrow 8 x-16+24 x=5 x^{2}-10 x \\
& \Rightarrow 5 x^{2}-42 x+16=0 \\
& \Rightarrow(5 x-2)(x-8)=0 \\
& \Rightarrow 5 x-2=0 \text { or } x-8=0 \\
& \Rightarrow x=\frac{2}{5} \text { or } x=8
\end{aligned}
$$

Check whether each solution works!
Both $x=\frac{2}{5}$ and $x=8$ are admissible!

Subsection 2

The Quadratic Formula

The Quadratic Formula

- The solution to $a x^{2}+b x+c=0$, with $a \neq 0$, is given by the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Usually, we first compute the discriminant $D=b^{2}-4 a c$;

If $D \geq 0$, then we apply $x=\frac{-b \pm \sqrt{D}}{2 a}$; If $D<0$, there are no real solutions;

- Example: Solve the equation $x^{2}+2 x-15=0$ using the quadratic formula;

We have $a=1, b=2$ and $c=-15$; Therefore, $D=b^{2}-4 a c=2^{2}-4 \cdot 1 \cdot(-15)=4+60=64$; Hence

$$
x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-2 \pm \sqrt{64}}{2 \cdot 1}=\frac{-2 \pm 8}{2}=\left\{\begin{array}{r}
-5 \\
3
\end{array}\right.
$$

Thus, the two solutions are $x=-5$ and $x=3$;

Using the Formula II

- Example: Solve the equation $4 x^{2}=12 x-9$ using the quadratic formula;

We first make the right-hand side zero: $4 x^{2}-12 x+9=0$; We have $a=4, b=-12$ and $c=9$; Therefore,

$$
D=b^{2}-4 a c=(-12)^{2}-4 \cdot 4 \cdot 9=144-144=0 ; \text { Hence }
$$

$$
x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-12) \pm \sqrt{0}}{2 \cdot 4}=\frac{12}{8}=\frac{3}{2}
$$

Thus, the only solution is $x=\frac{3}{2}$;

Using the Formula III

- Example: Solve the equation $\frac{1}{3} x^{2}+x+\frac{1}{2}=0$ using the quadratic formula;

We first multiply both sides by 6 to clear denominators and make life easier: $6\left(\frac{1}{3} x^{2}+x+\frac{1}{2}\right)=0$, whence we get $2 x^{2}+6 x+3=0$; We have $a=2, b=6$ and $c=3$; Therefore,
$D=b^{2}-4 a c=6^{2}-4 \cdot 2 \cdot 3=36-24=12$; Hence

$$
x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-6 \pm \sqrt{12}}{2 \cdot 2}=\frac{-6 \pm 2 \sqrt{3}}{4}=\frac{-3 \pm \sqrt{3}}{2}
$$

Thus, the solutions are $x=\frac{-3-\sqrt{3}}{2}$ and $x=\frac{-3+\sqrt{3}}{2}$;

Summary of Methods for Solving $a x^{2}+b x+c=0$

- We have developed several methods for solving $a x^{2}+b x+c=0$:
(1) Even-Root Property: This, we use when $b=0$, i.e., there is no x-term; E.g., $(x-2)^{2}=8 \Rightarrow x-2= \pm \sqrt{8} \Rightarrow x=2 \pm 2 \sqrt{2}$;
(2) Factoring: This we use whenever we are able to factor; E.g.,

$$
\begin{aligned}
& x^{2}+5 x+6=0 \Rightarrow(x+3)(x+2)=0 \Rightarrow x+3=0 \text { or } x+2=0 \Rightarrow \\
& x=-3 \text { or } x=-2
\end{aligned}
$$

(3) Quadratic Formula: This solves any quadratic equation (the most powerful weapon); E.g.,

$$
x^{2}+5 x+3=0 \Rightarrow x=\frac{-5 \pm \sqrt{5^{2}-4 \cdot 1 \cdot 3}}{2 \cdot 1} \Rightarrow x=\frac{-5 \pm \sqrt{13}}{2}
$$

(9) Completing Square: Also solves any quadratic, but is slower than the quadratic formula; E.g., $x^{2}-6 x+7=0 \Rightarrow x^{2}-6 x=-7 \Rightarrow$ $x^{2}-6 x+9=-7+9 \Rightarrow(x-3)^{2}=2 \Rightarrow x-3= \pm \sqrt{2} \Rightarrow x=3 \pm \sqrt{2}$;

Number of Solutions

- A byproduct of computing $D=b^{2}-4 a c$ in the application of the quadratic formula is that we can tell right away how many solutions $a x^{2}+b x+c=0$ has:
- If $D>0$, it has two real solutions;
- If $D=0$, it has one real solution;
- If $D<0$, it does not have any real solutions;
- Example: Determine the number of real solutions of the given quadratic; You do not need to find the solutions (if there are any);
- $x^{2}-3 x-5=0$
$D=b^{2}-4 a c=(-3)^{2}-4 \cdot 1 \cdot(-5)=9+20=29>0$; Therefore,
$x^{2}-3 x-5=0$ has two real solutions;
- $x^{2}=3 x-9$ Rewrite $x^{2}-3 x+9=0$;
$D=b^{2}-4 a c=(-3)^{2}-4 \cdot 1 \cdot 9=9-36=-27<0$; Therefore,
$x^{2}=3 x-9=0$ has no real solutions;
- $4 x^{2}-12 x+9=0$
$D=b^{2}-4 a c=(-12)^{2}-4 \cdot 4 \cdot 9=144-144=0$; Therefore,
$4 x^{2}-12 x+9=0$ has one real solution;

Application: Area of Tabletop

- The area of a rectangular tabletop is 6 square feet. If the width is 2 feet shorter than the length, what are its dimensions?

Let x be the width. Then, the length is $x+2$; Therefore, since the area is 6 square feet, we get

$$
\begin{aligned}
& x(x+2)=6 \Rightarrow x^{2}+2 x=6 \Rightarrow x^{2}+2 x+1=6+1 \\
& \Rightarrow(x+1)^{2}=7 \Rightarrow x+1= \pm \sqrt{7} \Rightarrow x=-1 \pm \sqrt{7}
\end{aligned}
$$

Since only the + will work, we have length $1+\sqrt{7}$ feet and width $-1+\sqrt{7}$ feet;

Subsection 3

More on Quadratic Equations

Writing an Equation with Given Solutions

- Write a quadratic equation having the given pair of solutions
- 4, - 6

Reverse the factoring method:

$$
\begin{gathered}
x=4 \text { or } x=-6 \\
x-4=0 \text { or } x+6=0 \\
(x-4)(x+6)=0 \\
x^{2}+2 x-24=0 .
\end{gathered}
$$

- $-\sqrt{2}, \sqrt{2}$

Reverse the factoring method:

$$
\begin{gathered}
x=-\sqrt{2} \text { or } x=\sqrt{2} \\
x+\sqrt{2}=0 \text { or } x-\sqrt{2}=0 \\
(x+\sqrt{2})(x-\sqrt{2})=0 \\
x^{2}-2=0
\end{gathered}
$$

Correspondence Between Solutions and Factors

If a and b are solutions to a quadratic equation, then the equation is equivalent to $(x-a)(x-b)=0$.

Using the Discriminant to Factor

- Recall that a polynomial is prime if it cannot be factored into linear factors with integer coefficients;

Testing for Primality Using the Discriminant

If $a x^{2}+b x+c$ is a quadratic polynomial with integer coefficients having greatest common divisor 1 , then it is prime if and only if its discriminant $D=b^{2}-4 a c$ is not a perfect square.

- Example: Determine whether each of the following polynomials can be factored:
- $6 x^{2}+x-15$
$D=b^{2}-4 a c=1^{2}-4 \cdot 6 \cdot(-15)=1+360=361$; Since $361=19^{2}$ is a perfect square, the quadratic polynomial $6 x^{2}+x-15$ is not prime, i.e., it can be factored; \ln fact, $6 x^{2}+x-15=(2 x-3)(3 x+5)$;
- $5 x^{2}-3 x+2$
$D=b^{2}-4 a c=(-3)^{2}-4 \cdot 5 \cdot 2=9-40=-31$; this is not a perfect
square; so the quadratic polynomial $5 x^{2}-3 x+2$ is prime, i.e., it cannot be factored;

Equations Quadratic in Form I

- Solve the equation $(x+15)^{2}-3(x+15)-18=0$;

$$
\begin{aligned}
& (x+15)^{2}-3(x+15)-18=0 \\
& \stackrel{y=x+15}{\Rightarrow} \quad y^{2}-3 y-18=0 \\
& \Rightarrow \quad(y+3)(y-6)=0 \\
& \Rightarrow \quad y+3=0 \text { or } y-6=0 \\
& \Rightarrow \quad y=-3 \text { or } y=6 \\
& \stackrel{y=x+15}{\Rightarrow} \quad x+15=-3 \text { or } x+15=6 \\
& \Rightarrow \quad x=-18 \text { or } x=-9
\end{aligned}
$$

Equations Quadratic in Form II

- Solve the equation $x^{4}-6 x^{2}+8=0$;

$$
\begin{aligned}
& x^{4}-6 x^{2}+8=0 \\
& \Rightarrow \quad\left(x^{2}\right)^{2}-6 x^{2}+8=0 \\
& \stackrel{y=x^{2}}{\Rightarrow} \quad y^{2}-6 y+8=0 \\
& \Rightarrow \quad(y-2)(y-4)=0 \\
& \Rightarrow \quad y-2=0 \text { or } y-4=0 \\
& \Rightarrow \quad y=2 \text { or } y=4 \\
& y=x^{2} \\
& \Rightarrow \quad x^{2}=2 \text { or } x^{2}=4 \\
& \Rightarrow \quad x= \pm \sqrt{2} \text { or } x= \pm \sqrt{4} \\
& \Rightarrow \quad x=-\sqrt{2} \text { or } x=\sqrt{2} \text { or } x=-2 \text { or } x=2
\end{aligned}
$$

Equations Quadratic in Form III

- Solve the equation $\left(x^{2}+2 x\right)^{2}-11\left(x^{2}+2 x\right)+24=0$;

$$
\begin{aligned}
& \left(x^{2}+2 x\right)^{2}-11\left(x^{2}+2 x\right)+24=0 \\
& y=x^{2}+2 x \\
& \Rightarrow \quad y^{2}-11 y+24=0 \\
& \Rightarrow \quad(y-3)(y-8)=0 \\
& \Rightarrow \quad y-3=0 \text { or } y-8=0 \\
& \Rightarrow y=3 \text { or } y=8 \\
& y=x^{2}+2 x \\
& \Rightarrow \quad x^{2}+2 x=3 \text { or } x^{2}+2 x=8 \\
& \Rightarrow x^{2}+2 x-3=0 \text { or } x^{2}+2 x-8=0 \\
& \Rightarrow \quad(x+3)(x-1)=0 \text { or }(x+4)(x-2)=0 \\
& \Rightarrow \quad x+3=0 \text { or } x-1=0 \text { or } x+4=0 \text { or } x-2=0 \\
& \Rightarrow \quad x=-3 \text { or } x=1 \text { or } x=-4 \text { or } x=2
\end{aligned}
$$

Equations Quadratic in Form IV

- Solve the equation $x-9 x^{1 / 2}+14=0$;

$$
\begin{aligned}
& x-9 x^{1 / 2}+14=0 \\
& \Rightarrow \quad\left(x^{1 / 2}\right)^{2}-9 x^{1 / 2}+14=0 \\
& y=x^{1 / 2} \\
& \Rightarrow \quad y^{2}-9 y+14=0 \\
& \Rightarrow \quad(y-2)(y-7)=0 \\
& \Rightarrow \quad y-2=0 \text { or } y-7=0 \\
& \Rightarrow \quad y=2 \text { or } y=7 \\
& y=x^{1 / 2} \\
& \Rightarrow \quad x^{1 / 2}=2 \text { or } x^{1 / 2}=7 \\
& \Rightarrow \quad\left(x^{1 / 2}\right)^{2}=2^{2} \text { or }\left(x^{1 / 2}\right)^{2}=7^{2} \\
& \Rightarrow \quad x=4 \text { or } x=49 ;
\end{aligned}
$$

Application: Increasing Dimensions

- Lorraine's flower bed is rectangular in shape with a length of 10 feet and a width of 5 feet; She wants to increase the length and width by the same amount to obtain a flower bed with an area of 75 square feet; What should the amount of increase be?

Suppose that she needs to increase both the length and the width by x feet;

Therefore the new length is $x+10$ feet and the new width is $x+5$ feet; Therefore, since the new area is to be 75 square feet, we get

$$
\begin{aligned}
& (x+5)(x+10)=75 \Rightarrow x^{2}+15 x+50=75 \Rightarrow x^{2}+15 x-25=0 \\
& \Rightarrow x=\frac{-15 \pm \sqrt{225-4 \cdot 1 \cdot(-25)}}{2 \cdot 1} \Rightarrow x=\frac{-15 \pm \sqrt{325}}{2}
\end{aligned}
$$

Since only the + will work, we have $x=\frac{-15+\sqrt{325}}{2} \approx 1.51$ feet;

Subsection 4

Quadratic Functions and Graphs

Quadratic Functions

Definition of Quadratic Functions

A quadratic function is one of the form $f(x)=a x^{2}+b x+c$, where a, b, c are real constants, with $a \neq 0$;

- Example: Given the function $f(x)$ and the values for x or y, find the value for y or x, respectively, so that the pair (x, y) be on the graph of the function;

```
- \(f(x)=x^{2}-x-6\) and \(x=2\);
    \(y=f(2)=2^{2}-2-6=-4\);
    - \(f(x)=x^{2}-x-6\) and \(y=0\);
    \(f(x)=0 \Rightarrow x^{2}-x-6=0 \Rightarrow(x+2)(x-3)=0 \Rightarrow x+2=\)
    0 or \(x-3=0 \Rightarrow x=-2\) or \(x=3\);
    - \(f(x)=-16 x^{2}+48 x+84\) and \(x=0\);
    \(y=f(0)=16 \cdot 0^{2}+48 \cdot 0+84=84 ;\)
- \(f(x)=-16 x^{2}+48 x+84\) and \(y=20\);
    \(f(x)=20 \Rightarrow-16 x^{2}+48 x+84=20 \Rightarrow-16 x^{2}+48 x+64=0 \Rightarrow\)
    \(x^{2}-3 x-4=0 \Rightarrow(x+1)(x-4)=0 \Rightarrow x+1=0\) or \(x-4=0 \Rightarrow\)
    \(x=-1\) or \(x=4\);
```


Graphing Quadratic Functions

- The graph of the quadratic function is a parabola opening either up or down;
(1) The vertex is the lowest or highest point; Its x-coordinate is $x=-\frac{b}{2 a}$;
(2) The parabola opens up if $a>0$ and down if $a<0$;
(3) Its y-intercept is the point ($0, c$);
(9) Finally, its x-intercepts are the points with $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$;

Examples of Quadratic Function Graphs I

- Find the vertex, the opening direction, the intercepts and sketch the graph of $f(x)=-x^{2}-x+2$;
(1) The vertex has x-coordinate $x=-\frac{b}{2 a}=-\frac{-1}{2 \cdot(-1)}=-\frac{1}{2}$; Its y-coordinate, therefore, is $y=f\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)^{2}-$ $\left(-\frac{1}{2}\right)+2=-\frac{1}{4}+\frac{1}{2}+2=\frac{9}{4}$;
(2) The parabola opens down since $a=-1<0$;
(3) Its y-intercept is $(0,2)$;

(9) Finally, its x-intercepts are the solutions of

$$
\begin{aligned}
& -x^{2}-x+2=0 \Rightarrow x^{2}+x-2=0 \Rightarrow(x+2)(x-1)=0 \Rightarrow x+2= \\
& 0 \text { or } x-1=0 \Rightarrow x=-2 \text { or } x=1
\end{aligned}
$$

Examples of Quadratic Function Graphs II

- Find the vertex, the opening direction, the intercepts and sketch the graph of $f(x)=x^{2}-2 x-8$;
(1) The vertex has x-coordinate $x=-\frac{b}{2 a}=-\frac{-2}{2 \cdot 1}=1$; Its y-coordinate, therefore, is $y=f(1)=1^{2}-2 \cdot 1-8=$ $1-2-8=-9$;
(2) The parabola opens up since $a=1>0$;
(3) Its y-intercept is $(0,-8)$;

(9) Finally, its x-intercepts are the solutions of $x^{2}-2 x-8=0 \Rightarrow$

$$
(x+2)(x-4)=0 \Rightarrow x+2=0 \text { or } x-4=0 \Rightarrow x=-2 \text { or } x=4 ;
$$

Examples of Quadratic Function Graphs III

- Find the vertex, the opening direction, the intercepts and sketch the graph of $f(x)=-16 x^{2}+64 x$;
(1) The vertex has x-coordinate $x=-\frac{b}{2 a}=-\frac{64}{2 \cdot(-16)}=2$; Its y-coordinate, therefore, is $y=f(2)=-16 \cdot 2^{2}+64 \cdot 2=$ $-64+128=64 ;$
(2) The parabola opens down since $a=-16<0$;
(3) Its y-intercept is $(0,0)$;

(3) Finally, its x-intercepts are the solutions of $-16 x^{2}+64 x=0 \Rightarrow$ $x^{2}-4 x=0 \Rightarrow x(x-4)=0 \Rightarrow x=0$ or $x-4=0 \Rightarrow x=0$ or $x=4$;

Examples of Quadratic Function Graphs IV

- Find the vertex, the opening direction, the intercepts and sketch the graph of $f(x)=-x^{2}-8 x+9$;
(1) The vertex has x-coordinate $x=-\frac{b}{2 a}=-\frac{-8}{2 \cdot(-1)}=-4$; Its y-coordinate, therefore, is
$y=f(-4)=$
$-(-4)^{2}-8 \cdot(-4)+9=$
$-16+32+9=25$;
(2) The parabola opens down since $a=-1<0$;
(3) Its y-intercept is $(0,9)$;

(9) Finally, its x-intercepts are the solutions of
$-x^{2}-8 x+9=0 \Rightarrow x^{2}+8 x-9=0 \Rightarrow(x+9)(x-1)=0 \Rightarrow$ $x+9=0$ or $x-1=0 \Rightarrow x=-9$ or $x=1$;

Subsection 5

Quadratic Inequalities

Solving Quadratic Inequalities Graphically

- A quadratic inequality has one of the following forms

$$
\begin{array}{ll}
a x^{2}+b x+c>0, & a x^{2}+b x+c \geq 0, \\
a x^{2}+b x+c<0, & a x^{2}+b x+c \leq 0,
\end{array}
$$

where a, b, c are real constants and $a \neq 0$;

Strategy for Solving Graphically

(1) Rewrite the inequality in one of these four forms (one side zero);
(2) Find the roots of the quadratic polynomial;
(3) Graph the parabola passing through the x-intercepts found in the previous step;
(3) Read the solution set to the inequality from the graph;

Applying the Method I

- Solve the quadratic inequality $x^{2}+3 x>10$; Rewrite $x^{2}+3 x-10>0$; Find the roots of $x^{2}+3 x-10=0 \Rightarrow$ $(x+5)(x-2)=0 \Rightarrow x+5=0$ or $x-2=0 \Rightarrow x=-5$ or $x=2$; Roughly sketch the graph (we know intercepts and that parabola opens up):

Since we want $y=x^{2}+3 x-10>0$, we have to pick

$$
x<-5 \text { or } x>2 ; \text { in interval notation } x \text { in }(-\infty,-5) \cup(2, \infty) \text {; }
$$

Applying the Method II

- Solve the quadratic inequality $x^{2}-2 x-1 \leq 0$; The form $x^{2}-2 x-1 \leq 0$ is the one we want; Find the roots of $x^{2}-2 x-1=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \Rightarrow x=$
$\frac{2 \pm \sqrt{(-2)^{2}-4 \cdot 1 \cdot(-1)}}{2 \cdot 1} \Rightarrow x=\frac{2 \pm \sqrt{8}}{2}=1 \pm \sqrt{2}$; Roughly sketch the graph (we know intercepts and that parabola opens up):

Since we want $y=x^{2}-2 x-1 \leq$
0 , we have to pick

$$
1-\sqrt{2} \leq x \leq 1+\sqrt{2}
$$

or, in interval notation

$$
x \text { in }[1-\sqrt{2}, 1+\sqrt{2}] ;
$$

Applying the Method III

- Solve the quadratic inequality $x^{2}-4 x+4 \leq 0$;

The form $x^{2}-4 x+4 \leq 0$ is the one we want; Find the roots of $x^{2}-4 x+4=0 \Rightarrow(x-2)^{2}=0 \Rightarrow x-2=0 \Rightarrow x=2$; Roughly sketch the graph (we know intercept and that parabola opens up):

Since we want $y=x^{2}-4 x+4 \leq$
0 , we have to pick

$$
x=2
$$

or, in interval notation

$$
x \text { in }[2,2]=\{2\} ;
$$

Applying the Method IV

- Solve the quadratic inequality $x^{2}+2 x+3>0$; The form $x^{2}+2 x+3>0$ is the one we want; Find the roots of $x^{2}+2 x+3=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \Rightarrow x=$
$\frac{-2 \pm \sqrt{2^{2}-4 \cdot 1 \cdot 3}}{2 \cdot 1} \Rightarrow x=\frac{-2 \pm \sqrt{-8}}{2} ;$ Thus, we have no real roots and the parabola opens up:

Since we want $y=x^{2}+2 x+3>$ 0 , we have to pick

$$
x \text { any real number; }
$$

or, in interval notation

$$
x \text { in }(-\infty, \infty)
$$

Solving Quadratic Inequalities Using Test Points

Strategy for Solving Using Test Point Method

(1) Rewrite the inequality with zero on the right;
(2) Solve the equation resulting from replacing inequality by equality;
(3) Locate the solutions on the number line;
(1) Select a test point on each interval determined by the solutions;
(3) Check whether inequality is satisfied by each test point;
(0) Write the final solution interval using interval notation;

Example of Solving Inequalities Using Test Points I

- Example: Solve $x^{2}-x \leq 6$;

Rewrite $x^{2}-x-6 \leq 0$;
Solve $x^{2}-x-6=0 \Rightarrow(x+2)(x-3)=0 \Rightarrow x=-2$ or $x=3$;
The black points are the solutions on the real line

The red points are test points in the three intervals formed by the two solutions;
We perform the following tests, using the test points:

Test	Yes/No
$(-3)^{2}-(-3)-6 \stackrel{?}{\leq} 0$	
$0^{2}-0-6 \stackrel{?}{\leq} 0$	\checkmark
$4^{2}-4-6 \stackrel{?}{\leq} 0$	

Thus, the solution interval is $[-2,3]$;

Example of Solving Inequalities Using Test Points II

- Example: Solve $x^{2}-4 x>6$; Rewrite $x^{2}-4 x-6>0$; Solve $x^{2}-4 x-6=0 \Rightarrow x=-\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=$ $\frac{4 \pm \sqrt{(-4)^{2}-4 \cdot 1 \cdot(-6)}}{2 \cdot 1}=\frac{4 \pm \sqrt{40}}{2}=2 \pm \sqrt{10}$; The black points are the solutions on the real line

The red points are test points in the three intervals formed by the two solutions; We perform the following tests, using the test points:

Test	Yes/No
$(-2)^{2}-4(-2)-6 \stackrel{?}{>} 0$	\checkmark
$2^{2}-4 \cdot 2-6 \stackrel{?}{>} 0$	\checkmark
$6^{2}-4 \cdot 6-6 \stackrel{?}{>} 0$	\checkmark

Thus, the solution interval is $(-\infty, 2-\sqrt{10}) \cup(2+\sqrt{10}, \infty)$;

Example of Solving Inequalities Using Test Points III

- Example: Solve $x^{2}+6 x+10 \geq 0$;

Solve $x^{2}+6 x+10=0$;
Note $D=b^{2}-4 a c=6^{2}-4 \cdot 1 \cdot 10=-4<0$; Thus,
$x^{2}+6 x+10=0$ has no real solutions;
The black points are the solutions on the real line

The red point is a test point in the only interval formed; We perform the following test, using the test point:

Test	Yes/No
$0^{2}+6 \cdot 0+10 \stackrel{?}{\geq} 0$	\checkmark

Thus, the solution interval is $(-\infty, \infty)$;

Application: Making a Profit

- Anna's daily profit P (in dollars) for selling x magazine subscriptions is determined by $P(x)=-x^{2}+80 x-1500$; For which values of x is her profit positive?
We would like to solve $-x^{2}+80 x-1500>0$;
Solve $-x^{2}+80 x-1500=0 \Rightarrow x^{2}-80 x+1500=0 \Rightarrow$
$(x-30)(x-50)=0 \Rightarrow x=30$ or $x=50$;
The black points are the solutions and the red test points:

-20	20	60	80

We perform the following tests, using the test points:

Test	Yes/No
$-0^{2}+80 \cdot 0-1500 \stackrel{?}{>} 0$	$?$
$-40^{2}+80 \cdot 40-1500 \stackrel{?}{>} 0$	\checkmark
$-60^{2}+80 \cdot 60-1500 \stackrel{?}{>} 0$	

Thus, profit is positive, when x is in $(30,50)$, i.e., when Anna sells between 31 and 49 magazine subscriptions;

