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Propositional Logic Syntax

Syntax of Formulas

Syntax of Propositional Logic

Let Op = {¬,∧,∨,⇒,⇔, (, )} be the set of logical operators, Σ a set of
symbols, called propositional variables, and {t, f } the set of truth
symbols, true and false. The sets Op,Σ and {t, f } are pairwise disjoint.
Σ is sometimes called the signature.
The set of propositional logic formulas is recursively defined:

t and f are (atomic) formulas.

All propositional variables in Σ are (atomic) formulas.

If A and B are formulas, then ¬A, (A),A ∧ B ,A ∨ B ,A ⇒ B ,A ⇔ B

are also formulas.

Example: If Σ = {A,B ,C}, the following are formulas:

A ∧ B , A ∧ B ∧ C , A ∧ A ∧ A, C ∧ B ∨ A,

(¬A ∧ B) ⇒ (¬C ∨ A), (((A)) ∨ B).
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Propositional Logic Syntax

Names of the Symbols and the Operators

Names of the Symbols and the Operators

We read the symbols and operators in the following way:

Formula Reading Formal Name

t true
f false
¬A not A negation
A ∧ B A and B conjunction
A ∨ B A or B disjunction
A ⇒ B if A then B implication
A ⇔ B A if and only if B equivalence

The formulas defined in this way are so far purely syntactic
constructions (strings of symbols) without assigned meaning.

The meaning provides the semantics.
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Propositional Logic Semantics

Subsection 2

Semantics
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Propositional Logic Semantics

Interpretations

In propositional logic there are two truth values: t for “true” and f

for “false”.

Is a formula, such as A∧B true? The answer depends on whether the
variables A and B are true.

Example: If A stands for “It is raining today” and B for “It is cold
today” and these are both true, then A ∧ B is true. If B represents
“It is hot today” and this is false, then A ∧ B is false.

Definition of Interpretation

A function I : Σ → {t, f }, which assigns a truth value to every
propositional variable, is called an interpretation.

Since every propositional variable can take on two truth values, every
propositional logic formula with n different variables has 2n different
interpretations.
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Propositional Logic Semantics

Priorities of Connectives and Semantics of Operations

For unparenthesized formulas, the priorities from strongest to
weakest binding are:

¬, ∧, ∨, ⇒, ⇔ .

The truth values for the basic operations are defined for all
possible interpretations by the following truth table:

A B (A) ¬A A ∧ B A ∨ B A ⇒ B A ⇔ B

t t t f t t t t

t f t f f t f f

f t f t f t t f

f f f t f f t t
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Propositional Logic Semantics

Semantically Equivalent Formulas

To clearly differentiate between the equivalence of formulas and
syntactic equivalence (⇔), we define

Semantic Equivalence

Two formulas F and G are called semantically equivalent if they take on
the same truth value for all interpretations. In this case, we write F ≡ G .

Semantic equivalence serves in using English (the meta-language) to
talk about logic (the object language).

A ≡ B is metalinguistic and means that two formulas A and B are

semantically equivalent.

In contrast, A ⇔ B is a syntactic object of the object language of
propositional logic.
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Propositional Logic Semantics

Classification of Formulas and Models

According to the number of interpretations in which a formula is true,
we can divide formulas into various classes.

Classification of Formulas

A formula is called

Satisfiable if it is true for at least one interpretation.

Logically valid or simply valid if it is true for all interpretations. Valid
formulas are also called tautologies.

Unsatisfiable if it is not true for any interpretation.

Another important concept is that of a model:

Definition of Model

An interpretation is a model of a formula if it satisfies the formula.

The negation of every valid formula is unsatisfiable.

The negation of a satisfiable, but not valid, formula F is satisfiable.
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Propositional Logic Semantics

Using Truth Tables to Evaluate Formulas

We explore some important equivalences of formulas:
Theorem (Important Equivalences)
The operations ∧ and ∨ are commutative and associative. Moreover:

¬A ∨ B ⇔ A ⇒ B (Implication)
A ⇒ B ⇔ ¬B ⇒ ¬A (Contrapositive)

(A ⇒ B) ∧ (B ⇒ A) ⇔ A ⇔ B (Equivalence)
¬(A ∧ B) ⇔ ¬A ∨ ¬B (De Morgan’s Law)
¬(A ∨ B) ⇔ ¬A ∧ ¬B (De Morgan’s Law)

A ∨ (B ∧ C ) ⇔ (A ∨ B) ∧ (A ∨ C ) (Distributive Law)
A ∧ (B ∨ C ) ⇔ (A ∧ B) ∨ (A ∧ C ) (Distributive Law)

A ∨ ¬A ⇔ t (Tautology)
A ∧ ¬A ⇔ f (Contradiction)
A ∨ f ⇔ A

A ∨ t ⇔ t

A ∧ f ⇔ f

A ∧ t ⇔ A
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Propositional Logic Semantics

Proving Equivalences

We create truth tables to ascertain the truth values of formulas and
prove equivalences.

To show, e.g., (¬A ∨ B) ⇔ (A ⇒ B), we calculate the truth table for
¬A ∨ B and A ⇒ B and see that the truth values for both formulas
are the same for all interpretations. The formulas are therefore
equivalent, and thus all the values of the last column are t’s.

A B ¬A ¬A ∨ B A ⇒ B (¬A ∨ B) ⇔ (A ⇒ B)

t t f t t t

t f f f f t

f t t t t t

f f t t t t

The proofs for the other equivalences of the preceding theorem are
similar.
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Propositional Logic Proof Systems

Subsection 3

Proof Systems
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Propositional Logic Proof Systems

Entailment

In AI we are interested in processing existing knowledge and deriving
new knowledge or answering questions.
In propositional logic this translates to showing that a query formula
Q “follows” from or is “entailed” by a knowledge base KB.

Definition of Entailment

A formula KB entails a formula Q (or Q follows from KB) if every model
of KB is also a model of Q. In this case, we write KB |= Q.

Equivalently, in every interpretation in which KB is true, Q is also
true.
Since interpretations of variables are in play, entailment is a semantic
concept.
Tautologies, such as A ∨ ¬A, are true in all interpretations. So for
every tautology T , it is the case that |= T .
There is an important connection between the semantic concept of
entailment and the syntactic concept of implication.
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Propositional Logic Proof Systems

The Deduction Theorem

The Deduction Theorem

A |= B if and only if |= A ⇒ B .

Form the truth table for A ⇒ B :

A B A ⇒ B

t t t

t f f

f t t

f f t

Observe A ⇒ B is true except when A is true and B is false.
If A |= B holds, for every interpretation that makes A true, B is also
true. Thus, the second row of the truth table does not even apply in
this case. Therefore, A ⇒ B is true.
If, conversely, A ⇒ B holds, the second row of the truth table again
does not apply. Thus, every model of A is then also a model of B.
Therefore, A |= B holds.
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Propositional Logic Proof Systems

Truth Table Method

If we wish to show that KB entails Q, we can use the truth table
method to show that KB ⇒ Q is a tautology.

This provides a proof system for propositional logic, which is easily
automated.

The disadvantage of the method is the very long computation time in
the worst case.

Specifically, in the worst case with n propositional variables, the formula
KB ⇒ Q must be evaluated for all 2n interpretations of the variables.
Therefore, the computation time grows exponentially with the number
of variables.
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Propositional Logic Proof Systems

Proof by Contradiction

Theorem (Proof by Contradiction)

KB |= Q if and only if KB ∧ ¬Q is unsatisfiable.

If a formula KB entails a formula Q, then by the Deduction Theorem
KB ⇒ Q is a tautology. Therefore the negation ¬(KB ⇒ Q) is
unsatisfiable. Now note ¬(KB ⇒ Q) ≡ ¬(¬KB ∨ Q) ≡ KB ∧ ¬Q.

To show that the query Q follows from the knowledge base KB, we
can

add the negated query ¬Q to the knowledge base and
derive a contradiction.

This procedure, which is frequently used in mathematics, is used in
various automatic proof calculi, such as the resolution calculus and in
the processing of PROLOG programs.
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Propositional Logic Proof Systems

Calculi: Soundness and Completeness

To avoid the truth table method we can syntactically manipulate the
formulas KB and Q by application of inference rules to simplify
them.

The goal is to be able, in the end, to instantly see that KB |= Q.

We call this syntactic process derivation and write KB ⊢ Q.

Such syntactic proof systems are called calculi.

Definition of Soundness and Completeness

A calculus is called sound if every derived proposition follows semantically.
That is, for all formulas KB and Q, if KB ⊢ Q then KB |= Q.

A calculus is called complete if all semantic consequences can be derived.
That is, for all formulas KB and Q, if KB |= Q then KB ⊢ Q.
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Propositional Logic Proof Systems

Sound and Complete Calculi

The soundness of a calculus ensures that all derived formulas are in
fact semantic consequences of the knowledge base. The calculus does
not produce any “false consequences”.

The completeness of a calculus, on the other hand, ensures that the
calculus does not overlook anything. A complete calculus always finds
a proof if the formula to be proved follows from the knowledge base.

Syntax: KB ⊢ Q

Mod ↓ ↓ Mod

Semantics: KB |= Q

If a calculus is sound and complete, then syntactic derivation and
semantic entailment are identical relations.
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Propositional Logic Proof Systems

Conjunctive Normal Form (CNF)

Automatic proof systems usually operate on formulas in conjunctive
normal form.

Definition of CNF

A literal is a variable (positive literal) or a negated variable (negative
literal).

A clause Ki consists of a disjunction Li1 ∨ Li2 ∨ · · · ∨ Lini of literals.

A formula is in conjunctive normal form (CNF) if and only if it consists of
a conjunction

K1 ∧ K2 ∧ · · · ∧ Km

of clauses.

Example: The formula

(A ∨ B ∨ ¬C ) ∧ (A ∨ B) ∧ (¬B ∨ ¬C )

is in conjunctive normal form.
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Propositional Logic Proof Systems

The CNF Theorem

The CNF Theorem

Every propositional logic formula can be transformed into an equivalent
one in conjunctive normal form.

Example: Transform A ∨ B ⇒ C ∧ D into conjunctive normal form.

A ∨ B ⇒ C ∧D

≡ ¬(A ∨ B) ∨ (C ∧ D) (Implication)
≡ (¬A ∧ ¬B) ∨ (C ∧D) (De Morgan)
≡ (¬A ∨ (C ∧ D)) ∧ (¬B ∨ (C ∧ D)) (Distributive)
≡ ((¬A ∨ C ) ∧ (¬A ∨ D)) ∧ ((¬B ∨ C ) ∧ (¬B ∨ D))

(Distributive)
≡ (¬A ∨ C ) ∧ (¬A ∨ D) ∧ (¬B ∨ C ) ∧ (¬B ∨ D)

(Associative)
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Propositional Logic Proof Systems

Modus Ponens and Resolution

We develop a calculus for syntactic proofs of propositional logic
formulas.

We start with the modus ponens, which allows the derivation of B

from the validity of A and A ⇒ B , written
A,A ⇒ B

B
.

Modus ponens, as a rule by itself, is sound but not complete.

By adding more rules we can create a complete calculus, but we do
not do that here.

The resolution rule is
A ∨ B ,¬B ∨ C

A ∨ C
. A∨ C is called the resolvent.

An equivalent form is
A ∨ B ,B ⇒ C

A ∨ C
. If we set A to f , we see that

the resolution rule is a generalization of the modus ponens.

The resolution rule can also be used if C is missing or if both A and
C are missing. In the latter case the empty clause can be derived
from the contradiction B ∧ ¬B .
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Propositional Logic Resolution

Subsection 4

Resolution
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Propositional Logic Resolution

The General Resolution Rule

To allow clauses with an arbitrary number of literals, we introduce the
General Resolution Rule.

If A1, . . . ,Am, B , C1, . . . ,Cn are literals, then

(A1 ∨ · · · ∨ Am ∨ B), (¬B ∨ C1 ∨ · · · ∨ Cn)

(A1 ∨ · · · ∨ Am ∨ C1 ∨ · · · ∨ Cn)
.

The literals B and ¬B are called complementary.

The resolution rule has the effect of deleting a pair of complementary
literals from the two clauses and combines the rest of the literals into
a new clause.
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Propositional Logic Resolution

Adding Factorization

To prove that from a knowledge base KB, a query Q follows, we carry
out a proof by contradiction.

We must show that a contradiction can be derived from KB ∧ ¬Q.

In CNF, a contradiction appears in the form of two clauses (A) and
(¬A), which lead to the empty clause as their resolvent.

To ensure this process really works, we need a complete calculus,
which forces a new addition.

Example: Let KB = (A ∨ A). Suppose we want to show Q = (A ∧ A)
using resolution.
We form KB ∧ ¬Q = (A ∨ A) ∧ ¬(A ∧ A) ≡ (A ∨ A) ∧ (¬A ∨ ¬A).
With the resolution rule alone, this is impossible.

Factorization allows deletion of copies of literals from clauses. We get

(A ∨ A), (¬A ∨ ¬A)

(A), (¬A) (Factorization)

() (Resolution)
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Propositional Logic Resolution

Resolution Calculus

Theorem (Soundness and Completeness of Resolution Calculus)

The resolution calculus for the proof of unsatisfiability of formulas in
conjunctive normal form is sound and complete.

Since the resolution calculus must derive a contradiction from
KB ∧ ¬Q, the knowledge base KB itself must be consistent:

Definition of Consistent Formula

A formula KB is called consistent if it is impossible to derive from it a
contradiction, i.e., a formula of the form ϕ ∧ ¬ϕ.

If KB is not consistent, anything can be derived from KB.

Resolution has only two inference rules, and it works with formulas in
conjunctive normal form. This leads to a simpler implementation.

Another advantage is the relatively small number of possibilities for
the application of inference rules in every step of the proof. This
reduces the size of the search space.
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Propositional Logic Resolution

The English Family Puzzle

A native German speaker picked up in Bavaria three hitchhikers, a
father, mother, and daughter, and realized that they were English and
only spoke English. At each of the sentences they spoke he wavered
between two possible interpretations:

Father: “We are going to Spain” or “We are from Newcastle”
Mother: “We are not going to Spain and are from Newcastle”
or “We stopped in Paris and are not going to Spain”
Daughter: “We are not from Newcastle” or “We stopped in
Paris”

What can be concluded about the English family?
We work in three steps:

Formalization,
Transformation into normal form,
Proof.

Formalization is the most difficult step because it is easy to make
mistakes or forget small details.
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Propositional Logic Resolution

Untangling the Puzzle

Formalization: Introduce the variables: S for “We are going to
Spain”, N for “We are from Newcastle”, P for “We stopped in Paris”.

Father: (S ∨ N).
Mother: (¬S ∧ N) ∨ (P ∧ ¬S).
Daughter: (¬N ∨ P).

Transformation into Normal Form:
Original Sentence: (S ∨ N) ∧ [(¬S ∧ N) ∨ (P ∧ ¬S)] ∧ (¬N ∨ P).
Factoring out ¬S in the middle sub-formula yields
KB: (S ∨ N) ∧ (¬S) ∧ (P ∨ N) ∧ (¬N ∨ P).

Proof:
(S ∨ N), (¬S), (P ∨ N), (¬N ∨ P)

(N), (P ∨ N), (¬N ∨ P)

(N), (P)

The English family comes from Newcastle, stopped in Paris, but is
not going to Spain.
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Propositional Logic Resolution

The High Jump Bets Puzzle

Three girls practice high jump. The bar is set to 1.20 meters.

Girl 1 to Girl 2: I bet I will make it over iff you don’t.
Girl 2 to Girl 3: I bet I will make it over iff you don’t.
Girl 3 to Girl 1: I bet I will make it over iff you don’t.

Would it be possible for all three to win their bets?

Formalization: A: Girl 1 succeeds, B : Girl 2 succeeds, C : Girl 3
succeeds.
Girl 1 to Girl 2: (A ⇔ ¬B).
Girl 2 to Girl 3: (B ⇔ ¬C ).
Girl 3 to Girl 1: (C ⇔ ¬A).

Not all three can win their bets:
Q ≡ ¬((A ⇔ ¬B) ∧ (B ⇔ ¬C ) ∧ (C ⇔ ¬A)).
We must show that ¬Q is unsatisfiable.
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Propositional Logic Resolution

The High Jump Bets Puzzle (Cont’d)

Transformation into CNF:
Note that

¬Q ≡ (A ⇔ ¬B) ∧ · · ·
≡ (A ⇒ ¬B) ∧ (¬B ⇒ A) ∧ · · ·
≡ (¬A ∨ ¬B) ∧ (A ∨ B) ∧ · · · .

Thus,
¬Q ≡ (¬A∨¬B)∧(A∨B)∧(¬B∨¬C )∧(B∨C )∧(¬C∨¬A)∧(C∨A).

Proof:

(¬A ∨ ¬B), (A ∨ B), (¬B ∨ ¬C ), (B ∨ C ), (¬C ∨ ¬A), (C ∨ A)

(C ∨ ¬B), (B ∨ C ), (B ∨ ¬C ), (¬B ∨ ¬C )

(C ), (¬C )

()

Therefore, ¬Q is unsatisfiable, showing that Q must hold.
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Propositional Logic Horn Clauses

Subsection 5

Horn Clauses
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Propositional Logic Horn Clauses

Definite Clauses

A clause in conjunctive normal form may contain positive and
negative literals:

(¬A1 ∨ · · · ∨ ¬Am ∨ B1 ∨ · · · ∨ Bn),

where A1, . . . ,Am and B1, . . . ,Bn are variables.

An equivalent form is A1 ∧ · · · ∧ Am ⇒ B1 ∨ · · · ∨ Bn.

Example: “If the weather is nice and there is snow on the ground, I
will go skiing or I will work” is a proposition of this form.

A clearer statement of intention would be “If the weather is nice and
there is snow on the ground, I will go skiing”.

Since the receiver of the latter statement knows definitively, clauses
with exactly one positive literal are called definite clauses.
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Propositional Logic Horn Clauses

Horn Clauses

Definition of Horn Clauses

Clauses with at most one positive literal of the form

(¬A1 ∨ · · · ∨ ¬Am ∨ B) or (¬A1 ∨ · · · ∨ ¬Am) or (B)

or, equivalently,

A1 ∧ · · · ∧ Am ⇒ B or A1 ∧ · · · ∧ Am ⇒ f or B

are named Horn clauses.
A clause of the last kind (just a single positive literal) is called a fact.
In clauses of the first kind (with negative and one positive literal), the
positive literal is called the head.

Horn clauses are easier to handle both in daily life and in formal
reasoning.
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Propositional Logic Horn Clauses

Reasoning with Horn Clauses

Let the knowledge base consist of the following clauses

(nice weather)
(snowfall)
(snowfall⇒ snow)
(nice weather ∧ snow⇒ skiing)

Suppose we now want to know whether (skiing) holds.

A slightly generalized modus ponens suffices as an inference rule:

A1 ∧ · · · ∧ Am,A1 ∧ · · · ∧ Am ⇒ B

B
.

The proof proceeds as follows:

(snowfall), (snowfall⇒ snow)

(snow), (nice weather), (nice weather ∧ snow⇒ skiing)

(skiing)

Modus ponens constitutes a complete calculus for Horn clauses.
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Propositional Logic Horn Clauses

Selection Rule Driven Linear Resolution (SLD)

Since modus ponens may derive many unnecessary formulas, in many
cases it is better to use a calculus that starts with the query and
works backward until the facts are reached.
For backward chaining of Horn clauses, SLD resolution is used.

The initials stand for “Selection rule driven Linear resolution for
Definite clauses”.

Example: Augment the previous knowledge base with (skiing⇒ f):

(nice weather), (snowfall), (snowfall⇒ snow)
(nice weather ∧ snow⇒ skiing), (skiing⇒ f )

We work as follows:
(skiing⇒ f ), (nice weather ∧ snow⇒ skiing)

(nice weather ∧ snow ⇒ f ), (nice weather)

(snow ⇒ f ), (snowfall ⇒ snow)

(snowfall ⇒ f ), (snowfall)

()
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Propositional Logic Horn Clauses

SLD Features

We can easily see
Linearity: Processing is always done on the currently derived clause.
Selection Rule Driven: Literals of the current clause are always
processed in a fixed order, e.g., left-to-right.

The literals of the current clause are called subgoals.

The literals of the negated query are the goals.

The inference rule for one step reads
A1 ∧ · · · ∧ Am ⇒ B1,B1 ∧ B2 ∧ · · · ∧ Bn ⇒ f

A1 ∧ · · · ∧ Am ∧ B2 ∧ · · · ∧ Bn ⇒ f
. Before application

B1,B2, . . . ,Bn must be proved. After application, B1 is replaced by
the new subgoal A1 ∧ · · · ∧ Am. This process continues until the list
of subgoals of the current clauses (the goal stack) is empty. With
that, a contradiction has been found.

If, for a subgoal ¬Bi , there is no clause with the complementary
literal Bi as its clause head, the proof terminates and no contradiction
can be found. The query is, then, unprovable.
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Propositional Logic Complexity and Limitations

Subsection 6

Complexity and Limitations
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Propositional Logic Complexity and Limitations

Complexity Issues

The truth table method:

Algorithm that can determine all models of a formula in finite time.
Sets of unsatisfiable, satisfiable, and valid formulas are decidable.
The computation time of the truth table method for satisfiability grows
in the worst case exponentially with the number n of variables.
An optimization, the method of semantic trees, avoids looking at
variables that do not occur in clauses, and thus saves computation time
in many cases, but in the worst case it is still exponential.

The resolution method:

In the worst case the number of derived clauses grows exponentially
with the number of initial clauses.

To decide between the two processes, the rule of thumb is that

in the case of many clauses with few variables, the truth table method
is preferable;
in the case of few clauses with many variables, resolution will probably
finish faster.
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Propositional Logic Complexity and Limitations

Applications and Limitations

Theorem provers for propositional logic are part of the developer’s
toolbox in digital technology.

The verification of digital circuits and the generation of test patterns
for testing of microprocessors are some of these tasks.

Special proof systems that work with binary decision diagrams (BDD)
are used as a data structure for processing propositional formulas.

In AI, propositional logic is employed in simple applications.
Simple expert systems can certainly work with propositional logic. The
variables must all be discrete, with only a few values, and
cross-relations between variables are not allowed.

Predicate logic elegantly expresses logical connections.

Probabilistic logic is a combination of propositional logic and
probabilistic computation that allows modeling of uncertain
knowledge.

Fuzzy logic allows infinitely many truth values.
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