
Introduction to Artificial Intelligence

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Artificial Intelligence February 2014 1 / 63

Outline

1 First-Order Predicate Logic
Syntax
Semantics
Quantifiers and Normal Forms
Proof Calculi
Resolution
Automated Theorem Provers
Mathematical Examples
Applications
Summary

George Voutsadakis (LSSU) Artificial Intelligence February 2014 2 / 63

First-Order Predicate Logic

Limitations of Propositional Logic

Many practical problems either cannot at all or can, but very
inconveniently, be formulated in the language of propositional logic.

Example: The statement “Robot 7 is situated at the xy -position
(35, 79)” can in fact be directly used as the propositional logic
variable “Robot 7 is situated at xy position (35,79)”. But, imagine
100 of these robots being anywhere on a grid of 100× 100 points. To
describe the position of every robot, we would need
100 · 100 · 100 = 1, 000, 000 = 106 different variables.

Along similar lines, imagine the relation “Robot A is to the right of
robot B”. Of the 10,000 possible pairs of x-coordinates there are
99·98
2 = 4851 ordered pairs. Together with all 10, 000 combinations of

possible y -values for both robots, there are (100 · 99) = 9, 900
formulas of the type “Robot 7 is to the right of robot 12⇔
(Robot 7 is situated at xy position (35,79) ∧
Robot 12 is situated at xy position (10,93)) ∨ · · · Defining such a
relation requires listing (104)2 · 0.485 = 0.485 · 108 alternatives.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 3 / 63

First-Order Predicate Logic

First-Order Logic Does Much Better

In first-order predicate logic, we define a predicate

Position(number, xPosition, yPosition).

This relation must no longer be enumerated as a huge number of
pairs;

It is described abstractly with a rule

∀u∀v is further right(u, v) ⇔
∃xu∃yu∃xv∃yvPosition(u, xu , yu) ∧ Position(v , xv , yv) ∧ (xu > xv),

where ∀u is read as “for every u” and ∃v as “there exists v”.

Next, we

define the syntax and semantics of first-order predicate logic (PL1);
show that many applications can be modeled using this language;
show that there is a sound and complete calculus for this language.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 4 / 63

First-Order Predicate Logic Syntax

Subsection 1

Syntax

George Voutsadakis (LSSU) Artificial Intelligence February 2014 5 / 63

First-Order Predicate Logic Syntax

Language and Terms

Elements of the Language

An algebraic language L consists of

a set V of variables;

a set K of constants;

a set F of function symbols with attached arities;

The sets V ,K and F are assumed pairwise disjoint.

We now define the syntactic structure of terms.

Definition of Terms

Let L be an algebraic language. We define the set of terms recursively:

All variables and constants are (atomic) terms.

If t1, . . . , tn are terms and f an n-ary (or n-place) function symbol, then
f (t1, . . . , tn) is also a term.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 6 / 63

First-Order Predicate Logic Syntax

Example of Terms

Example: Suppose L is such that

V contains x ,
K contains 3 and
F contains unary function symbols sin, exp, ln, g and a binary function
symbol f .

Then, the following are terms:

f (sin (ln (3)), exp (x)), g(g(g(x))).

To be able to establish logical relationships between terms, we build
formulas from terms.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 7 / 63

First-Order Predicate Logic Syntax

Definition of Formulas

Definition of Formulas

We add to the algebraic language L a set P of predicate symbols with
attached arities.
Predicate logic formulas are built as follows:

If t1, . . . , tn are terms and p an n-ary (n-place) predicate symbol, then
p(t1, . . . , tn) is an (atomic) formula.

If A and B are formulas, then

¬A, (A),A ∧ B ,A ∨ B ,A ⇒ B ,A ⇔ B

are also formulas.

If x is a variable and A a formula, then ∀xA and ∃xA are also
formulas.
∀ is the universal quantifier and ∃ the existential quantifier.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 8 / 63

First-Order Predicate Logic Syntax

Literals and Sentences

Special Types of Formulas

p(t1, . . . , tn) and ¬p(t1, . . . , tn) are called literals.

Formulas in which every variable is in the scope of a quantifier are
called first-order sentences or closed formulas.
Variables which are not in the scope of a quantifier are called free

variables.

The Definitions concerning conjunctive normal form (CNF) and
Horn clauses apply equally to formulas of predicate logic literals.

Example:

The formula of literals (¬p(x , y) ∨ q(x)) ∧ (p(x , y) ∨ q(y)) is in CNF;
The formula of literals ¬p(x , y) ∨ ¬q(x) ∨ q(y) is a Horn formula; It
can be written equivalently as p(x , y) ∧ q(x) ⇒ q(y).

George Voutsadakis (LSSU) Artificial Intelligence February 2014 9 / 63

First-Order Predicate Logic Syntax

Examples of First-Order Formulas I

Formula Description

∀x frog(x) ⇒ green(x) All frogs are green
∀x frog(x) ∧ brown(x) ⇒ big(x) All brown frogs are big
∀x likes(x , cake) Everyone likes cake
¬∀x likes(x , cake) Not everyone likes cake
¬∃x likes(x , cake) Noone likes cake
∃x ∀y likes(y , x) There is something

that everyone likes
∃x ∀y likes(x , y) There is someone

who likes everything
∀x ∃y likes(y , x) Everything is liked by someone
∀x ∃y likes(x , y) Everyone likes something

George Voutsadakis (LSSU) Artificial Intelligence February 2014 10 / 63

First-Order Predicate Logic Syntax

Examples of First-Order Formulas II

Formula Description

∀x customer(x) ⇒ likes(bob, x) Bob likes every customer
∃x customer(x) ∧ likes(bob, x) There is a customer

whom bob likes
∃x baker(x) ∧ There is a baker who likes

∀y customer(y) ⇒ likes(x , y) all of his customers
∀x older(mother(x), x) Every mother is older

than her child
∀x older(mother(mother(x)), x) Every grandmother is older

than her daughter’s child
∀x ∀y ∀z rel(x , y) ∧ rel(y , z) ⇒ rel(x , z) rel is a transitive relation

George Voutsadakis (LSSU) Artificial Intelligence February 2014 11 / 63

First-Order Predicate Logic Semantics

Subsection 2

Semantics

George Voutsadakis (LSSU) Artificial Intelligence February 2014 12 / 63

First-Order Predicate Logic Semantics

Interpretations

In propositional logic, interpretations assign truth values to variables.

In predicate logic, the meaning of formulas is recursively defined over
the structure of the formula:

We first assign constants, variables, function symbols and predicate
symbols to objects in the real world.
Then, we evaluate recursively terms.
Finally, we determine recursively, the truth values of formulas.

Definition of Interpretation

An interpretation I is defined as

A mapping from the set of constants and variables K ∪ V to a set W of
names of objects in the world.

A mapping from the set of function symbols to the set of functions in the
world. Every n-place function symbol is assigned an n-ary function.

A mapping from the set of predicate symbols to the set of relations in the
world. Every n-place predicate symbol is assigned an n-ary relation.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 13 / 63

First-Order Predicate Logic Semantics

An Example

Let c1, c2, c3 be constants, “plus” a two-place function symbol, and
“gr” a two-place predicate symbol. The truth of the formula
F ≡ gr(plus(c1, c3), c2) depends on the interpretation I.

We first choose the following “natural” interpretation of constants,
the function, and of the predicates in the set N of natural numbers:

I1 : c1 7→ 1, c2 7→ 2, c3 7→ 3, plus 7→ +, gr 7→ > .

Thus, the formula is mapped to 1 + 3 > 2, or, after evaluation,
4 > 2. The “greater-than” relation on the set {1, 2, 3, 4} is the set of
all pairs (x , y) of numbers with x > y , meaning the set
G = {(4, 3), (4, 2), (4, 1), (3, 2), (3, 1), (2, 1)}. Because (4, 2) ∈ G , the
formula F is true under the interpretation I1.

If we choose the interpretation

I2 : c1 7→ 2, c2 7→ 3, c3 7→ 1, plus 7→ ·, gr 7→ >,

we obtain 2 · 1 > 3, or 1 > 3. The pair (1, 3) 6∈ G . The formula F is
false under the interpretation I2.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 14 / 63

First-Order Predicate Logic Semantics

Definition of Truth

Definition of Truth

An atomic formula p(t1, . . . , tn) is true (or valid) under the
interpretation I if, after interpretation and evaluation of all terms
t1, . . . , tn and interpretation of the predicate p through the n-place
relation r = I(p), it holds that (I(t1), . . . , I(tn)) ∈ r .

The truth of quantifier-free formulas follows from the truth of
atomic formulas as in propositional logic through the semantics of the
logical operators defined by the propositional truth tables.

A formula ∀xF is true under the interpretation I exactly when F is
true for any change in the interpretation for the variable x (and only
for x).

A formula ∃xF is true under the interpretation I exactly when there
exists a change in the interpretation for x only, which makes F true.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 15 / 63

First-Order Predicate Logic Semantics

Additional Concepts Inherited from Propositional Logic

Two formulas F ,G are semantically equivalent, written F ≡ G , if
they are true under the same interpretations.

A formula F is satisfiable if there exists an interpretation under
which it is true.

A formula F is true or valid or a tautology if it is true under all
possible interpretations.

A formula is unsatisfiable if it is not satisfiable.

An interpretation I is a model of a formula F if F is true under the
interpretation I.

A formula F semantically entails a formula G , written F |= G , if G
is true under every interpretation that makes F true.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 16 / 63

First-Order Predicate Logic Semantics

Deduction Theorem and Proof By Contradiction

The Deduction Theorem and Proof by Contradiction are extended
from propositional to first-order predicate logic.

The Deduction Theorem for First-Order Logic

For all first-order formulas F and G ,

F |= G iff |= F ⇒ G .

Theorem (Proof by Contradiction)

For all first-order formulas F and G ,

F |= G iff F ∧ ¬G is unsatisfiable.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 17 / 63

First-Order Predicate Logic Semantics

Another Example I

Consider the family tree that graphically represents (in the semantic
level) the 3-place relation Child =
{(OscarA.,KarenA.,FranzA.), (MaryB.,KarenA.,FranzA.), . . .}.

For example, the triple (OscarA.,KarenA.,FranzA.) stands for the
proposition “Oscar A. is a child of Karen A. and Franz A”.

From the names we read off the one-place relation

Female = {KarenA.,AnneA.,MaryB.,EveA., IsabelleA.}.

We would like to establish formulas for family relationships.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 18 / 63

First-Order Predicate Logic Semantics

Another Example II

Define a three-place predicate child(x , y , z) with the semantics
I(child(x , y , z)) = Child.

Under the interpretation I(oscar) = OscarA., I(eve) = EveA.,
I(anne) = AnneA., it is true that child(eve, anne, oscar).
For child(eve, oscar, anne) to be true, we require symmetry of the
predicate child in the last two arguments, i.e., must impose

∀x ∀y ∀z child(x , y , z) ⇔ child(x , z , y).

We may define the predicate descendant recursively:
∀x ∀y descendant(x , y) ⇔
∃z child(x , y , z) ∨ (∃u ∃v child(x , u, v) ∧ descendant(u, y)).

George Voutsadakis (LSSU) Artificial Intelligence February 2014 19 / 63

First-Order Predicate Logic Semantics

A Family Knowledge Base

Define the knowledge base
KB = female(karen) ∧ female(anne) ∧ female(mary)

∧female(eve) ∧ female(isabelle)
∧child(oscar, karen, franz) ∧ child(mary, karen, franz)
∧child(eve, anne, oscar) ∧ child(henry, anne, oscar)
∧child(isabelle, anne, oscar) ∧ child(clyde,mary, oscarb)
∧(∀x ∀y ∀z child(x , y , z) ⇔ child(x , z , y))
∧(∀x ∀y descendant(x , y) ⇔ ∃z child(x , y , z)

∨ (∃u ∃v child(x , u, v) ∧ descendant(u, y))).

Are the propositions child(eve, oscar, anne) or descendant(eve, franz)
derivable from the information in KB?
To answer such a query we require a calculus.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 20 / 63

First-Order Predicate Logic Semantics

Adding Equality

Define a predicate “=” which, unlike other predicates, is written using
infix notation, i.e., t1 = t2 instead of =(t1, t2).

The equality axioms are

∀x x = x (reflexivity)
∀x ∀y x = y ⇒ y = x (symmetry)

∀x ∀y ∀z x = y ∧ y = z ⇒ x = z (transitivity)

To ensure that functions are well-defined, we require

∀x ∀y x = y ⇒ f (x) = f (y) (substitution axiom)

for every function symbol f .

Analogously we require for all predicate symbols

∀x ∀y x = y ⇒ p(x) ⇔ p(y) (substitution axiom)

We formulate other mathematical relations by similar means.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 21 / 63

First-Order Predicate Logic Semantics

Replacing Variables by Terms

Often a variable must be replaced by a term. To carry this out
correctly, we give the following definition.

Definition of Substitution Instance

We write ϕ[x/t] for the formula that results when we replace every free
occurrence of the variable x in ϕ with the term t. We do not allow any
variables in the term t that are quantified in ϕ. If such variables occur,
quantified variables must be renamed to ensure this condition.

Example: If, in the formula ∀x x = y , the free variable y is replaced
by the term x + 1, the result is ∀x x = x + 1. With correct
substitution, obeying the renaming stipulation, we obtain the formula
∀z z = x + 1, which has a very different semantics.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 22 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Subsection 3

Quantifiers and Normal Forms

George Voutsadakis (LSSU) Artificial Intelligence February 2014 23 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Universal and Existential Quantifiers

Since ∀x p(x) is true if and only if it is true for all interpretations of
x , we could write p(a1) ∧ · · · ∧ p(an) for all constants a1, . . . , an ∈ K .

For ∃x p(x) we could write p(a1) ∨ · · · ∨ p(an).

It follows by De Morgan’s Law that

∀x ϕ ≡ ¬∃x ¬ϕ.

Therefore, universal and existential quantifiers are mutually
replaceable.

Example: The proposition “Everyone wants to be loved” is equivalent
to the proposition “Nobody does not want to be loved”.

Despite their importance for expressive power, quantifiers are
disruptive for automatic inference in AI because they make the
structure of formulas more complex and increase the number of
applicable inference rules in every step of a proof.
Goal: Find, for every predicate logic formula, an equivalent formula in
a standardized normal form with as few quantifiers as possible.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 24 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Fundamental Equivalences

The following are some fundamental Equivalences of Formulas:
1 ¬∃xF ∼ ∀x(¬F);
2 ¬∀xF ∼ ∃x(¬F);
3 (∀xF) ∨ G ∼ ∀x(F ∨ G) if x is not free in G ;
4 (∃xF) ∨ G ∼ ∃x(F ∨ G) if x is not free in G ;
5 (∀xF) ∧ G ∼ ∀x(F ∧ G) if x is not free in G ;
6 (∃xF) ∧ G ∼ ∃x(F ∧ G) if x is not free in G ;
7 (∀xF) → G ∼ ∃x(F → G) if x is not free in G ;
8 (∃xF) → G ∼ ∀x(F → G) if x is not free in G ;
9 F → (∀xG) ∼ ∀x(F → G) if x is not free in F ;
10 F → (∃xG) ∼ ∃x(F → G) if x is not free in F ;
11 ∀x(F ∧ G) ∼ (∀xF) ∧ (∀xG)
12 ∃x(F ∨ G) ∼ (∃xF) ∨ (∃xG)

George Voutsadakis (LSSU) Artificial Intelligence February 2014 25 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Important Remarks on Freeness

If x occurs free in G then we cannot conclude

(∀xF) ∨ G ∼ ∀x(F ∨ G);

for example,

(∀x(x < 0)) ∨ (0 < x) and ∀x((x < 0) ∨ (0 < x))

are not equivalent; This can be seen by considering the natural
numbers N: in N, the first is true of positive numbers x (Note that x
occurs free in this formula);
whereas the second is false (Note that there are no free occurrences
of x in this formula);

George Voutsadakis (LSSU) Artificial Intelligence February 2014 26 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Some Other Remarks

For the implication we have:

(∀xF) → G ∼ ¬(∀xF) ∨ G

∼ ∃x(¬F) ∨ G

∼ ∃x(¬F ∨ G)
∼ ∃x(F → G).

To see that
∀x(F ∨ G) ∼ (∀xF) ∨ (∀xG)

need not be true consider the following example:

∀x((0 ≈ x) ∨ (0 < x)) and (∀x(0 ≈ x)) ∨ (∀x(0 < x)).

And to see that
∃x(F ∧ G) ∼ (∃xF) ∧ (∃xG)

need not be true consider the example:

∃x((0 ≈ x) ∧ (0 < x)) and (∃x(0 ≈ x)) ∧ (∃x(0 < x)).

George Voutsadakis (LSSU) Artificial Intelligence February 2014 27 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Prenex Normal Form

We bring universal quantifiers to the beginning of the formula.

Definition of Prenex Normal Form

A predicate logic formula ϕ is in prenex normal form if it holds that

ϕ = Q1x1 · · ·Qnxnψ.

ψ is a quantifier-free formula.

Qi ∈ {∀, ∃} for i = 1, . . . , n.

Example: If a quantified variable appears outside the scope of its
quantifier, e.g., ∀x (p(x) ⇒ ∃x q(x)), one of the two variables must
be renamed.
After renaming ∀x (p(x) ⇒ ∃y q(y)), the quantifier can easily be
brought to the front: ∀x ∃y (p(x) ⇒ q(y)).

George Voutsadakis (LSSU) Artificial Intelligence February 2014 28 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

The Prenex Normal Form Theorem

Example: Write (∀x p(x)) ⇒ ∃y q(y) in prenex normal form.

(∀x p(x)) ⇒ ∃y q(y) ≡ ¬(∀x p(x)) ∨ ∃y q(y)
≡ (∃x ¬p(x)) ∨ ∃y q(y)
≡ ∃x ∃y (¬p(x) ∨ q(y))
≡ ∃x ∃y (p(x) ⇒ q(y)).

We cannot simply pull both quantifiers to the front.
We must first eliminate the implications so that there are no
negations on the quantifiers.

Theorem (Prenex Normal Form)

Every predicate logic formula can be transformed into an equivalent
formula in prenex normal form.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 29 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Example: Transforming into Prenex Normal Form

Transform the following into prenex normal form:

∃z(∃xQ(x , z) ∨ ∃xP(x)) ⇒ ¬(¬∃xP(x) ∧ ∀x∃zQ(z , x))
∃z∃x(Q(x , z) ∨ P(x)) ⇒ (¬¬∃xP(x) ∨ ¬∀x∃zQ(z , x))
¬∃z∃x(Q(x , z) ∨ P(x)) ∨ (∃xP(x) ∨ ¬∀x∃zQ(z , x))
∀z∀x¬(Q(x , z) ∨ P(x)) ∨ (∃xP(x) ∨ ∃x∀z¬Q(z , x))
∀z∀x¬(Q(x , z) ∨ P(x)) ∨ (∃yP(y) ∨ ∃y∀w¬Q(w , y))
∀z∀x∃y∀w [¬(Q(x , z) ∨ P(x)) ∨ (P(y) ∨ ¬Q(w , y))]
∀z∀x∃y∀w((Q(x , z) ∨ P(x)) ⇒ (P(y) ∨ ¬Q(w , y)))

George Voutsadakis (LSSU) Artificial Intelligence February 2014 30 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Skolemization

Besides placing all quantifiers at the beginning, we can eliminate all
existential quantifiers. The process is called Skolemization. The
resulting formula is no longer equivalent to the original. Its
satisfiability, however, remains unchanged.

For showing the unsatisfiability of KB ∧ ¬Q, this is sufficient.

Example: Consider
∀x1 ∀x2 ∃y1 ∀x3 ∃y2 (p(f (x1), x2, y1) ∨ q(y1, x3, y2)).
Because y1 depends on x1 and x2, every occurrence of y1 is replaced
by a Skolem function g(x1, x2). It is important that g is a new
function symbol that has not yet appeared in any formula. We obtain
∀x1 ∀x2 ∀x3 ∃y2 (p(f (x1), x2, g(x1, x2)) ∨ q(g(x1, x2), x3, y2)).
Now, similarly, replace y2 by h(x1, x2, x3):
∀x1 ∀x2 ∀x3 (p(f (x1), x2, g(x1, x2)) ∨ q(g(x1, x2), x3, h(x1, x2, x3))).
Now all variables are universally quantified, so the universal quantifiers
can be left out: p(f (x1), x2, g(x1, x2)) ∨ q(g(x1, x2), x3, h(x1, x2, x3)).

George Voutsadakis (LSSU) Artificial Intelligence February 2014 31 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Transformation Into Normal Form

When Skolemizing a formula in prenex normal form, all existential
quantifiers are eliminated from the outside inward.

A formula of the form ∀x1 · · · ∀xn∃yϕ is replaced by
∀x1 · · · ∀xn ϕ[y/f (x1, . . . , xn)], where f is a new function symbol.

In ∃y p(y), y is replaced by a new constant.
NORMAL FORM TRANSFORMATION:

1 Transformation into prenex normal form:

Transformation into conjunctive normal form:

Elimination of equivalences.

Elimination of implications.

Repeated application of De Morgan’s law and distributive law.

Renaming of variables if necessary.

Factoring out universal quantifiers.

2 Skolemization:

Replacement of existentially quantified variables by new Skolem functions.

Deletion of resulting universal quantifiers.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 32 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Example: Prenex Normal Form and Skolemization

Convert into prenex normal form and Skolemize:

∀x(¬(x > 0) ∨ ∃y(y > 0 ∧ x = y2))
∀x∃y(¬(x > 0) ∨ (y > 0 ∧ x = y2))
∀x(¬(x > 0) ∨ (f (x) > 0 ∧ x = f (x)2))
¬(x > 0) ∨ (f (x) > 0 ∧ x = f (x)2)

Skolemize:

∀z∀x∃y∀w((Q(x , z) ∨ P(x)) ⇒ (P(y) ∨ ¬Q(w , y)))
∀z∀x∀w((Q(x , z) ∨ P(x)) ⇒ (P(f (x , z), y) ∨ ¬Q(w , f (x , z))))
(Q(x , z) ∨ P(x)) ⇒ (P(f (x , z), y) ∨ ¬Q(w , f (x , z)))

George Voutsadakis (LSSU) Artificial Intelligence February 2014 33 / 63

First-Order Predicate Logic Quantifiers and Normal Forms

Remarks on Complexity

Skolemization runs in time polynomial in the number of literals.

When transforming into normal form, the number of literals in the
normal form can grow exponentially, which can lead to exponential
computation time and exponential memory usage.

This happens because of the repeated application of the distributive
law.

In practice, the problem, which results from a large number of
clauses, is the combinatorial explosion of the search space for a
subsequent resolution proof.

There does exist an optimized transformation algorithm which only
generates polynomially many literals.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 34 / 63

First-Order Predicate Logic Proof Calculi

Subsection 4

Proof Calculi

George Voutsadakis (LSSU) Artificial Intelligence February 2014 35 / 63

First-Order Predicate Logic Proof Calculi

Natural Calculi

For reasoning in predicate logic, various calculi of natural reasoning
such as Gentzen calculus or sequent calculus, have been developed.

We will concentrate on the resolution calculus, which is the most
efficient automatizable calculus for formulas in CNF.

Example: Consider again the Family Knowledge Base KB. We give a
very small “natural” proof of child(eve, oscar, anne). The rules are the

modus ponens (MP)
A,A ⇒ B

B
and the ∀-elimination (∀E)

∀xA

A[x/t]
,

where t is a ground term, i.e., contains no variables.

child(eve, anne, oscar) (KB)
∀x ∀y ∀z child(x , y , z) ⇒ child(x , z , y) (KB)
child(eve, anne, oscar) ⇒ child(eve, oscar, anne) (∀E)
child(eve, oscar, anne) (MP)

George Voutsadakis (LSSU) Artificial Intelligence February 2014 36 / 63

First-Order Predicate Logic Proof Calculi

Gödel’s Completeness and Soundness

The calculus consisting of the two given inference rules (MP) and
(∀E) is not complete.

However, it can be extended into a complete procedure by adding
more inference rules. This was proven by Kurt Gödel in 1931:

Gödel’s Completeness Theorem

First-order predicate logic is complete. That is, there is a calculus with
which every proposition that is a consequence of a knowledge base KB can
be proved. If KB |= ϕ, then it holds that KB ⊢ ϕ.

Every true proposition in first-order predicate logic is therefore
provable. Is the converse also true? Is everything we can derive
syntactically actually true?

Soundness

There are calculi with which only true propositions can be proved. That is,
if KB ⊢ ϕ holds, then KB |= ϕ.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 37 / 63

First-Order Predicate Logic Resolution

Subsection 5

Resolution

George Voutsadakis (LSSU) Artificial Intelligence February 2014 38 / 63

First-Order Predicate Logic Resolution

Automated Theorem Proving

The correct and complete resolution calculus triggered a logic
euphoria during the 1970s.

Many scientists believed that one could formulate almost every task
of knowledge representation and reasoning in PL1 and then solve it
with an automated prover.

Predicate logic together with a complete proof calculus seemed to be
the universal intelligent machine:

Feed a knowledge base and a query into the logic machine as input.
Let the machine search for a proof and return it as output.

With Gödel’s Completeness Theorem and the work of Herbrand as a
foundation, much was invested into the mechanization of logic.

Accordingly, until now many proof calculi for PL1 are being developed
and realized in the form of theorem provers.

We describe the historically important and widely used resolution
calculus.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 39 / 63

First-Order Predicate Logic Resolution

How Resolution Works

Consider again

child(eve, anne, oscar) (KB)
∀x ∀y ∀z child(x , y , z) ⇒ child(x , z , y) (KB)
child(eve, anne, oscar) ⇒ child(eve, oscar, anne) (∀E)
child(eve, oscar, anne) (MP)

How would this be handled by resolution?
Transform KB ∧ ¬Q into conjunctive normal form:

KB ∧ ¬Q ≡ (child(eve, anne, oscar)) ∧ (¬child(x , y , z) ∨ child(x , z , y))
∧ (¬child(eve, oscar, anne)).

The proof could then look like:

x/eve, y/anne, z/oscar : (¬child(eve, anne, oscar) ∨
child(eve, oscar, anne))

Resolution: (¬child(eve, anne, oscar))
Resolution: ()

George Voutsadakis (LSSU) Artificial Intelligence February 2014 40 / 63

First-Order Predicate Logic Resolution

Case for Unification

Assume everyone knows his own mother. Does Henry know anyone?

Introduce the function symbol “mother” and the predicate “knows”.

We would like to derive a contradiction from

(knows(x ,mother(x))) ∧ (¬knows(henry, y)).

By the replacement x/henry, y/mother(henry) we obtain the
contradictory clause pair

(knows(henry,mother(henry))) ∧ (¬knows(henry,mother(henry))).

This replacement step is called unification.

The empty clause is now derivable with a resolution step, since the
two literals are complementary.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 41 / 63

First-Order Predicate Logic Resolution

Unification and Unifiers

Definition of Unifiable Literals and Unifiers

Two literals are called unifiable if there is a substitution σ for all variables
which makes the literals equal. Such a σ is called a unifier. A unifier is
called the most general unifier (MGU) if all other unifiers can be
obtained from it by substitution of variables.

Example: We want to unify the literals p(f (g(x)), y , z) and
p(u, u, f (u)). We can find several unifiers:

σ1 : y/f (g(x)), z/f (f (g(x))), u/f (g(x))
σ2 : x/h(v), y/f (g(h(v))), z/f (f (g(h(v)))), u/f (g(h(v)))
σ3 : x/h(h(v)), y/f (g(h(h(v)))), z/f (f (g(h(h(v))))), u/f (g(h(h(v))))
σ4 : x/h(a), y/f (g(h(a))), z/f (f (g(h(a)))), u/f (g(h(a)))
σ5 : x/a, y/f (g(a)), z/f (f (g(a))), u/f (g(a))

σ1 is the most general unifier. The other unifiers result from σ1
through the substitutions: x/h(v), x/h(h(v)), x/h(a), x/a.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 42 / 63

First-Order Predicate Logic Resolution

Remarks on Implementations of Unification

During unification of literals, the predicate symbols can be treated
like function symbols, i.e., literals are treated like terms.

Implementations of unification algorithms process the arguments of
functions sequentially.

Terms are unified recursively over the term structure.

The simplest unification algorithms are very fast in most cases, but
the complexity grows exponentially with the size of the terms in the
worst case.

In automated provers a large majority of unification attempts either
fail or are very simple, so in most cases the worst case complexity has
no dramatic effect.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 43 / 63

First-Order Predicate Logic Resolution

Resolution Rule and Correctness

Definition of Resolution

The resolution rule for two clauses in conjunctive normal form reads

(A1 ∨ · · · ∨ Am ∨ B), (¬B ′ ∨ C1 ∨ · · · ∨ Cn) σ(B) = σ(B ′)

(σ(A1) ∨ · · · ∨ σ(Am) ∨ σ(C1) ∨ · · · ∨ σ(Cn))

where σ is the MGU of B and B ′.

Theorem (Soundness of Resolution)

The resolution rule is correct. That is, the resolvent is a semantic
consequence of the two parent clauses.

Resolution by itself is not complete.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 44 / 63

First-Order Predicate Logic Resolution

Incompleteness of Resolution and Factorization

Example: The famous Russell paradox reads

There is a barber who shaves everyone who does not shave
himself.

We want to show that this statement is contradictory using resolution.

∀x shaves(barber, x) ⇔ ¬shaves(x , x)
transformation into clause form
(¬shaves(barber, x) ∨ ¬shaves(x , x)) ∧

(shaves(barber, x) ∨ shaves(x , x)).

From these two clauses no contradiction can be derived. Thus.
resolution is not complete.

We need to add another inference rule.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 45 / 63

First-Order Predicate Logic Resolution

Factorization

Definition of Factorization

Factorization of a clause is accomplished by

(A1 ∨ A2 ∨ · · · ∨ An) σ(A1) = σ(A2)

(σ(A2) ∨ · · · ∨ σ(An))
,

where σ is the MGU of A1 and A2.

Example (Barber Continued):

(¬shaves(barber, x) ∨ ¬shaves(x , x)) ∧
(shaves(barber, x) ∨ shaves(x , x)).

With Factorization a contradiction can be derived:

Factorization, x/barber : (¬shaves(barber, barber))
Factorization, x/barber : (shaves(barber, barber))

Resolution : ()

George Voutsadakis (LSSU) Artificial Intelligence February 2014 46 / 63

First-Order Predicate Logic Resolution

Refutation Completeness

Theorem (Refutation Completeness of Resolution and Factorization)

The resolution rule together with the factorization rule is refutation
complete. That is, by application of factorization and resolution steps, the
empty clause can be derived from any unsatisfiable formula in conjunctive
normal form.

Even with only very few pairs of clauses in KB ∧ ¬Q, a resolution
prover generates a new clause with every resolution step.

This increases the number of possible resolution steps in the next
iteration.
Strategies attempting to reduce the search space, preferably without
losing completeness, include:

Unit resolution (complete, but not guaranteeing reduction)
Support resolution (incomplete, guaranteeing reduction)
Input resolution (incomplete, guaranteeing reduction)
Pure literal rule (complete, guaranteeing reduction)
Subsumption (complete, guaranteeing reduction)

George Voutsadakis (LSSU) Artificial Intelligence February 2014 47 / 63

First-Order Predicate Logic Automated Theorem Provers

Subsection 6

Automated Theorem Provers

George Voutsadakis (LSSU) Artificial Intelligence February 2014 48 / 63

First-Order Predicate Logic Automated Theorem Provers

Automated Theorem Provers

Implementations of proof calculi are called theorem provers.

There exist a whole line of automated provers for the full predicate
logic and higher-order logics:

A resolution prover, Otter, was developed at Argonne National
Laboratory in Chicago in 1984.
The University of Technology, Munich, created the high performance
prover SETHEO based on PROLOG. An implementation for parallel
computers was PARTHEO.
Munich also created E, a modern equation prover, to be discussed next.
An interactive prover for higher-order predicate logic is Isabelle, of
Cambridge University and the University of Technology, Munich.
Another prover for PL1 is Manchester’s prover Vampire, which works
with resolution and a special approach to equality.
The system Waldmeister of the Max Planck Institute in Saarbrücken
has been leading for years in equality proving.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 49 / 63

First-Order Predicate Logic Mathematical Examples

Subsection 7

Mathematical Examples

George Voutsadakis (LSSU) Artificial Intelligence February 2014 50 / 63

First-Order Predicate Logic Mathematical Examples

Left and Right Identities in Semigroups

We want to prove that left and right identity elements in a semigroup
are equal.

Definition of Semigroup

A structure (M, ·), consisting of a set M with a binary operation · is called
a semigroup if associativity holds ∀x ∀y ∀z (x · y) · z = x · (y · z).
An element e ∈ M is called a left identity (right identity) if ∀x e · x = x

(∀x x · e = x).

We’d like to show

Theorem (Equality of Identities)

If a semigroup has a left identity eℓ and a right identity er , then eℓ = er .

For a mathematical proof:

eℓ
riht identity

= eℓ · er
left identity

= er .

George Voutsadakis (LSSU) Artificial Intelligence February 2014 51 / 63

First-Order Predicate Logic Mathematical Examples

A Manual Resolution Proof

KB ∧ ¬Q in the form of clauses in CNF:
(¬eℓ = er) (negated query)
(m(m(x , y), z) = m(x ,m(y , z))) (associativity)
(m(eℓ, x) = x) (left identity)
(m(x , er) = x) (right identity)

We add the equality axioms:
(x = x) (reflexivity)
(¬x = y ∨ y = x) (symmetry)
(¬x = y ∨ ¬y = z ∨ x = z) (transitivity)
(¬x = y ∨m(x , z) = m(y , z)) (substitution in m)
(¬x = y ∨m(z , x) = m(z , y)) (substitution in m)

A simple resolution proof has the form

Resolution, x/m(eℓ, x), y/x : (x = m(eℓ, x))
Resolution, x/x , y/m(eℓ, x) : (¬m(eℓ, x) = z ∨ x = z)
Resolution, x/eℓ, x/er , z/eℓ : (er = eℓ)
Resolution : ().

George Voutsadakis (LSSU) Artificial Intelligence February 2014 52 / 63

First-Order Predicate Logic Mathematical Examples

Automated Proof Using E: The Input

The clauses are transformed into the clause normal form language
LOP:

(¬A1 ∨ · · · ∨ ¬Am ∨ B1 ∨ · · · ∨ Bn) 7→ B1; . . . ; Bn<−A1, . . . , Am.

Thus we obtain as an input file for E

Input for Prover E

<−el = er % query

m(m(X, Y), Z) = m(X, m(Y, Z)) % associativity of m

m(el, X) = X % left identity element of m

m(X, er) = X % right identity element of m

George Voutsadakis (LSSU) Artificial Intelligence February 2014 53 / 63

First-Order Predicate Logic Mathematical Examples

Automated Proof Using E: The Output

Running the prover delivers

Output of Prover E

Problem status determined, constructing proof object

Evidence for problem status starts

0 : [--equal(el, er)] : initial

1 : [++equal(m(el,X1), X1)] : initial

2 : [++equal(m(X1,er), X1)] : initial

3 : [++equal(el, er)] : pm(2,1)

4 : [--equal(el, el)] : rw(0,3)

5 : [] : cn(4)

6 : [] : 5 : {proof}
Evidence for problem status ends

George Voutsadakis (LSSU) Artificial Intelligence February 2014 54 / 63

First-Order Predicate Logic Applications

Subsection 8

Applications

George Voutsadakis (LSSU) Artificial Intelligence February 2014 55 / 63

First-Order Predicate Logic Applications

Applications of Automated Theorem Provers

In early AI, predicate logic was used in expert systems.

Expert systems today are using other formalisms that handle better
uncertainty.

Logic is most important in verification tasks, in particular automatic
program verification in software engineering.

In security, cryptographic protocols have security characteristics that
have been automatically verified.

Another challenge is the synthesis of software and hardware, i.e.,
supporting the software engineer in the “generation of programs from
specifications”.

Software reuse is also of great importance for programming.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 56 / 63

First-Order Predicate Logic Applications

Software Reuse

The programmer looks for a program that takes input data with
certain properties and calculates a result with desired properties.

A sorting algorithm
accepts input data with entries of a certain data type;
creates a permutation of these entries with the property that every
element is less than or equal to the next element.

The programmer formulates a specification of the query in PL1
consisting of two parts:

PREQ comprises the preconditions, which must hold before the desired
program is applied.
POSTQ contains the postconditions, which must hold after the desired
program is applied.

A software database is searched for modules which fulfill these
requirements. This database must contains a formal description of
the preconditions PREM and the postconditions POSTM for every
module M.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 57 / 63

First-Order Predicate Logic Applications

Relations Between the Pre- and the Post-Conditions

The preconditions PREQ and PREM and the postconditions POSTQ

and POSTM must satisfy certain relations:
The preconditions of the module follow from the preconditions of the
query, i.e., PREQ ⇒ PREM . All conditions that are required for the
application of module M must appear as preconditions in the query.

Example: If a module in the database only accepts lists of integers,

then lists of integers as input must also appear as preconditions in the

query. An additional requirement in the query that, for example, only

even numbers appear, does not cause a problem.

For the postconditions, it must hold POSTM ⇒ POSTQ .
This ensures that, after application of the module, all attributes that
the query requires must be fulfilled.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 58 / 63

First-Order Predicate Logic Applications

A Concrete Example I

In the software database the description of a module ROTATE is
available, which moves the first list element to the end of the list.

We are looking for a module SHUFFLE, which creates an arbitrary
permutation of the list.

ROTATE(l : List)l ′ : List
pre true
post

(l = [] ⇒ l ′ = [])∧
(l 6= [] ⇒ l ′ = (tail l)ˆ[head l])

SHUFFLE(x : List)x ′ : List
pre true
post ∀i : Item·
(∃x1, x2 : List · x = x1ˆ[i]ˆx2 ⇔
∃y1, y2 : List · x

′ = y1ˆ[i]ˆy2)

Here “ˆ” stands for concatenation of lists and “·” separates
quantifiers with their variables from the rest of the formula.

The functions “head l” and “tail l” choose the first element and the
rest from the list, respectively.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 59 / 63

First-Order Predicate Logic Applications

A Concrete Example II

It must be shown that (PREQ ⇒ PREM) ∧ (POSTM ⇒ POSTQ) is a
consequence of the knowledge base containing a description of the
data type List.

The two VDM-SL (Vienna Development Method Specification
Language) specifications yield the proof task

∀l , l ′, x , x ′ : List · (l = x ∧ l ′ = x ′ ∧ (w ⇒ w))∧
(l = x ∧ l ′ = x ′ ∧ ((l = [] ⇒ l ′ = []) ∧ (l 6= [] ⇒ l ′ = (tl l)ˆ[hd l])
⇒ ∀i : Item · (∃x1, x2 : List · x = x1ˆ[i]ˆx2 ⇔

∃y1, y2 : List · x
′ = y1ˆ[i]ˆy2)))

This can be proven with the prover SETHEO.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 60 / 63

First-Order Predicate Logic Applications

The Semantic Web

In the coming years the semantic web will likely represent an
important application of PL1.

This refers to a WWW whose content is supposed to become
interpretable not only for people, but for machines.

Web sites are being furnished with a description of their semantics in
a formal description language.

The development of efficient calculi for reasoning is very important
and closely connected to the description languages.

The World Wide Web Consortium developed the language RDF.

A more powerful language OWL (Web Ontology Language) allows the
description of relations between objects and classes of objects,
similarly to PL1.

Ontologies are descriptions of relationships between possible objects.

Machine learning systems must be used for automatic generation of
descriptions and for checking their correctness.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 61 / 63

First-Order Predicate Logic Summary

Subsection 9

Summary

George Voutsadakis (LSSU) Artificial Intelligence February 2014 62 / 63

First-Order Predicate Logic Summary

Summary

We looked at the most important foundations, terms, and procedures
of predicate logic;

We have seen that even one of the most difficult intellectual tasks,
the proof of mathematical theorems, can be automated.

Automated provers can be employed not only in mathematics, but,
also, in verification tasks in computer science.

For everyday reasoning, however, predicate logic in most cases is
ill-suited.

We show in the coming slides its weak points and some interesting
modern alternatives.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 63 / 63

	First-Order Predicate Logic
	Syntax
	Semantics
	Quantifiers and Normal Forms
	Proof Calculi
	Resolution
	Automated Theorem Provers
	Mathematical Examples
	Applications
	Summary

