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Subsection 1

The Flying Penguin
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Reasoning With Uncertainty The Flying Penguin

Tweety, the Flying Penguin

Consider the statements:
1 Tweety is a penguin;
2 Penguins are birds;
3 Birds can fly.

Formalized in PL1, they yield the knowledge base KB:

penguin(tweety)
penguin(x) ⇒ bird(x)
bird(x) ⇒ fly(x)

With resolution, KB ⊢ fly(tweety).

This formalization of the flight attributes of penguins is insufficient.

If we add the statement “Penguins cannot fly”, i.e.,

penguin(x) ⇒ ¬fly(x),

¬fly(tweety) can be derived, but fly(tweety) is still true.

The knowledge base becomes therefore inconsistent.
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Reasoning With Uncertainty The Flying Penguin

Monotonic Logic

The logic PL1 is monotonic: Although a formula explicitly stating
that penguins cannot fly was added, the opposite can still be derived.

Definition of Monotonicity

A logic is called monotonic if, for an arbitrary knowledge base KB and an
arbitrary formula ϕ, the set of formulas derivable from KB is a subset of
the formulas derivable from KB ∪ {ϕ}.

After extending a set of formulas all previously derivable statements
can still be proved and, potentially, additional statements.

For the Tweety example this means that the extension of the
knowledge base will never achieve the desired goal.
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Reasoning With Uncertainty The Flying Penguin

Tweety Logically Accommodated...

We modify KB by replacing the obviously false statement “(all) birds
can fly” with the more exact statement “(all) birds except penguins
can fly” and obtain KB2:

penguin(tweety)
penguin(x) ⇒ bird(x)
bird(x) ∧ ¬penguin(x) ⇒ fly(x)
penguin(x) ⇒ ¬fly(x)

Now we can derive ¬fly(tweety), but not fly(tweety), because for that
we would need ¬penguin(tweety), which is not derivable.
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Reasoning With Uncertainty The Flying Penguin

...Normal Birds Left Logically Destitute

As long as there are only penguins in this world, peace reigns. Every
normal bird, however, immediately causes problems.
We add the sea duck Seamore and get KB3.
Flight attributes of Seamore are a mystery because we forgot to say
“sea ducks are not penguins”, so we extend to KB4:

seaduck(seamore)
seaduck(x) ⇒ bird(x)
seaduck(x) ⇒ ¬penguin(x)
penguin(tweety)
penguin(x) ⇒ bird(x)
bird(x) ∧ ¬penguin(x) ⇒ fly(x)
penguin(x) ⇒ ¬fly(x)

The fact that sea ducks are not penguins, which is self-evident to
humans, must be explicitly added.
In fact, for every type of bird (except for penguins) we must say that
it is not a member of penguins.
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Reasoning With Uncertainty The Flying Penguin

More Idiosyncratic Logics

For every object in KB, in addition to its attributes, all of the
attributes it does not have must be listed.

To solve this problem non-monotonic logics have been developed.
Default logics allow objects to be assigned attributes which are valid as
long as no other rules are available.

Monotony can be especially inconvenient in complex planning
problems in which the world can change.

If for example a blue house is painted red, then afterwards it is red. A
knowledge base such as

color(house, blue), paint(house, red), paint(x , y) ⇒ color(x , y),

leads to the conclusion that, after painting, the house is red and blue.

This problem in planning is known as the frame problem.

A solution for this is the situation calculus.
An interesting approach for modeling problems such as the Tweety
example is probabilistic logic based on probability theory.

The statement“all birds can fly” is false.
A statement like“almost all birds can fly” is correct.
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Subsection 2

Modeling Uncertainty
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Reasoning With Uncertainty Modeling Uncertainty

Probabilistic Statements

Two-valued logic can and should only model circumstances in which
the only relevant truth values are true and false.

For many tasks in everyday reasoning, two-valued logic is not
expressive enough.

The rule bird(x) ⇒ fly(x) is true for almost all birds, but for some it is
false.

Working with probabilities allows exact formulation of uncertainty.

The statement “99% of all birds can fly” can be formalized by the
expression P(bird(x) ⇒ fly(x)) = 0.99.

Later, we will see that, in this case, it is preferable to work with
conditional probabilities such as P(fly|bird) = 0.99.

With the help of Bayesian networks, complex applications with many
variables can also be modeled.
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Reasoning With Uncertainty Modeling Uncertainty

Fuzzy Statements and Probability Densities

A different model is needed for the statement “The weather is nice”,
since it makes little sense to speak in terms of true and false.

The variable weather is nice should not be modeled as binary, but
rather continuously with values, for example, in the interval [0, 1]:
weather is nice = 0.7 means “The weather is fairly nice”.

Fuzzy logic was developed for this type of continuous (fuzzy) variable.
Probability theory also offers the possibility of making statements
about the probability of continuous variables.

A statement “There is a high probability that there will be some rain”
could be formulated as a probability density P(rainfall = X ) = Y :
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Reasoning With Uncertainty Modeling Uncertainty

Hierarchy of Propositional Formalisms

Probabilistic and fuzzy logic, combined with inductive statistics and
the theory of Bayesian networks, make it possible to answer arbitrary
probabilistic queries.

Probability theory as well as fuzzy logic are not directly comparable to
predicate logic because they do not allow variables or quantifiers.

They can thus be seen as extensions of propositional logic:

Formalism # of Truth Values Probability?
Propositional logic 2 no
Fuzzy logic ∞ no
Discrete probabilistic logic n yes
Continuous probabilistic logic ∞ yes
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Reasoning With Uncertainty Modeling Uncertainty

Uncertain and Incomplete Knowledge

Reasoning under uncertainty with limited resources plays a key role in
both everyday situations and in many technical applications of AI.

In these areas heuristic processes are very important as, e.g., in
looking for a parking space in city traffic.

Heuristics alone are often not enough, especially when a quick
decision is needed given incomplete knowledge.

Example: A pedestrian crosses the street and an auto quickly
approaches. To prevent a serious accident, the pedestrian must react
quickly. He is not capable of worrying about complete information
about the state of the world. He must come to an optimal decision
under the given constraints (little time and little, potentially
uncertain, knowledge).

In similar situations a method for reasoning with uncertain and
incomplete knowledge is needed.
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Reasoning With Uncertainty Modeling Uncertainty

Uncertainty and Incompleteness in Medical AI

How could we reason under uncertainty in simple medical diagnosis?

If a patient experiences pain in the right lower abdomen and a raised
white blood cell (leukocyte) count, this raises the suspicion that it
might be appendicitis. Using propositional logic:

Stomach pain right lower ∧ Leukocytes > 10000 → Appendicitis

If we know that Stomach pain right lower ∧ Leukocytes > 10000 is
true, then we can use modus ponens to derive Appendicitis.

This model is clearly too coarse.

In 1976, Shortliffe and Buchanan recognized this when building their
medical expert system MYCIN. They developed a calculus using
so-called certainty factors, which allowed the certainty of facts and
rules to be represented.

A rule A → B is assigned a certainty factor β, written A →β B .

The semantics of a rule A →β B is defined via the conditional
probability P(B |A) = β.
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Reasoning With Uncertainty Modeling Uncertainty

Uncertainty and Incompleteness in Medical AI (Cont’d)

In the above example, the rule could then read

Stomach pain right lower ∧ Leukocytes > 10000 →0.6 Appendicitis.

For reasoning with this kind of formulas, they used a calculus for
connecting the factors of rules.

It was shown that with this calculus inconsistent results could be
derived.

There were attempts to solve this problem by using non-monotonic
logic and default logic, which proved unsuccessful.

The Dempster-Schäfer theory assigns a belief function Bel(A) to a
proposition A, whose value gives the degree of evidence for the truth
of A. But even this formalism has weaknesses.

Even fuzzy logic, with its successes in control theory, demonstrates
considerable weaknesses when reasoning under uncertainty in more
complex applications.
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Reasoning With Uncertainty Modeling Uncertainty

Probability Theory Offers Solutions

Probability theory has had more and more influence in AI.

In reasoning with Bayesian networks, or subjective probability, it has
become an indispensable tool in the AI toolbox.

Rather than implication as it is known in logic (material implication),
conditional probability is used, which models everyday causal
reasoning significantly better.

Reasoning with probability profits heavily from the fact that
probability theory is a well developed old branch of mathematics.

We
introduce the foundations needed for reasoning with probability;
present an example for reasoning with uncertain and incomplete
knowledge;
blend in, in a natural way, the method of maximum entropy (MaxEnt);
study reasoning with Bayesian networks;
show the relationship between the two methods.
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Subsection 3

Probability: The Basics
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Reasoning With Uncertainty Probability: The Basics

Sample Space, Events and Elementary Events

For a single roll of a gaming die (experiment), the probability of the
event “rolling a six” equals 1

6 , whereas the probability of the
occurrence “rolling an odd number” is equal to 1

2 .

Definition of Events and Elementary Events

The sample space Ω of an experiment is the finite set of all possible
outcomes of the experiment. Each individual outcome ω ∈ Ω (viewed as a
subset {ω} ⊆ Ω) is called an elementary event. An event is any subset
(containing, possibly, many outcomes) of the sample space.

Example (cont’d): For a single roll of one gaming die the sample
space is Ω = {1, 2, 3, 4, 5, 6}. So “rolling a 6” ({6}) is an elementary
event. “Rolling an even number” ({2, 4, 6}) is an event, but not an
elementary event. “Rolling a number smaller than five” ({1, 2, 3, 4})
is also an event that is not elementary.
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Reasoning With Uncertainty Probability: The Basics

Set Operations and Logical Connectives

Given two events A and B , A ∪ B is also an event.

Ω itself is the certain event (it always occurs), and the empty set ∅
is the impossible event (it never occurs).

If we view the events A,B ⊆ Ω as propositions “A occurs”, “B
occurs”, then, instead of A ∩ B , we may write A ∧ B .

Think, semantically, of the intersection of two sets being defined

x ∈ A∩B iff x ∈ A ∧ x ∈ B .

Similarly for other operations:

Set notation Propositional logic Description

A ∩ B A ∧ B Intersection/and

A ∪ B A ∨ B Union/or

A ¬A Complement/negation

Ω t Certain event/true

∅ f Impossible event/false

The variables are called random variables in probability theory.
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Reasoning With Uncertainty Probability: The Basics

Discrete Probabilities

The probability of “rolling a five or a six” is equal to 1
3 . This can be

described by P(facenumber ∈ {5, 6}) = P(face number =
5 ∨ face number = 6) = 1

3 .

Definition of Discrete Probability

Let Ω = {ω1, ω2, . . . , ωn} be a finite sample space. If all elementary events

are equiprobable, then the probability P(A) of the event A is P(A) = |A|
|Ω| .

So every elementary event has the probability 1
|Ω| .

To describe events we use variables with appropriate values.

For example, a variable eye color can take on the values green, blue,
brown. eye color = blue then describes an event.

For binary (boolean) variables, we usually write P(JohnCalls) instead
of (the formally correct) P(JohnCalls = t).
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Reasoning With Uncertainty Probability: The Basics

Properties of Discrete Probabilities

The probability of rolling an even number is

P(face number ∈ {2, 4, 6}) =
|{2, 4, 6}|

|{1, 2, 3, 4, 5, 6}|
=

3

6
=

1

2
.

The following important rules follow directly from the definition:

Theorem (Properties of Discrete Probabilities)

1 P(Ω) = 1.

2 P(∅) = 0.

3 For pairwise exclusive events A and B, P(A ∨ B) = P(A) + P(B).

4 P(A) + P(¬A) = 1.

5 For arbitrary events A and B, P(A ∨ B) = P(A) + P(B)− P(A ∧ B).

6 For A ⊆ B, P(A) ≤ P(B).

7 If A1, . . . ,An are pairwise disjoint and
⋃n

i=1 Ai = Ω, then
∑n

i=1 P(Ai ) = 1.
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Reasoning With Uncertainty Probability: The Basics

Joint Probability Distributions

We write P(A,B) for P(A ∧ B).

We call the vector (P(A,B),P(A,¬B),P(¬A,B),P(¬A,¬B))
consisting of the probabilities of all combinations of truth values for
A,B , a distribution or joint probability distribution of A and B . A
shorthand for this is P(A,B).

In the case of two variables:

P(A,B) B = t B = f

A = t P(A,B) P(A,¬B)
A = f P(¬A,B) P(¬A,¬B)

For the d variables X1, . . . ,Xd with n values each, the distribution
has the values P(X1 = x1, . . . ,Xd = xd ), where x1, . . . , xd can be any
of the n different values. The distribution can therefore be
represented as a d -dimensional matrix with a total of nd elements.
One of these nd values is redundant (why?) and the distribution is
characterized by nd − 1 unique values.
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Subsection 4

Conditional Probability
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Reasoning With Uncertainty Conditional Probability

Conditional Probability: An Example

The speed of 100 vehicles is measured. For each measurement it is
also noted whether the driver is a student.

Event Frequency Relative frequency

Vehicle observed 100 1

Driver is a student (S) 30 0.3

Speed too high (H) 10 0.1

Student and speeding (S ∧ H) 5 0.05

Do students speed more frequently than the average person, or than
non-students?

The answer is given by the conditional probability

P(H|S) =
|Driver is a student and speeding|

|Driver is a student|
=

5

30
=

1

6
≈ 0.17.

This is different from the a priori probability P(H) = 0.1 of speeding.
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Reasoning With Uncertainty Conditional Probability

Conditional Probability and Independence

Definition of Conditional Probability

For two events A and B , the conditional probability P(A|B) of A given

B is defined by

P(A|B) =
P(A ∧ B)

P(B)
.

The conditional probability P(A|B) can be understood as the
probability of A ∧ B when we only look at the event B , i.e.,
P(A|B) = |A∧B|

|B| .

In fact, P(A|B) =
P(A ∧ B)

P(B)
=

|A∧B|
|Ω|

|B|
|Ω|

=
|A ∧ B |

|B |
.
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Reasoning With Uncertainty Conditional Probability

Independence

Definition of Independent Events

If, for two events A and B , P(A|B) = P(A), then these events are called
independent.

Thus A and B are independent if the probability of the event A is not
influenced by the event B .

Theorem (Characterization of Independence)

For independent events A and B , it follows from the definition that
P(A ∧ B) = P(A) · P(B).

Example: For a roll of two independent dice, the probability of
“rolling two sixes” is

P(D1 = 6 ∧ D2 = 6) = P(D1 = 6) · P(D2 = 6) =
1

6
·
1

6
=

1

36
.

The first equation is true only when the two dice are independent.
If not, and, say, die 2 is bound to be always the same as die 1, then
P(D1 = 6 ∧D2 = 6) = 1

6 .
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Reasoning With Uncertainty Conditional Probability

The Product Rule and the Chain Rule

Note that by the definition of conditional probability, we get the
Product Rule:

P(A ∧ B) = P(A|B)P(B).

For n variables, this yields the Chain Rule:

P(X1, . . . ,Xn)
= P(Xn|X1, . . . ,Xn−1) · P(X1, . . . ,Xn−1)
= P(Xn|X1, . . . ,Xn−1) · P(Xn−1|X1, . . . ,Xn−2) · P(X1, . . . ,Xn−2)
= P(Xn|X1, . . . ,Xn−1) · P(Xn−1|X1, . . . ,Xn−2) · · · · · P(X2|X1) · P(X1)

=

n∑

i=1

P(Xi |X1, . . . ,Xi−1).

Thus, we can represent a distribution as a product of conditional
probabilities.
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Reasoning With Uncertainty Conditional Probability

Marginalization

Because A ⇔ (A ∧ B) ∨ (A ∧ ¬B) is true for binary variables A and
B , and the events A ∧ B and A ∧ ¬B are disjoint,

P(A) = P((A ∧ B) ∨ (A ∧ ¬B)) = P(A ∧ B) + P(A ∧ ¬B).

For arbitrary variables X1, . . . ,Xd , a variable, say Xd , can be
eliminated by summation over all of its values:

P(X1 = x1, . . . ,Xd−1 = xd−1) =∑

xd

P(X1 = x1, . . . ,Xd−1 = xd−1,Xd = xd ).

The application of this formula is called marginalization.

This summation can continue with the variables X1, . . . ,Xd−1 until
just one variable is left.

Marginalization can also be applied to the distribution P(X1, . . . ,Xd ).
The resulting distribution P(X1, . . . ,Xd−1) is called the marginal

distribution.
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Reasoning With Uncertainty Conditional Probability

Marginalization: An Example

We observe the set of all patients who come to the doctor with acute
stomach pain. For each patient the leukocyte value (abundance of
white blood cells) is measured. The variable Leuko is true if and only
if the leukocyte exceeds 10,000. This indicates an infection. The
variable App tells us whether the patient has appendicitis. The
distribution P(App, Leuko) is given by:

P(App, Leuko) App ¬App Total

Leuko 0.23 0.31 0.54
¬Leuko 0.05 0.41 0.46

Total 0.28 0.72 1

The sums of last row and column are arrived at by marginalization:

P(Leuko) = P(App, Leuko) + P(¬App, Leuko) = 0.54.

Since P(Leuko|App) = P(Leuko,App)
P(App) = 0.23

0.28 = 0.82, about 82% of all
appendicitis cases lead to a high leukocyte value.
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Reasoning With Uncertainty Conditional Probability

Bayes’ Theorem

Swapping A and B in the definition of conditionals yields

P(A|B) =
P(A ∧ B)

P(B)
and P(B |A) =

P(A ∧ B)

P(A)
.

Solving the two equations for P(A ∧ B) and setting them equal:

Bayes’ Theorem

P(A|B) =
P(B |A) · P(A)

P(B)
.

Example: Applying this to the appendicitis problem, we get

P(App|Leuko) =
P(Leuko|App) · P(App)

P(Leuko)
=

0.82 · 0.28

0.54
= 0.43.

Applying Bayes we can calculate P(A|B) if we know P(B |A).
The probabilistic inference mechanism associated with Bayes’
Theorem is the Principle of Maximum Entropy.
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Subsection 5

The Principle of Maximum Entropy
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Reasoning With Uncertainty The Principle of Maximum Entropy

Idea of Maximization of Entropy

We show, using an inference example, that a calculus for reasoning
under uncertainty can be realized using probability theory.

However, there are many limitations.

When too little knowledge is available to solve the necessary
equations, new ideas are needed.

The American physicist E.T. Jaynes in the 50’s claimed that given
missing knowledge, one can maximize the entropy of the desired
probability distribution.

He applied this principle to many examples and the method, as was
later further developed, has now many successful technological
applications.
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Reasoning With Uncertainty The Principle of Maximum Entropy

Probabilistic Inference

We want to derive an inference rule for uncertain knowledge that is
analogous to the modus ponens.

From the knowledge of A and the rule A ⇒ B , the conclusion B shall
be reached: A,A⇒B

B
.

Adapting to probability, we get

P(A) = α,P(B |A) = β

P(B) =?
.

If α, β are given, what should P(B) be?

By marginalization we obtain

P(B) = P(A,B) + P(¬A,B) = P(B |A) · P(A) + P(B |¬A) · P(¬A).

P(A),P(¬A),P(B |A) are known, but P(B |¬A) is not.

We cannot make an exact statement about P(B), but we can
estimate P(B) ≥ P(B |A) · P(A).
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Estimating Missing Probabilities

We now consider the distribution

P(A,B) = (P(A,B),P(A,¬B),P(¬A,B),P(¬A,¬B)).

Introduce for shorthand the four unknowns

p1 = P(A,B), p2 = P(A,¬B), p3 = P(¬A,B), p4 = P(¬A,¬B).

To calculate the four unknowns, four equations are needed:
One equation is already known in the form of the normalization
condition p1 + p2 + p3 + p4 = 1.
Since P(A) = α, P(B|A) = β, we get P(A,B) = P(B|A) · P(A) = αβ.

Also P(A) = P(A,B) + P(A,¬B) = p1 + p2.

We get p1 = αβ

p1 + p2 = α

p1 + p2 + p3 + p4 = 1

We obtain p2 = α(1 − β), p3 + p4 = 1− α.
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What to do about p3 and p4?

To obtain a definite solution despite this missing knowledge, we use
the given equation as a constraint for the solution of an optimization
problem.

We are looking for a distribution p (for p3, p4) which maximizes the
entropy

H(p) = −

n∑

i=1

pi ln pi = −p3 ln p3 − p4 ln p4,

under the constraint p3 + p4 = 1− α.

Why exactly should the entropy function be maximized? Instead of
fixing an ad hoc value for p3 or p4 and solve for the other, it is better
to determine the values p3 and p4 such that the information added is
minimal.

Maximization of entropy minimizes the information content of the
distribution.
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Reasoning With Uncertainty The Principle of Maximum Entropy

Maximizing the Entropy

To determine the maximum of the entropy under the constraint
p3 + p4 − 1 + α = 0, we use the method of Lagrange multipliers.

The Lagrange function reads
L = − p3 ln p3 − p4 ln p4 + λ(p3 + p4 − 1 + α).

Taking the partial derivatives with respect to p3 and p4 we obtain

∂L

∂p3
= − ln p3 − 1 + λ = 0

∂L

∂p4
= − ln p4 − 1 + λ = 0

So p3 = p4 =
1−α
2 .

This yields
P(B) = P(A,B) + P(¬A,B) = p1 + p3 = αβ + 1−α

2 = α(β − 1
2) +

1
2 .

Substituting in α and β yields P(B) = P(A)(P(B |A)− 1
2) +

1
2 .
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Looking at Some Specific Cases

P(B) = P(A)(P(B |A)− 1
2) +

1
2 .

P(B) is shown below for various
values of P(B |A).

When P(B) and P(B |A) are
{0, 1}-valued we obtain modus
ponens. E.g., when A and B |A are
both true, B is also true.

If P(A) = 0, ¬A is true. Modus ponens cannot be applied, but our
formula gives 1

2 for P(B) irrespective of P(B |A). When A is false, we
know nothing about B , which reflects our intuition exactly.

If P(A) = 1 (A is true) and P(B |A) = 0 (A ⇒ B false), then
A ⇒ ¬B is true, so B is false. Modus ponens holds again!

The horizontal line in the figure means that we cannot make a
prediction about B in the case of P(B |A) = 1

2 .
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Maximum Entropy and Indifference

Theorem (Maximum Entropy)

Given a consistent set of linear probabilistic equations as constraints, there
exists a unique maximum for the entropy function. The resulting MaxEnt
distribution has minimum information content under the constraints.

In the preceding calculation for P(B), the two values p3 and p4
always occur symmetrically.

Definition of Indifference

If an arbitrary exchange of two or more variables in the Lagrange equations
results in equivalent equations, these variables are called indifferent.

The indifference of p3, p4 leads to them being set equal by MaxEnt.

Theorem (Entropy for Indifferent Variables)

If a set of variables {pi1 , . . . , pik} is indifferent, then the maximum of the
entropy under the given constraints occurs when pi1 = pi2 = · · · = pik .
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Max Entropy Under No Constraints

What if only p1 + p2 + · · ·+ pn = 1 is known?

All variables are indifferent. So p1 = p2 = · · · = pn = 1
n
.

This means that given a complete lack of knowledge, all worlds are
equally probable, i.e., the distribution is uniform.

Example: For two variables A and B it would be the case that
P(A,B) = P(A,¬B) = P(¬A,B) = P(¬A,¬B) = 1

4 , from which
P(A) = P(B) = 1

2 and P(B |A) = 1
2 .

If the value of a condition deviates from the one derived from the
uniform distribution, the probabilities of the worlds shift.

Example: If P(B |A) = β is known, P(A,B) = P(B |A)P(A) = βP(A).
So p1 = β(p1 + p2) and we get the constraints:

βp2 + (β − 1)p1 = 0
p1 + p2 + p3 + p4 − 1 = 0

The Lagrange equations are complicated, so a numeric solution yields
p3 = p4, which was expected since p3, p4 are indifferent.
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Conditional Probability Versus Material Implication

The conditional probability and classical implication for the extreme
cases of probabilities zero and one are compared:

A B A ⇒ B P(A) P(B) P(B|A)
t t t 1 1 1
t f f 1 0 0
f t t 0 1 Undefined
f f t 0 0 Undefined

In both cases with false premises (which, intuitively, are critical
cases), P(B |A) is undefined, which makes sense.

What is P(B |A) when P(A) = α and P(B) = β are given and no
other information is known?
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P(B |A) when P(A) = α and P(B) = β

We maximize entropy.

We set
p1 = P(A,B), p2 = P(A,¬B), p3 = P(¬A,B), p4 = P(¬A,¬B).

Then, obtain as constraints p1 + p2 = α

p1 + p3 = β

p1 + p2 + p3 + p4 = 1

We calculate using entropy maximization: p1 = αβ, p2 = α(1 − β),
p3 = β(1 − α), p4 = (1− α)(1 − β).

From p1 = αβ, it follows that P(A,B) = P(A) · P(B), which means
that A and B are independent.

Due to lack of constraints connecting A and B , the MaxEnt principle
results in the independence of these variables.

If P(A) 6= 0, from the definition P(B |A) = P(A,B)
P(A) and the

independence of A and B , it follows P(B |A) = P(B).
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MaxEnt Systems

Due to the nonlinearity of the entropy function, MaxEnt optimization
usually cannot be carried out symbolically.

Two systems were developed for numerical entropy maximization

SPIRIT (Symmetrical Probabilistic Intensional Reasoning in Inference
Networks in Transition) was built at FernUniversität Hagen.
PIT (Probability Induction Tool) was developed at the Munich
Technical University.
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The PIT MaxEnt System

PIT uses the the sequential quadratic programming (SQP) method to
find an extremum of the entropy function under the given constraints.

As input, PIT expects data containing the constraints.

The constraints P(A) = α and P(B |A) = β have the form

var A{t, f },B{t, f };
P([A = t]) = 0.6;
P([B = t]|[A = t]) = 0.3;
QP([B = t]);
QP([B = t]|[A = t]);

The query QP([B = t]) indicates that P(B) is the desired value.
As a result we get

Nr. Truth value Probability Query
1 UNSPECIFIED 3.800e − 01 QP([B = t]);
2 UNSPECIFIED 3.000e − 01 QP([A = t]−| >[B = t]);
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The Tweety Example in PIT

We show, using Tweety, that probabilistic reasoning and, in
particular, MaxEnt are non-monotonic and model everyday reasoning:

We model the relevant rules:
P(bird|penguin) = 1 “penguins are birds”
P(flies|bird) ∈ [0.95, 1] “(almost all) birds can fly”
P(flies|penguin) = 0 “penguins cannot fly”

We input in PIT:

var penguin{yes, no}, bird{yes, no}, flies{yes, no};
P([bird = yes]|[penguin = yes]) = 1;
P([flies = yes]|[bird = yes]) IN [0.95, 1];
P([flies = yes]|[penguin = yes]) = 0;
QP([flies = yes]|[penguin = yes]);

We get back the correct answer

Nr. Truthvalue Probability Query
1 UNSPECIFIED 0.000e + 00 QP([penguin = yes]−| >[flies = yes]);
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Subsection 6

Reasoning With Bayesian Networks
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Why Bayesian Networks?

If, in probability modeling, d variables X1, . . . ,Xd with n values each
are used, then the associated probability distribution has nd total
values.

This means that in the worst case the memory use and computation
time for determining the specified probabilities grows exponentially
with the number of variables.

In practice the applications are usually very structured and the
distribution contains many redundancies.

So memory and time requirements can be heavily reduced with the
appropriate methods.

The use of Bayesian networks is one of the AI techniques which have
been successfully used in practice to model applications with such
redundancies.

Bayesian networks utilize knowledge about the independence of (some
pairs of) variables to simplify the model.
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Independent Variables

In the simplest case, all variables are pairwise independent and,
therefore, P(X1, . . . ,Xd ) = P(X1) · P(X2) · · · · · P(Xd).

All entries in the distribution can thus be calculated from the d values
P(X1), . . . ,P(Xd ).

Interesting applications, however, cannot be modeled because
conditional probabilities become trivial: Since P(A|B) = P(A,B)

P(B) =
P(A)P(B)

P(B) = P(A), all conditional probabilities are reduced to the a
priori probabilities.

The situation becomes more interesting when only a portion of the
variables are independent or independent under certain conditions.

For reasoning in AI, the dependencies between variables happen to be
important and must be utilized.

We illustrate reasoning with Bayesian networks using a simple
example by Judea Pearl, a UCLA pioneer in Bayesian Networks.
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The Alarm Example I

Bob has an alarm system installed in his house to protect against
burglars. He cannot hear the alarm when he is working at the office,
so he has asked his two neighbors John and Mary to call him at his
office if they hear his alarm. After a few years Bob knows how reliable
John and Mary are and models their calling behavior using conditional
probability as follows:

P(J|Al) = 0.90, P(M|Al) = 0.70,
P(J|¬Al) = 0.05, P(M|¬Al) = 0.01.

Mary is hard of hearing so she fails to hear the alarm more often than
John.

John sometimes mixes up the alarm at Bob’s house with the alarms
at other houses.
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The Alarm Example II

The alarm is triggered by a burglary, but can also be triggered by a
(weak) earthquake. These relationships are modeled by

P(Al|Bur,Ear) = 0.95, P(Al|Bur,¬Ear) = 0.94,
P(Al|¬Bur,Ear) = 0.29, P(Al|¬Bur,¬Ear) = 0.001,

as well as the a priori probabilities P(Bur) = 0.001 and
P(Ear) = 0.002.

These two variables are independent:

Earthquakes do not depend on the habits of burglars.
Burglars do not plan based on earthquake predictions.

Queries are now made against this knowledge base. For example, Bob
might be interested in P(Bur|J ∨M), P(J|Bur) or P(M|Bur).
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Graphical Representation

A graphical representation of the Bayesian network:

Each node represents a variable and
every directed edge a statement of
conditional probability.

The edge from Al to J represents
the two values P(J|Al) and
P(J|¬Al), which is given in the
form of a CPT (conditional
probability table).

The CPT of a node lists all the conditional probabilities of the node’s
variable conditioned on all the nodes connected by incoming edges.
Why are there no other edges included besides the four that are
drawn in?

Nodes Bur and Ear are not linked since the variables are independent.
All other nodes have a parent node, which makes the reasoning a little
more complex.
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Conditional Independence

Conditionally Independent Random Variables

Two variables A and B are called conditionally independent given C if
P(A,B |C ) = P(A|C ) · P(B |C ).

Example: Look at nodes J and M in the alarm example, which have
the common parent node Al. If John and Mary independently react to
an alarm, then the two variables J and M are independent given Al,
that is: P(J,M|Al) = P(J|Al) · P(M|Al).

Because of the conditional independence of the two variables J and M,
no edge between these two nodes is added.
However, J and M are not independent (unconditionally).

The relationship between J and Bur is similar, because John does not
react to a burglary, but only to the alarm. Thus J and Bur are
independent given Al and P(J,Bur|Al) = P(J|Al) · P(Bur|Al).

Given an alarm, the variables J and Ear, M and Bur, as well as M and
Ear are also independent.
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Characterizing Conditional Independence

Theorem (Characterization of Conditional Independence)

The following equations are pairwise equivalent, which means that each
individual equation describes the conditional independence for the variables
A and B given C .

P(A,B |C ) = P(A|C ) · P(B |C ),
P(A|B ,C ) = P(A|C ),
P(B |A,C ) = P(B |C ).

On one hand, using conditional independence we can conclude that

P(A,B ,C ) = P(A,B |C )P(C ) = P(A|C )P(B |C )P(C ).

On the other hand, the product (chain) rule gives us

P(A,B ,C ) = P(A|B ,C )P(B |C )P(C ).

Thus P(A|B ,C ) = P(A|C ) is equivalent to the first equation.

The last equation is obtained similarly.
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Sensitivity of John and Mary I

Bayesian networks can be used for reasoning.

Bob can evaluate the sensitivity of John and Mary’s reporting.

Using the product rule and the conditional independence of J and Bur
given Al:

P(J|Bur) =
P(J,Bur)

P(Bur)
=

P(J,Bur,Al) + P(J,Bur,¬Al)

P(Bur)

and
P(J,Bur,Al) = P(J|Bur,Al)P(Al|Bur)P(Bur)

= P(J|Al)P(Al|Bur)P(Bur).

Now, we get P(J|Bur)

=
P(J|Al)P(Al|Bur)P(Bur) + P(J|¬Al)P(¬Al|Bur)P(Bur)

P(Bur)
= P(J|Al)P(Al|Bur) + P(J|¬Al)P(¬Al|Bur).

Here P(Al|Bur) and P(¬Al|Bur) are missing.
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Sensitivity of John and Mary II

P(Al|Bur) and P(¬Al|Bur) are missing. Therefore we calculate

P(Al|Bur) = P(Al,Bur)
P(Bur) = P(Al,Bur,Ear)+P(Al,Bur,¬Ear)

P(Bur)

= P(Al|Bur,Ear)P(Bur)P(Ear)+P(Al|Bur,¬Ear)P(Bur)P(¬Ear)
P(Bur)

= P(Al|Bur,Ear)P(Ear) + P(Al|Bur,¬Ear)P(¬Ear)
= 0.95 · 0.002 + 0.94 · 0.998 = 0.94.

as well as P(¬Al|Bur) = 0.06 and use this to get
P(J|Bur) = 0.90.94 + 0.050.06 = 0.849.

Analogously we calculate P(M|Bur) = 0.659.

We now know that John calls for about 85% of all burglaries and
Mary for about 66% of all burglaries.

The probability of both of them calling is calculated, due to
conditional independence, as
P(J,M|Bur) = P(J|Bur)P(M|Bur) = 0.849 · 0.659 = 0.559.
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Probability that John or Mary Will Report

For the probability of a call from John or Mary

P(J ∨M|Bur) = P(¬(¬J,¬M)|Bur) = 1− P(¬J,¬M|Bur)
= 1− P(¬J|Bur)P(¬M|Bur) = 1− 0.051 = 0.948.

Bob thus receives notification for about 95% of all burglaries. Now to
calculate P(Bur|J), we apply the Bayes formula, which gives us

P(Bur|J) =
P(J|Bur)P(Bur)

P(J)
=

0.849 · 0.001

0.052
= 0.016.

Only about 1.6% of all calls from John are actually due to a burglary.

Because the probability of false alarms is five times smaller for Mary,
with P(Bur|M) = 0.056 we have significantly higher confidence given
a call from Mary.

Bob should only be seriously concerned about his home if both of
them call, because P(Bur|J,M) = 0.284.
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Conditioning: “Sliding in” a New Variable

We showed with

P(J|Bur) = P(J|Al)P(Al|Bur) + P(J|¬Al)P(¬Al|Bur)

how we can “slide in” a new variable.

This relationship holds in general for two variables A and B given the
introduction of an additional variable C and is called conditioning:

P(A|B) =
∑

c

P(A|B ,C = c)P(C = c |B).

If furthermore A and B are conditionally independent given C , this
formula simplifies to

P(A|B) =
∑

c

P(A|C = c)P(C = c |B).
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PIT, Bayesian Networks and MaxEnt

Inputting the following in PIT:

we receive the answer:

P([Burglary = t]|[John = t] AND [Mary = t]) = 0.2841.

It can be shown that on input of CPTs or equivalent rules, the
MaxEnt principle implies the same conditional independencies and,
thus, also the same answers as a Bayesian network.

Therefore, Bayesian networks are a special case of MaxEnt.
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JavaBayes and Hugin

JavaBayes has the graphical interface shown below:

With the graphical editor, nodes and edges can be manipulated and the
values in the CPTs edited.
The values of variables can be assigned with “Observe” and the values
of other variables called up with “Query”. The answers to queries then
appear in the console window.

The professional, commercial system Hugin is much more powerful:
It can use continuous variables in addition to discrete variables.
It can also learn Bayesian networks, that is, generate the network fully
automatically from statistical data.
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Probability Distributions vs Bayesian Networks

A compact Bayesian network is very clear and significantly more
informative for the reader than a full probability distribution.

In addition, it requires much less memory.

For the variables v1, . . . , vn with |v1|, . . . , |vn| different values each,

the distribution has a total of

n∏

i=1

|vi | − 1 independent entries.

In the alarm example the variables are all binary, so, for all variables
|vi | = 2, and the distribution has 25 − 1 = 31 independent entries.

For the number of independent entries for a Bayesian network: For a
node vi with ki parent nodes ei1 , . . . , eiki , the associated CPT has

(|vi | − 1)

ki∏

j=1

|eij | entries. Then all CPTs have
n∑

i=1

(|vi | − 1)

ki∏

j=1

|eij |

entries.

For the alarm example the result is then 2 + 2 + 4 + 1 + 1 = 10.
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A Rough Comparison

We have
n∏

i=1

|vi | − 1 vs.

n∑

i=1

(|vi | − 1)

ki∏

j=1

|eij |.

The comparison in memory complexity between the full distribution
and the Bayesian network becomes clearer if we assume all n variables
have the same number b of values and each node has k parent nodes.

Then the Bayesian Net equation can be simplified and all CPTs
together have n(b − 1)bk entries.

The full distribution contains bn − 1 entries.

A significant gain is only made if the average number of parent nodes
is much smaller than the number of variables. This means that the
nodes are only locally connected.

Because of the local connection, the network becomes modularized,
which - as in software engineering - leads to a reduction in complexity.
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Causality and Network Structure I

Construction of a Bayesian network usually proceeds in two stages:
1 Design of the network structure: usually performed manually.
2 Entering the probabilities in the CPTs: Manually entering the values is

very tedious. If a database is available, this step can be automated
through estimation by counting frequencies.

The alarm example: At the beginning we know the two causes
Burglary and Earthquake and the two symptoms John and Mary.

However, because John and Mary do not directly react to a burglar or
earthquake, rather only to the alarm, we add Alarm.

Adding edges starts with the causes (no parent nodes). In this case,
Burglary & Earthquake:
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Causality and Network Structure II

Now we must check whether Earthquake is independent of Burglary.
This is given, and thus no edge is added from Burglary to Earthquake.

Because Alarm is directly dependent on Burglary and Earthquake,
these variables are chosen next and an edge is added from both
Burglary and Earthquake to Alarm.

Then we choose John. Because Alarm and John are not independent,
an edge is added from Alarm to John. The same is true for Mary.
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Causality and Network Structure III

Now we must check whether John is conditionally independent of
Burglary given Alarm. If this is not the case, then another edge must
be inserted from Burglary to John.

We must also check whether edges are needed from Earthquake to
John and from Burglary or Earthquake to Mary. Because of
conditional independence, these four edges are not necessary.

Edges between John and Mary are also unnecessary because John and
Mary are conditionally independent given Alarm.

The structure of the Bayesian network heavily depends on the chosen
variable ordering: The order should reflect the causal relationship
from causes towards diagnosis variables to get a simple network.
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Semantics of the Networks

No edge is added to a Bayesian network between A and B when they
are independent or conditionally independent given a third variable C .

Suppose the Bayesian network has no cycles and the variables are
numbered such that no variable has a lower number than any variable
that precedes it.

Then, using all conditional independencies, we have

P(Xn|X1, . . . ,Xn−1) = P(Xn|Parents(Xn)).

This equation expresses that an arbitrary variable Xi is conditionally
independent of its ancestors, given its parents.
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Fundamental Theorem of Bayesian Networks

Theorem (Conditional Independence in Bayesian Networks)

A node in a Bayesian network is condi-
tionally independent of all non-successor
nodes, given its parents.

The chain rule now simplifies:

P(X1, . . . ,Xn) =

n∑

i=1

P(Xi |X1, . . . ,Xi−1) =

n∑

i=1

P(Xi |Parents(Xi )).
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Definition of Bayesian Networks

We now know the most important concepts and foundations of
Bayesian networks:

Definition of Bayesian Network

A Bayesian network is defined by:

A set of variables and a set of directed edges between these variables.

Each variable has finitely many possible values.

The variables together with the edges form a directed acyclic graph

(DAG). A DAG is a graph without cycles.

For every variable A the CPT (table of conditional probabilities
P(A|Parents(A))) is given.

Two variables A and B are conditionally independent given C if
P(A,B |C ) = P(A|C ) · P(B |C ) or, equivalently, P(A|B ,C ) = P(A|C ).
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The Properties of Bayesian Networks

The following rules are true:

Bayes’ Theorem: P(A|B) = P(B|A)·P(A)
P(B)

Marginalization:
P(B) = P(A,B) + P(¬A,B) = P(B|A) · P(A) + P(B|¬A) · P(¬A)
Conditioning: P(A|B) =

∑
c P(A|B,C = c)P(C = c |B)

A variable in a Bayesian network is conditionally independent of all
non-successor variables given its parent variables.

If X1, . . . ,Xn−1 are not successors of Xn, then

P(Xn|X1, . . . ,Xn−1) = P(Xn|Parents(Xn)).

This condition must be honored during the construction of a network.

During construction the variables should be ordered according to
causality. First the causes, then the hidden variables, and, finally, the
diagnosis variables.

Chain rule: P(X1, . . . ,Xn) =
∑n

i=1 P(Xi |Parents(Xi ))
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