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Search, Games and Problem Solving Introduction

Large Search Spaces

The search in an extremely large search tree presents a problem for
inference systems.

From the starting state there are many possibilities for the first
inference step.
For each of these possibilities there are again many possibilities in the
next step, and so on.

For instance, the SLD resolution search tree for the proof of a specific
very simple formula with three Horn clauses has shape:

The tree was cut off at depth 14 and has a solution in the leaf node
marked by ∗. It has a small branching factor of at most two.

For realistic problems, the branching factor and depth of the first
solution may become significantly bigger.
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Enormity of the Search Space

Assume the branching factor is 30 and the first solution is at depth 50.

The search tree has 3050 = 7.2× 1073 leaf nodes.

The number of inference steps is even bigger because, in addition,
every inner node of the tree corresponds to an inference step:

50
∑

d=0

30d =
3051 − 1

30− 1
= 7.4× 1073.

Evidently, nearly all of the nodes of this search tree are on the last
level. This is generally the case.

Assume we had 10,000 computers which can each perform 109

inferences per second, and that we could distribute the work over all
of the computers with no cost. The total computation time for all
7.4× 1073 inferences would be approximately equal to

7.4× 1073 inferences

10000 · 109 inferences/sec
= 7.4× 1060 sec ≈ 2.3× 1053 years,

about 1043 times as much time as the age of our universe.
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Facing the Enormity of a Task in Practice: Utility

There is no realistic chance of searching such spaces completely.

The assumptions on the size of the search space are realistic: In
chess, there are over 30 possible moves for a typical situation, and a
game lasting 50 half-turns is relatively short.

How can it be then, that there are good chess players and also good
chess computers? How can it be that mathematicians find proofs for
theorems in which the search space is even much bigger?

Humans use intelligent strategies which dramatically reduce the
search space.

The experienced human will, by observation of the situation,
immediately rule out many actions as senseless.

Through his experience, he has the ability to evaluate various actions
for their utility in reaching the goal.
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Facing the Enormity of a Task in Practice: Intuition

Often a person will go by feel.

If one asks a mathematician how he found a proof, he may answer that
the intuition came to him in a dream.
In difficult cases, many doctors find a diagnosis purely by feel, based on
all known symptoms.

Especially in difficult situations, there is often no formal theory for
solution-finding that guarantees an optimal solution.

In everyday problems intuition plays a big role.

This kind of search using ad-hoc criteria, is called heuristic search.

Computers can improve their heuristic search strategies by learning,
like humans.

Search that does not use such methods, but, instead, relies on blindly
trying out all possibilities, is termed uninformed search.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 7 / 62



Search, Games and Problem Solving Introduction

The 8-Puzzle

The 8-puzzle: Squares with the numbers 1 to 8 are distributed in a
3× 3 matrix. The goal is to reach a certain ordering of the squares.
At each step a square can be moved left, right, up, or down into the
empty space. (Or the empty space moves in the opposite direction.)

The search tree for a specific starting state is

The branching factor alternates between two, three, and four. The
average branching factor, i.e., constant branching factor of a tree
with equal depth and equal number of leaves, is

√
8 ≈ 2.83.
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The 8-Puzzle: Informing the Search

Each state is repeated multiple times, since, in uninformed search,
every action is reversed in the next step.

If we disallow cycles of length 2, then we get:

The average branching factor is reduced to about 1.8.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 9 / 62



Search, Games and Problem Solving Introduction

Search Trees and Search Problems

If from a state s, an action a1 leads to a new state s ′, we write
s ′ = a1(s). Another action a2 may lead to state s ′′: s ′′ = a2(s).

Recursive application of all possible actions to all states, beginning
with the starting state, yields the search tree.

Definition (Search Problem)

A search problem is defined by the following values:

State: Description of a state of the world in which the search occurs.

Starting state: The initial state in which search starts.

Goal state: A state where search terminates.

Actions: All of the agent’s allowed actions.

Solution: The path from the starting state to the goal state.

Cost function: Assigns a cost value to every action.

State space: Set of all states.
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8-Puzzle Revisited

For the 8-puzzle, we get:

State: 3× 3 matrix S with the values 1, 2, . . . , 8 (once each) and one
empty square.
Starting state: A fixed, but arbitrary, state.
Goal state: A fixed, but arbitrary state, e.g.,

Actions: Movement of the empty square Sij to the left (if j 6= 1), right
(if j 6= 3), up (if i 6= 1), down (if i 6= 3).
Cost function: The constant function 1, since all actions have equal
cost.
State space: The state space is either the set of all states, if solutions
exist, or degenerate in domains where solutions do not exist.
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Branching Factor

Definition (Branching Factor, Completeness)

The number of successor states of a state s is called the branching

factor b(s), or b if the branching factor is constant.

The effective branching factor of a tree of depth d with n total
nodes is defined as the branching factor that a tree with constant
branching factor, equal depth, and equal n would have.

A search algorithm is called complete if it finds a solution for every
solvable problem. I.e., if a complete search algorithm terminates
without finding a solution, then the problem is unsolvable.

A tree with constant branching factor b and depth d has total
number of nodes n =

∑d
i=0 b

i = bd+1
−1

b−1 .

So, for a given depth d and node count n, the effective branching
factor b is the solution of n = bd+1

−1
b−1 .
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Large Branching Factors

For the practical application of search algorithms for finite search
trees, the last level is especially important:

Theorem

For heavily branching finite search trees with a large constant branching
factor, almost all nodes are on the last level.

Example: Given a map with cities as nodes and highway connections
between the cities as distance-weighted edges,

we are looking for an optimal route from a city A to a city B .
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From the Map Problem to a Search Problem: Optimality

State: A city as the current location of the traveler.

Starting state: An arbitrary city A.

Goal state: An arbitrary city B .

Actions: Travel from the current city to a neighboring city.

Cost function: The distance between the cities. Each action
corresponds to an edge in the graph with the distance as the weight.

State space: All cities, i.e., all nodes of the graph.

To find the route with minimal length, the costs must be taken into
account:

Definition (Optimal Search Algorithms)

A search algorithm is called optimal provided that, if a solution exists, it
always finds the solution with the lowest cost.
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Determinism and Observability

The 8-puzzle problem is deterministic, which means that every
action leads from a state to a unique successor state.

It is also observable: the agent always knows which state it is in.
In route planning in real applications these are not always given:

The action “Drive from Munich to Ulm” may, e.g., because of an
accident, lead to the successor state “Munich”.
It may also occur that location awareness is lost.

For simplicity, we look at deterministic and observable problems only.
For these problems, action planning is simpler because it is possible to
find action sequences for the solution by modeling:

In the case of the 8-puzzle, it is not necessary to actually move the
squares in the real world to find the solution. We can find optimal
solutions with so-called offline algorithms.
One faces much different challenges when, for example, building robots
that are supposed to play soccer. Online algorithms are needed, which
make decisions based on sensor signals in every situation.
Reinforcement learning works toward optimization of decisions.
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Search, Games and Problem Solving Uninformed Search

Breadth-First Search

In breadth-first search, the search tree is explored from top to
bottom according to the following algorithm:

BreadthFirstSearch(NodeList, Goal)

NewNodes = ∅
For all Node ∈ NodeList

If GoalReached(Node,Goal)
Return(“Solution Found”,Node)

NewNodes = Append(NewNodes,Succesors(Node))
If NewNodes 6= ∅

Return(BreadthFirstSearch(NewNodes,Goal))
Else

Return(“No Solution”)
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Description of Breadth-First Search

First every node in the node list is tested for whether it is a goal
node;

In the case of success, the program is stopped.

Otherwise, all successors of the node are generated.

The search is then continued recursively on the list of all newly
generated nodes.

The whole process repeats until no more successors are generated.

This algorithm works for arbitrary applications if the application
specific functions “GoalReached” and “Successors” are provided.

“GoalReached” calculates whether the argument is a goal node;
“Successors” calculates the list of all successor nodes of its argument.
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An Example of Breadth-First Search

In the following picture, the third-level nodes are numbered according
to the order in which they were generated:

The successors of nodes 11 and 12 have not yet been generated.
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Analysis of Breadth-First Search: Completeness and Time

Breadth-first search completely searches through every depth and
reaches every depth in finite time. Therefore, if there is a solution, it
will find it provided the branching factor b is finite, i.e., it is complete
for finite branching factor b.

The optimal (shortest) solution is found if all costs are the same.

Computation time and memory space grow exponentially with the
depth of the tree: For a tree with constant branching factor b and
depth d , the total computation time is given by

d
∑

i=0

bi =
bd+1 − 1

b − 1
= O

(

bd
)

.
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Analysis of Breadth-First Search: Optimality and Space

Although only the last level is saved in memory, the memory space
requirement is also O

(

bd
)

. So memory will quickly fill up and the
search will end.

The problem of the shortest solution not always being found can be
solved by the so-called Uniform Cost Search:

The node with the lowest cost from the ascendingly sorted list of nodes
is always expanded, and the new nodes sorted in.

This deals with optimality, but for the memory problem depth-first
search must be employed.
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Description of Depth-First Search

In depth-first search only a few nodes are stored in memory at one
time.

After the expansion of a node only its successors are saved, and the
first successor node is immediately expanded.

Thus the search quickly becomes very deep.

Only when a node has no successors and the search fails at that
depth is the next open node expanded via backtracking to the
previous branch, and so on.
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Depth-First Search

The recursive algorithm follows:

“First” returns the first element and “Rest” the rest of the list.

DepthFirstSearch(Node, Goal)

If GoalReached(Node,Goal) Return(“Solution found”)
NewNodes = Successors(Node)
While NewNodes 6= ∅

Result = DepthFirstSearch(First(NewNodes),Goal)
If Result = “Solution found” Return(“Solution found”)
NewNodes = Rest(NewNodes)

Return(“No solution”)
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Example of a Depth-First Search Tree

All nodes at depth three are unsuccessful and cause backtracking.
Nodes are numbered in the order they were generated.
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Analysis of Depth-First Search

Depth-first search requires much less memory than breadth-first
search because at most b nodes are saved at each depth. Thus we
need b · d memory cells.

Depth-first search is not complete for infinitely deep trees because
depth-first search runs into an infinite loop when there is no solution
in the far left branch.

Accordingly, the question of finding the optimal solution is not
applicable.

In the case of a finitely deep search tree with depth d , a total of
about bd nodes are generated. Thus the computation time grows,
just as in breadth-first search, exponentially with depth.

We can make the search tree finite by setting a depth limit. If no
solution is found in the pruned search tree, there can nonetheless be
solutions outside the limit. Thus the search becomes incomplete.

There are, however, modifications for ensuring completeness.
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Description of Iterative Deepening

We begin the depth-first search with a depth limit of 1.

If no solution is found, we raise the limit by 1 and start searching
from the beginning, and so on:

This iterative raising of the depth limit is called iterative deepening.

We must augment the depth-first search program with the two
additional parameters “Depth” and “Limit”.

“Depth” is raised by one at the recursive call, and the head line of the
while loop is replaced by

While NewNodes 6= ∅ And Depth < Limit
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Iterative Deepening

IterativeDeepening(Node, Goal)

DepthLimit = 0
Repeat

Result = DepthFirstSearch-B(Node,Goal, 0,DepthLimit)
DepthLimit = DepthLimit + 1

Until Result = “Solution found”

DepthFirstSearch-B(Node, Goal, Depth, Limit)

If GoalReached(Node,Goal) Return(“Solution found”)
NewNodes = Successors(Node)
While NewNodes 6= ∅ And Depth < Limit
Result = DepthFirstSearch-B(First(NewNodes),Goal,

Depth + 1, Limit)
If Result = “Solution found” Return(“Solution found”)
NewNodes = Rest(NewNodes)

Return(“No solution”)
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Analysis of Iterative Deepening: Last Tree

The memory requirement is the same as in depth-first search.

Repeatedly re-starting depth-first search at depth zero does not entail
a lot of redundant work for large branching factors.

The sum of the number of nodes of all depths up to the one before
last dmax − 1 in all trees searched is much smaller than the number of
nodes in the last tree searched.

Let Nb(d) be the number of nodes of a search tree with branching
factor b and depth d and dmax be the last depth searched.
The number of nodes of the last tree searched is

Nb(dmax) =

dmax
∑

i=0

bi =
bdmax+1 − 1

b − 1
.
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Analysis of Iterative Deepening: All Trees

The number of nodes of all trees searched beforehand together is

dmax−1
∑

d=1

Nb(d) =

dmax−1
∑

d=1

bd+1 − 1

b − 1
=

1

b − 1

((

dmax−1
∑

d=1

bd+1

)

− dmax + 1

)

=
1

b − 1

((

dmax
∑

d=2

bd

)

− dmax + 1

)

=
1

b − 1

(

bdmax+1 − 1

b − 1
− 1− b − dmax + 1

)

≈ 1

b − 1

(

bdmax+1 − 1

b − 1

)

=
1

b − 1
Nb(dmax).

For b > 2 this is less than the number Nb(dmax) of nodes in the last
tree. For b = 20 the first dmax − 1 trees together contain only about
1

b−1 = 1
19 of the number of nodes in the last tree. The computation

time for all iterations besides the last can be ignored.

This method is complete, and given a constant cost for all actions, it
finds the shortest solution.
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Comparison of Uninformed Search Algorithms

Breadth-First Uniform Cost Depth-First Iterative Deep.
Complete Yes Yes No Yes
Optimal Yes(∗) Yes No Yes(∗)
Time bd bd ∞ or bds bd

Space bd bd bd bd

(∗) means that the statement is only true given a constant action cost. ds is the

maximal depth for a finite search tree

Iterative deepening is the winner of the comparison because it gets
the best grade in all categories.

For realistic applications it is usually not successful because of huge
search space.

What is needed is an intelligent search that only explores a tiny
fraction of the search space and finds a solution there.
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Subsection 3

Heuristic Search
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Heiristics

Heuristics are problem-solving strategies which in many cases find a
solution faster than uninformed search.

This is not guaranteed: they may require a lot more time and could
even result in the solution not being found.

Heuristic decisions arise from the need for quick real-time decisions
with limited resources: A good solution found quickly is preferred
over an expensive optimal solution.

A heuristic evaluation function f (s) for states is used to
mathematically model a heuristic.

The goal is to find, with little effort, a solution to the stated search
problem with minimal total cost.
There is a subtle difference between the effort to find a solution and
the total cost of this solution.

Example: Google Maps may spend half a second’s worth of effort to
find a route from SSM to Detroit, but the trip may cost five hours and
a bit of money.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 32 / 62



Search, Games and Problem Solving Heuristic Search

Introduction to Heuristic Search

Next we modify the breadth-first search algorithm by adding the
evaluation function.
The currently open nodes are no longer expanded left to right, but
rather according to their heuristic rating:

From the set of open nodes, the node with the minimal rating is always
expanded first.
This is achieved by immediately evaluating nodes as they are expanded
and sorting them into the list of open nodes.
The list may then contain nodes from different depths in the tree.

Because heuristic evaluation of states is very important for the search,
we must differentiate between states and their associated nodes:

The node contains the state and further information relevant to the
search, such as its depth in the search tree and the heuristic rating of
the state.
As a result, the function “Successors” which generates the successors
of a node, must also immediately calculate for these successor nodes
their heuristic ratings as a component of each node.
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Heuristic Search

HeuristicSearch(Start, Goal)

NodeList = [Start]
While True

If NodeList = ∅ Return(“No solution”)
Node = First(NodeList)
NodeList = Rest(NodeList)
If GoalReached(Node,Goal) Return(“Solution found”,Node)
NodeList = SortIn(Successors(Node),NodeList)

The node list is initialized with the starting nodes.
In the loop, the first node from the list is removed and tested for
whether it is a solution node.

If not, it will be expanded with the function “Successors” and its
successors added to the list with the function “SortIn”.
“SortIn(X ,Y )” inserts the elements from the unsorted list X into the
ascendingly sorted list Y (with heuristic rating as the sorting key).
Thus, it is guaranteed that the best node is always at the beginning.
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Heuristic Ratings

Depth-first and breadth-first search are special cases of the function
HeuristicSearch.

This happens, since they can be easily generated by plugging in the
appropriate evaluation function.

The best heuristic would be a function that calculates the actual
costs from each node to the goal.

To do that, however, would require a traversal of the entire search
space, which is exactly what the heuristic is supposed to prevent.
Therefore, we need a heuristic that is fast and simple to compute.
How do we find such a heuristic?

An interesting idea for finding a heuristic is simplification of the
problem.
The original task is simplified enough that it can be solved with little
computational cost.
The costs from a state to the goal in the simplified problem then serve
as an estimate for the actual problem.
This cost estimate function is denoted by h.
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Greedy Search

It seems sensible to choose the state with the lowest estimated cost h
from the list of currently available states.

The cost estimate then can be used as the evaluation function, i.e., in
the function HeuristicSearch we set f (s) = h(s).

Example: In planning a trip, we set finding the straight line path from
city to city as a simplification of the problem. Instead of searching the
optimal route, we first determine from every node a route with
minimal flying distance to the goal.

If Ulm is chosen as the
destination, the cost es-
timate function becomes
h(s) = flying distance
from s to Ulm.
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Example of a Fast Execution for Trip Planning

The search tree for starting in Linz is represented below:

The tree is very slender and the search, thus, finishes quickly.

This search does not always find the optimal solution.
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Example of a Failure to Find Optimal Solution

Example: This algorithm fails to find the optimal solution when
starting in Mannheim.

The Mannheim-Nürnberg-Ulm path has a length of 401 km.

The route Mannheim-Karlsruhe-Stuttgart-Ulm is shorter at 238 km.

Nürnberg is closer than Karlsruhe to Ulm, but the distance from
Mannheim to Nürnberg is significantly greater than that from
Mannheim to Karlsruhe.

But the heuristic only looks ahead “greedily” to the goal.
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Admissible Heuristics and A∗-Algorithms

We want to take into account the costs g(s) that have accrued
during the search up to the current node s.

We define the cost function g(s) = Sum of accrued costs from the
start to the current node.

Then add the estimated cost h(s) to the goal: f (s) = g(s) + h(s).

Definition of Admissible Heuristics

A heuristic cost estimate function h(s) that never overestimates the actual
cost from state s to the goal is called admissible.

The function HeuristicSearch together with an evaluation
function f (s) = g(s) + h(s), where h is an admissible heuristic
function, is called A∗-algorithm.

This famous algorithm is complete and optimal.
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An Example of A∗

We are looking for the shortest path from Frankfurt to Ulm.

In the boxes, under the name
of the city s, g(s), h(s), and
f (s) are shown.

Numbers in parentheses after

the city names show the order

in which the nodes have been

generated by the “Successor”

function.

The successors of Mannheim are generated before the successors of
Würzburg.
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An Example of A∗ (Cont’d)

The optimal solution Frankfurt-Würzburg-Ulm is generated shortly
thereafter in the eighth step, but it is not yet recognized as such.

The algorithm does not terminate yet because the node Karlsruhe (3)
has a better (lower) f value and thus is ahead of the node Ulm (8) in
line.

Only when all f values are greater than or equal to that of the solution
node Ulm (8) have we ensured that we have an optimal solution.

Otherwise there could potentially be another solution with lower costs.
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Optimality of A∗-Algorithm

Theorem (Optimality of A∗)

The A∗-algorithm is optimal. That is, it always finds the solution with the
lowest total cost if the heuristic h is admissible.

In the HeuristicSearch algorithm, every newly generated node s is
sorted in by “SortIn” according to its heuristic rating f (s). The node
with the smallest rating value thus is at the beginning of the list.

If the node ℓ at the beginning of the list is a solution node, then no
other node has a better heuristic rating. For all other nodes s it is
true then that f (ℓ) < f (s). No better solution ℓ′ can be found, even
after expansion of all other nodes:

g(ℓ)
h(ℓ)=0
= g(ℓ) + h(ℓ)

defn
=

f (ℓ)
sorted

< f (s)
defn
= g(s) +

h(s)
admss

≤ g(ℓ′).

Thus, the discovered solution ℓ is optimal.
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IDA∗-Search

The A∗-search inherits from breadth-first search the drawback that it
has to save many nodes in memory, which can lead to very high
memory use.

Furthermore, the list of open nodes must be sorted.

Thus, insertion of nodes into the list and removal of nodes from the list
can no longer run in constant time, which increases complexity.
Based on the heapsort algorithm, we can structure the node list as a
heap with logarithmic time complexity for insertion and removal.

Both problems can be solved, similarly to breadth-first search, by
iterative deepening.

We work with depth-first search and successively raise the limit.
However, rather than working with a depth limit, we use a limit for the
heuristic evaluation f (s).
This process is called the IDA∗-algorithm.
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Two Heuristics for the 8-Puzzle

In A∗, or IDA∗, we have a search algorithm with many good
properties.

It is complete and optimal.
It works with heuristics, and therefore can significantly reduce the
computation time needed to find a solution.

For the 8-puzzle there are two simple admissible heuristics.

The heuristic h1 simply counts the number of squares that are not in
the right place. This heuristic is admissible.
Heuristic h2 measures the Manhattan distance: for every square the
horizontal and vertical distances to that square’s location in the goal
state are added together. This value is then summed over all squares.

The Manhattan distance of the two
states is calculated as h2(s) = 1+1+
1 + 1 + 2 + 0 + 3 + 1 = 10.
The admissibility of the Manhattan
distance is also obvious.
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Summary: Heuristics and Solvable Problems

Of the various search algorithms for uninformed search, iterative
deepening is the only practical one because it is complete and can get
by with very little memory.

For difficult combinatorial search problems, even iterative deepening
usually fails due to the size of the search space.

Heuristic search reduces the effective branching factor.

The IDA∗-algorithm is complete and uses little memory.

Heuristics give a significant advantage if the heuristic is “good”.

The task is to find heuristics that reduce the effective branching
factor.

Machine learning techniques may automatically generate heuristics.
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Summary: Heuristics and Unsolvable Problems

Heuristics have no performance advantage for unsolvable problems
because the unsolvability of a problem can only be established when
the complete search tree has been searched through.

For decidable problems such as the 8-puzzle this means that the
whole search tree must be traversed up to a maximal depth whether a
heuristic is being used or not.

In this case the heuristic is always a disadvantage because of the extra
computational cost of evaluating the heuristic.

For undecidable problems such as the proof of PL1 formulas, the
search tree can be infinitely deep. This means that, in the unsolvable
case, the search potentially never ends.
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Subsection 4

Games With Opponents
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Deterministic and Observable Zero-Sum Games

Games for two players, such as chess, checkers, Othello, and Go are
deterministic because every action (a move) results in the same child
state given the same parent state.

In contrast, backgammon is non-deterministic because its child state
depends on the result of a dice roll.

These games are all observable because every player always knows the
complete game state.

Many card games, such as poker, are only partially observable
because the player does not know the other players’ cards, or only has
partial knowledge about them.

The problems discussed so far in this chapter were deterministic and
observable.

We continue with deterministic and observable games that, in
addition are zero-sum games, i.e., games in which every gain one
player makes means a loss of the same value for the opponent.

This is true of the games chess, checkers, Othello, and Go.
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Case For Heuristics

The goal of each player is to make optimal moves that result in
victory.

In principle it is possible to construct a search tree and completely
search through it (like with the 8-puzzle) for a series of moves that
will result in victory.

The effective branching factor may be so high that there is no chance
to fully explore the search tree.

In addition, because of time constraints, the search may have to be
limited to an appropriate depth in the tree.

Since among the leaf nodes of this depth-limited tree there may be no
solution nodes, a heuristic evaluation function B for positions has to
be used.
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Minimax Search

Max: a player whose game we wish to optimize;

Min: Max’s opponent. Min’s moves are not known in advance, and
thus neither is the actual search tree.

We assume that the opponent always makes the best move he can.

The higher the evaluation B(s) for position s, the better position s is
for the player Max and the worse it is for his opponent Min.

Max tries to maximize the evaluation of his moves, whereas Min
makes moves that result in as low an evaluation as possible.

A search tree with four half-moves and evaluations of all leaves:
The evaluation of an inner

node is derived recursively as

the maximum or minimum of

its child nodes, depending on

the node’s level.
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Alpha-Beta Pruning: Ideas

Alpha-beta pruning: depth-first search up to a preset depth limit.

The search tree is searched through from left to right.

In the minimum nodes the minimum is generated from the minimum
value of the successor nodes and, similarly, in the maximum nodes.

Perform an analysis of possibilities to prune subtrees when further
processing can be avoided.
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Alpha-Beta Pruning: Example I

Look at node a:

All other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤ 1.

It could even become smaller still, but that is irrelevant since the
maximum is already ≥ 3 one level above.

Regardless of how the evaluation of the remaining successors turns
out, the maximum will keep the value 3.
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Alpha-Beta Pruning: Example II

Look at node b:

Since the first child of b has the value 2, the minimum to be
generated for b can only be ≤ 2.

But the maximum at the root node is already sure to be ≥ 3.

This cannot be changed by values ≤ 2.

Thus the remaining subtrees of b can be pruned.

The same reasoning applies for the node c. However, the relevant
maximum node is not the direct parent, but the root node.
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Alpha-Beta Pruning: The General Case

This can be generalized:

At every leaf node the evaluation is calculated.
For every maximum node the current largest child value is saved in α.
For every minimum node the current smallest child value is saved in β.
If at a minimum node k the current value β ≤ α, where α is the largest
value of a maximum node in the path from the root to k , then the
search under k can end.
If at a maximum node ℓ the current value α ≥ β, where β is the
smallest value of a minimum node in the path from the root to ℓ, then
the search under ℓ can end.

We present the algorithm next; It is an extension of depth-first search
with two functions which are called in alternation.
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Alpha-Beta Pruning: The Algorithm

AlphaBetaMax(Node,α, β)

If DepthLimitReached(Node) Return(Rating(Node))
NewNodes = Successors(Node)
While NewNodes 6= ∅
α = Maximum(α,AlphaBetaMin(First(NewNodes), α, β))
If α ≥ β Return(β)
NewNodes = Rest(NewNodes)

Return(α)

AlphaBetaMin(Node,α, β)

If DepthLimitReached(Node) Return(Rating(Node))
NewNodes = Successors(Node)
While NewNodes 6= ∅
β = Minimum(β,AlphaBetaMax(First(NewNodes), α, β))
If β ≤ α Return(α)
NewNodes = Rest(NewNodes)

Return(β)
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Alpha-Beta Pruning: Complexity

The computation time saved by alpha-beta pruning heavily depends
on the order in which child nodes are traversed.

In the worst case, alpha-beta pruning does not offer any advantage.
For a constant branching factor b the number nd of leaf nodes to
evaluate at depth d is equal to nd = bd .

In the best case, when the successors of maximum nodes are
descendingly sorted and the successors of minimum nodes are
ascendingly sorted, the effective branching factor is reduced to

√
b.

Then only nd =
√
b
d
= bd/2 leaf nodes would be created.

Thus, the depth limit and the search horizon are doubled.

However, this is only true in the case of optimally sorted successors
because the child nodes’ ratings are unknown at the time when they
are created.

If the child nodes are randomly sorted, then the branching factor is

reduced to b3/4 and the number of leaf nodes to nd = b
3
4
d .
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Further Improvements and Non-Determinism

To double the search depth as mentioned above, we would need the
child nodes to be optimally ordered, which is not the case in practice.

If it had been, the search would be unnecessary.
With a simple trick we can get a relatively good node ordering.
We combine alpha-beta pruning with iterative deepening over the
depth limit.
Thus at every new depth limit we can access the ratings of all nodes of
previous levels and order the successors at every branch.

Minimax search can be generalized to all games with
non-deterministic actions, such as backgammon.

Each player rolls before his move, which is influenced by the result of
the dice roll.
In the game tree there are three types of levels in the sequence

Max, dice, Min, dice, . . .

where each dice roll node branches six ways.
Because we cannot predict the value of the die, we average the values
of all rolls and conduct the search with the average values.
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Subsection 5

Heuristic Evaluation Functions

George Voutsadakis (LSSU) Artificial Intelligence February 2014 58 / 62



Search, Games and Problem Solving Heuristic Evaluation Functions

Evaluation Functions: Relying on Human Expertise

How do we find a good heuristic evaluation function for the task of
searching?

The classical way uses the knowledge of human experts.
The knowledge engineer formalizes the expert’s implicit knowledge in
the form of a computer program.

In the first step, experts are questioned about the most important
factors in the selection of an action.
Then an attempt is made to quantify these factors.
We obtain a list of relevant features or attributes.
These are then (in the simplest case) combined into a linear evaluation
function B(s) for states.
In the next step the weights of all features must be determined.
These are set intuitively after discussion with experts, then changed
after each game based on positive and negative experience.
The fact that this optimization process is very expensive and
furthermore that the linear combination of features is very limited
suggests the use of machine learning.
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Evaluation Functions: Chess

A typical linear evaluation function for chess:

material(team) = num pawns(team) · 100 + num knights(team) · 300
+num bishops(team) · 300 + num rooks(team) · 500
+num queens(team) · 900

material = material(own team)−material(opponent)

B(s) = a1 ·material + a2 · pawn structure + a3 · king safety
+a4 · knight in center + a5 · bishop diagonal coverage + . . .

Nearly all chess programs make a similar evaluation for material.

However, there are big differences for all other features.
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Evaluation Functions: Using Machine Learning

Suppose we want to automatically optimize the weights of the
evaluation function B(s) for chess.

In this approach the expert is only asked about the relevant features
f1(s), . . . , fn(s) for game state s.

Then a machine learning process is used with the goal of finding an
evaluation function that is as close to optimal as possible.

We start with an initial pre-set evaluation function (determined by the
learning process), and then let the chess program play.
At the end of the game a rating is derived from the result (victory,
defeat, or draw).
Based on this rating, the evaluation function is changed with the goal
of making fewer mistakes next time.

In principle, the same thing that is done by the developer is now being
taken care of automatically by the learning process.

This automation of the learning cycle is difficult in practice.
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Evaluation Functions: Credit Assignment Problem

A central problem with improving the position rating based on won or
lost matches is known today as the credit assignment problem.

Rating occurs at the end of the game, but individual moves are not
rated, so actions do not receive any feedback but until the very end.

How should feedback be given for past actions?

And how should actions be improved based on feedback?

The field of reinforcement learning concerns itself with such questions.

Most of the best chess computers in the world today still work
without machine learning techniques for two reasons:

Reinforcement learning algorithms developed up to now require a great
deal of computation time given large state spaces.
The manually created heuristics of high performance chess computers
are already heavily optimized. So only very good learning systems can
lead to improvements.
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