
Introduction to Artificial Intelligence

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Artificial Intelligence February 2014 1 / 63

Outline

1 Neural Networks
From Biology to Simulation
Hopfield Networks
Neural Associative Memory
Linear Networks with Minimal Errors
The Back-Propagation Algorithm
Support Vector Machines
Applications
Summary

George Voutsadakis (LSSU) Artificial Intelligence February 2014 2 / 63

Neural Networks

Neural Networks in AI

Neural networks are networks of nerve cells in the brain.

The human brain has about 100 billion nerve cells.

Nerve cells and their connections, are responsible for awareness,
associations, thoughts, consciousness, and the ability to learn.

McCulloch and Pitts introduced neural networks in AI in 1943 by
formulating a mathematical model of the neuron.

The field of modeling and simulation of neural networks may be
thought of as the bionics branch within AI.

Nearly all areas of AI attempt to recreate cognitive processes, such as
in logic or in probabilistic reasoning, but the tools used for modeling -
mathematics, programming languages, and digital computers - have
very little in common with the human brain.

With artificial neural networks, one starts from knowledge about the
function of natural neural networks and attempts to model, simulate,
and even reconstruct them in hardware.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 3 / 63

Neural Networks From Biology to Simulation

Subsection 1

From Biology to Simulation

George Voutsadakis (LSSU) Artificial Intelligence February 2014 4 / 63

Neural Networks From Biology to Simulation

Neuron Structure and Function

Each neuron has the following structure and function:

Besides the cell body, the neuron has an axon, which can make local
connections to other neurons over the dendrites.
The cell body can store small electrical charges. It is loaded by
incoming electrical impulses from other neurons. If the voltage exceeds
a certain threshold, the neuron will fire, i.e., unload its store by sending
a spike over the axon and the synapses to many other neurons.

Each of ∼ 1011 neurons is connected to ∼ 1000 to 10,000 other
neurons, (1014 connections), so it is very likely that we will never be
capable of understanding the diagram of the brain completely.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 5 / 63

Neural Networks From Biology to Simulation

Adaptability: Neurotransmitters

The structure of the brain is adaptive.

It continuously adapts according to the individual’s activities and
environmental influences.

The central role here is played by the synapses, which create the
connection between neurons.

These connections are not perfectly conductively connected, rather
there is a small gap, which the electrons cannot directly jump over.

This gap is filled with chemical substances, neurotransmitters, which
can be ionized by an applied voltage and then transport a charge over
the gap.

The function of the brain reacts very sensitively to changes of this
synaptic connection, e.g., through the influence of alcohol or drugs.

So it is not the actual neurons, which are adaptive, rather the
connections between them, that is, the synapses.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 6 / 63

Neural Networks From Biology to Simulation

Adaptability: Synapses

A synapse is made stronger (higher conductivity) by however much
more electrical current it must carry.

All neurons in the brain work asynchronously and in parallel, but,
compared to a computer, at very low speed (by a factor of 106).

This disadvantage is more than compensated for in many complex
cognitive tasks, such as image recognition, by the very high degree of
parallel processing in the network of nerve cells.

The connection to the outside world comes about through sensor
neurons, e.g., on the retina in the eyes.

It is still unclear how these principles make intelligent behavior
possible.

We use simulations via a simple mathematical model in attempting to
explain how cognitive tasks (e.g., pattern recognition) become
possible.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 7 / 63

Neural Networks From Biology to Simulation

The Mathematical Model

We use a discrete time scale.
The neuron i carries out the following calculation in a time step:

The “loading” of the activa-
tion potential is modeled by a
weighted sum of incoming sig-

nals:

n
∑

j=1

wijxj .

Then an activation function f is applied xi = f (

n
∑

j=1

wijxj);

The result is passed on to the neighboring neurons as output over the
synaptic weights.

For the activation function there are a number of possibilities.

The simplest choice is f (x) = x , i.e., the neuron calculates only the
weighted sum of the input values and passes this on.

This choice frequently leads to convergence problems because the
function f (x) = x is unbounded.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 8 / 63

Neural Networks From Biology to Simulation

Step and Sigmoid Functions

Often, the threshold function (Heaviside step function)

HΘ(x) =

{

0, if x < Θ
1, otherwise

is used.

Then the neuron output is xi =

{

0, if
∑n

j=1 wijxj < Θ

1, otherwise

This formula is identical to that of a perceptron with the threshold Θ.

The input neurons 1, . . . , n have only the function of variables which
pass on their externally set values x1, . . . , xn unchanged.

The step function is quite sensible for binary neurons , but for
continuous neurons the step function can be smoothed out by a
sigmoid function, e.g.,

f (x) =
1

1 + e−
x−Θ
T

:

George Voutsadakis (LSSU) Artificial Intelligence February 2014 9 / 63

Neural Networks From Biology to Simulation

The Hebb Rule

Modeling learning is central to the theory of neural networks.

One possibility of learning consists of strengthening a synapse
according to how many electrical impulses it must transmit.

This principle is known as the Hebb rule:

If there is a connection wij between neuron j and neuron i and repeated

signals are sent from neuron j to neuron i , which results in both

neurons being simultaneously active, then the weight wij is reinforced.

A possible formula for the weight change ∆wij is

∆wij = ηxixj ,

with the constant η (learning rate) determining the size of the
individual learning steps.

There are many modifications of this rule, which result in different
types of networks or learning algorithms.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 10 / 63

Neural Networks Hopfield Networks

Subsection 2

Hopfield Networks

George Voutsadakis (LSSU) Artificial Intelligence February 2014 11 / 63

Neural Networks Hopfield Networks

Hopfield’s Idea

According to the Hebb rule, the weights of neurons with values
between zero and one can only grow with time.

It is not possible for a neuron to weaken or even die with this rule.

Weakening can be modeled by a decay constant which weakens an
unused weight by a constant factor per time step, such as 0.99.

The model presented by Hopfield in 1982 uses binary neurons, but
with the two values −1 for inactive and 1 for active.

Using the Hebb rule a positive contribution to the weight is obtained
whenever two neurons are simultaneously active, but ∆wij is negative,
if only one of the two is active.

Hopfield networks are a beautiful and visualizable example of
autoassociative memory, in which

patterns can be stored;
to call up a saved pattern, it is sufficient to provide a similar pattern.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 12 / 63

Neural Networks Hopfield Networks

Formalizing a Hopfield Network

A classic application is handwriting recognition.

In the learning phase of a Hopfield network, N binary coded patterns,
saved in the vectors q1, . . . ,qN , are supposed to be learned.

Each component qji ∈ {−1, 1} of such a vector qj represents a pixel
of a pattern.

For vectors consisting of n pixels, a neural network with n neurons is
used, one for each pixel position.

The neurons are fully connected with the restriction that the weight
matrix is symmetric and all diagonal elements wii are zero.

This means that there is no connection between a neuron and itself.

The fully connected network includes
complex feedback loops, which are
called recurrences.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 13 / 63

Neural Networks Hopfield Networks

Dynamics of a Hopfield Network

N patterns can be learned by simply calculating all weights:

wij =
1

n

∑N
k=1 q

k
i q

k
j .

This formula points out an interesting relationship to the Hebb rule.

Each pattern in which the pixels i and j have the same value makes a
positive contribution to the weight wij .
Each other pattern makes a negative contribution.

Once all the patterns have been stored, the network can be used for
pattern recognition.

We give the network a new pattern x and update the activations of all

neurons according to the rule xi =

{

−1, if
∑n

j=1

j 6=i

wijxj < 0

1, otherwise
, until

the network becomes stable, that is, until no more activations change.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 14 / 63

Neural Networks Hopfield Networks

The Hopfield Network Algorithm

HopfieldAssociator(q)

Initialize all neurons: x = q

Repeat

i = Random(1, n)
Update neuron i according to xi =

{

−1, if
∑n

j=1

j 6=i

wijxj < 0

1, otherwiseUntil x converges

Return(x)

Example: We apply the algorithm to a pattern recognition to
recognize digits in a 10× 10 pixel field.

The network has 100 neurons with a total of 100·99
2 = 4950 weights.

First the patterns of the digits 1, 2, 3, 4 above are trained, i.e., the
weights are calculated using wij =

1
n

∑N
k=1 q

k
i q

k
j .

George Voutsadakis (LSSU) Artificial Intelligence February 2014 15 / 63

Neural Networks Hopfield Networks

The Digit Recognition Network

Then we put in a pattern with added noise and let the Hopfield
dynamics run until convergence.
In the figure, five snapshots of the networks development are shown
during recognition.

At 10% noise all four learned patterns are very reliably recognized.

Above about 20% noise the algorithm frequently converges to other
learned patterns or even to patterns which were not learned.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 16 / 63

Neural Networks Hopfield Networks

Expanding to 10 Digits

Now we save the digits 0 to 9 in the same network:

We test the network again with patterns having 10% inverted pixels:

The Hopfield iteration often does not converge to the most similar
learned state even for only 10% noise.

Evidently the network can securely save and recognize four patterns,
but for ten patterns its memory capacity is exceeded.

To understand this better, we turn to the theory of the network.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 17 / 63

Neural Networks Hopfield Networks

Hopfield Networks as Physical Systems I

In 1982, John Hopfield showed that this model is formally equivalent
to a physical model of magnetism.

Small elementary magnets,
called spins, mutually
influence each other over
their magnetic fields.

If we observe two such spins i and j , they interact over a constant wij

and the total energy of the system is E = −1
2

∑

i ,j wijxixj .

It is true that
wii = 0 because particles have no self-interaction;
wij = wji because physical interactions are symmetric.

A physical system in equilibrium takes on a (stable) state of minimal
energy and thus minimizes E (x, y).

If such a system is brought into an arbitrary state, then it moves
toward a state of minimal energy.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 18 / 63

Neural Networks Hopfield Networks

Hopfield Networks as Physical Systems II

The Hopfield dynamics xi =

{

−1, if
∑n

j=1

j 6=i

wijxj < 0

1, otherwise
updates the

state in each iteration such that, of the two states −1 and 1, the one
with smaller total energy is taken on.

Thus, they correspond exactly to this principle.

The contribution of the neuron i to total energy is −1
2xi

∑

j 6=i wijxj .

If
∑

j 6=i wijxj < 0, then xi = −1 results in a negative contribution to
the total energy, and xi = 1 in a positive contribution. For xi = −1,
the network takes on a state of lower energy than for xi = 1.

Analogously, we can assert that in the case of
∑

j 6=i wijxj ≥ 0, it must
be true that xi = 1.

If each individual iteration results in a reduction of the energy, then,
since there are only finitely many states, the network eventually
reaches a state of minimal energy.

What do these minima of the energy function mean?

George Voutsadakis (LSSU) Artificial Intelligence February 2014 19 / 63

Neural Networks Hopfield Networks

Transition to a Chaotic Phase

In the pattern recognition experiment, in the case of few learned
patterns the system converges to one of the learned patterns.
The learned patterns represent minima of the energy function.
If too many patterns are learned, then the system converges to
minima which do not correspond to learned patterns.
A transition from an ordered dynamics into a chaotic one occurs.
There is a phase transition at a critical number of learned patterns. If
the number of learned patterns exceeds this value, then the system
changes from the ordered phase into the chaotic.
In magnetic physics there is such a transition from the ferromagnetic
mode (all elementary magnets try to orient themselves parallel) to a
so-called spin glass (the spins interact chaotically).
A more visualizable example of such a physical phase transition is the
melting of an ice crystal. The crystal is in a high state of order
because the H2O molecules are strictly ordered. In liquid water, by
contrast, the structure is dissolved and positions are more random.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 20 / 63

Neural Networks Hopfield Networks

Summary

Through its biological plausibility, the clear mathematical model, and
the impressive simulations in pattern recognition, the Hopfield model
contributed to the establishment of neural networks and to the rise of
neuroinformatics as an important branch of AI.
Subsequently many further network models were developed.

Networks without back-couplings were investigated because their
dynamics is significantly easier to understand than recurrent networks.
Attempts were made to improve the storage capacity of the networks.

Even when guaranteed to converge, it is not certain whether it will do
so to a learned state or get stuck at a local minimum.

The Boltzmann machine, with continuous activation values and a
probabilistic update rule for its network dynamics, was developed as an
attempt to solve this problem.
In “simulated annealing” a “temperature” parameter is used to vary
the amount of random state changes and thus attempt to escape local
minima and find a stable global minimum. Annealing is a process of
treating metals with heat to make them stronger and more “stable”.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 21 / 63

Neural Networks Neural Associative Memory

Subsection 3

Neural Associative Memory

George Voutsadakis (LSSU) Artificial Intelligence February 2014 22 / 63

Neural Networks Neural Associative Memory

List Memory and Associative Memory

A traditional list memory can in the simplest case be a text file in
which strings of digits are saved line by line.

If the file is sorted by line, then the search for an element can be done
very quickly in logarithmic time, even for very large files.
List memory can also be used to create mappings.

A telephone book is a mapping from the set of all entered names to
the set of all telephone numbers.
Access control to a building using facial recognition is a similar task.
However, the probability that the current photo matches the saved
photo exactly is very small.

In this case, what is needed is associative memory, which is capable of
not only assigning the right name to the photo, but also to any of a
potentially infinite set of “similar” photos.

A function for finding similarity should be generated from a finite set
of training data, namely the saved photos labeled with the names.

A simple approach for this is the nearest neighbor method.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 23 / 63

Neural Networks Neural Associative Memory

Implementing Associative Memory

Learning consists simply of all of the photos being saved.
To apply nearest neighbor, the photo most similar to the current one
must be found in the database.
This process, depending on the distance metric used, can require very
long computation times and thus cannot be implemented in this form.
Instead of a lazy algorithm, we prefer one which transfers the data
into a function which then creates a very fast association.
Finding a suitable distance metric presents a further problem.

We would like a person to be recognized even if the person’s face
appears in another place on the photo (translation), or if it is smaller,
larger, or even rotated. The viewing angle and lighting might also vary.
Neural networks show their strengths, since without requiring the
developer to think about a similarity metric, they deliver good results.

The Hopfield model would be too difficult to use for two reasons:
It is only an auto-associative memory, that is, an approximately
identical mapping which maps similar objects to the learned original.
The complex recurrent dynamics is often difficult to manage in practice.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 24 / 63

Neural Networks Neural Associative Memory

The Kohonen Associative Memory Model

The Kohonen associative memory model is based on linear algebra.

It maps query vectors x ∈ Rn to result vectors y ∈ Rm.

We are looking for a matrix W which maps correctly a set of training
data T = {(q1, t1), . . . , (qN , tN)}.

For p = 1, . . . ,N, tp = W · qp , or tpi =
∑n

j=1 wijq
p
j .

To calculate the elements wij , we use the rule wij =
∑N

p=1 q
p
j t

p
i .

These two linear equations can be
viewed as a neural network with two
layers:

q as the input layer;
t as the output layer.

The neurons of the output layer have a linear activation function with
learning rule wij =

∑N
p=1 q

p
j t

p
i , corresponding exactly to the Hebb

rule.
George Voutsadakis (LSSU) Artificial Intelligence February 2014 25 / 63

Neural Networks Neural Associative Memory

Orthonormal Query Vectors in Training Data

Definition of Orthonormal Vectors

Two vectors x and y are called orthonormal if xT · y =

{

1, if x = y

0, otherwise
.

Theorem

If all N query vectors qp in the training data are orthonormal, then every
vector qp is mapped to the target vector tp by multiplication with the
matrix wij =

∑N
p=1 q

p
j t

p
i .

We have:

(W · qp)i =
∑n

j=1 wijq
p
j =

∑n
j=1

∑N
r=1 q

r
j t

r
i q

p
j

=
∑n

j=1 q
p
j q

p
j t

p
i +

∑N
r 6=p

∑n
j=1 q

r
j q

p
j t

r
i

= t
p
i

∑n
j=1 q

p
j q

p
j +

∑N
r 6=p t

r
i

∑n
j=1 q

r
j q

p
j

= t
p
i (q

p)Tqp + tri
∑N

r 6=p(q
r)Tqp = t

p
i .

Orthonormality is too strong; it will be relaxed later.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 26 / 63

Neural Networks Neural Associative Memory

Similarity and Adjustment of Responses

Since linear mappings are continuous and injective, we know that the
mapping from query vectors to target vectors preserves similarity.

Similar queries are thus mapped to similar targets, but different
queries are mapped to different targets.

If the network was trained to map faces to names and if the name
Henry is assigned to a face, then we are sure that for the input of a
similar face, an output similar to “Henry” will be produced, but
“Henry” itself is guaranteed not to be calculated.
If the output was a string, then it could be “Genry” or “Gfnry”.

To arrive at the most similar learned case, Kohonen uses a binary
coding for the output neuron.

The calculated result of a query is rounded if its value is not 0 or 1.

Even then we have no guarantee that we will hit the target vector.

Alternatively, we could add a subsequent mapping of the calculated
answer to the learned target vector with the smallest distance.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 27 / 63

Neural Networks Neural Associative Memory

Weight Matrix and Invertibility

We look at another approach to calculate the weight matrix W.

Think of all query vectors as columns of an n× N matrix
Q = (q1, . . . ,qN).

Analogously the target vectors as columns of an m × N matrix
T = (t1, . . . , tN).

Now we get T = W ·Q.

We attempt to solve this equation for W. Formally, we invert and
obtain W = T ·Q−1.

The requirement for this conversion is the invertibility of Q.

For this the matrix Q:

must be square (n = N) and
must consist of linearly independent column vectors, i.e., the n query
vectors q1, . . . , qn must all be linearly independent.

This condition is inconvenient, but not as strict as orthonormality.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 28 / 63

Neural Networks Neural Associative Memory

The Pseudoinverse

A matrix Q is invertible if and only if there is a matrix Q−1 with the
property Q ·Q−1 = I, where I is the identity matrix.

If Q is not invertible (for example because Q is not square), then
there is no matrix Q−1 with this property.

There is, however, a matrix which comes close:

Definition of Pseudoinverse

Let Q be a real n×m matrix. An m × n matrix Q+ is a pseudoinverse

to Q if it minimizes ‖Q ·Q+ − I‖, where ‖M‖ is the Euclidian norm.

Using W = T ·Q+ we can calculate a weight matrix that minimizes
crosstalk (association errors) T−W ·Q.

Least squares may be used for computing the pseudoinverse.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 29 / 63

Neural Networks Neural Associative Memory

The Binary Hebb Rule

In the context of associative memory, the so-called binary Hebb rule
was suggested.

It requires that the pattern is binary-encoded, i.e., all patterns
qp ∈ {0, 1}n and tp ∈ {0, 1}m .

The summation is replaced by a simple logical OR and we obtain the
binary Hebb rule

wij =

N
∨

p=1

q
p
j t

p
i .

The weight matrix is also binary, and a matrix element wij is equal to
1 if and only if at least one of the entries q1j t

1
i , . . . , q

N
j t

N
i is not 0.

We are tempted to believe that a lot of information is lost here during
learning because, when a matrix element takes on the value 1 once, it
cannot be changed by additional patterns.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 30 / 63

Neural Networks Neural Associative Memory

An Example

The matrix W for an example with n = 10, m = 6 after learning is

To retrieve the saved patterns we look at Wq.

In the target vector on the right side there is the value 3 in the place
where the learned target vector had a one. The correct results would
be obtained by setting a threshold value of 3.

In the general case we choose the number of ones in the query vector
as the threshold. Each output neuron thus works like a perceptron,
albeit with a variable threshold.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 31 / 63

Neural Networks Neural Associative Memory

Analysis of Performance

If the weight matrix is sparse, this algorithm performs well.

The matrix has a size of mn elements. A pair to be saved has m + n

bits. The number of memorizable patterns Nmax is determined by the
following condition:

α = number of storable bits
number of binary matrix elements

= (m+n)Nmax

mn
≤ ln 2 ≈ 0.69.

The maximum memory efficiency:

List memory α = 1;
Associative memory with the binary Hebb rule α = 0.69;
Kohonen associative memory α = 0.72;
Hopfield networks α = 0.292.

Note the surprisingly high memory capacity of the binary Hebb rule in
comparison to the Kohonen model with continuous neurons.

It is obvious that such memory becomes “full” less quickly when the
query and target vectors are sparsely populated with ones.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 32 / 63

Neural Networks Neural Associative Memory

Spelling Correction: The Setup

Consider a program that corrects erroneous inputs and maps them to
saved words from a dictionary.
For the query vectors q we choose a pair encoding.

For 26 characters there are 26 · 26 = 676 ordered pairs.
With 676 bits, the query vector has one bit for each possible pair.
If a pair of letters occurs in the word, then we set the bit to 1.
For “henry”, the slots for “he”, “en”, “nr”, “ry” are 1’s.

For the target vector t, 26 bits are reserved for each position in the
word up to a maximum length (for example ten characters).

For the i-th letter in position j the bit number (j − 1) · 26 + i is set.
For the word “henry”, bits 8, 31, 66, 96 and 129 are set.
For a maximum of 10 letters, the target vector has length 260 bits.

The weight matrix W has a size 676 · 260 bits = 199420 bits, which
by can store at most Nmax ≤ 0.69 mn

m+n
= 0.69 676·260

676+260 ≈ 130 words.

With 72 first names, we save about half that many and test the
system.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 33 / 63

Neural Networks Neural Associative Memory

Spelling Correction: Training and Setting the Threshold

The threshold is initialized to the number of bits in the encoded
query, i.e., the number of letter pairs

Then it is stepwise reduced to two.

We could further automate the choice of the threshold by comparing
with the dictionary for each attempted threshold and output the word
found when the comparison succeeds.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 34 / 63

Neural Networks Neural Associative Memory

Spelling Correction: Testing

The reaction to the ambiguous inputs “andr” and “johanne” is
interesting. In both cases, the network creates a mix of two saved
words that fit.

So neural networks are capable of making associations to similar
objects without an explicit similarity metric, but there is no guarantee
for a “correct” solution.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 35 / 63

Neural Networks Linear Networks with Minimal Errors

Subsection 4

Linear Networks with Minimal Errors

George Voutsadakis (LSSU) Artificial Intelligence February 2014 36 / 63

Neural Networks Linear Networks with Minimal Errors

The Idea Behind Backpropagation

The Hebb rule works very well when the query vectors are linearly
independent.

If this condition is not fulfilled, e.g., when too many training data are
available, how do we find the optimal weight matrix?

Optimal means that it minimizes the average error.

The backpropagation algorithm uses an elegant solution known from
function approximation to change the weights such that the error on
the training data is minimized.

Let N pairs of training vectors T = {(q1, t1), . . . , (qN , tN)} be given
with qp ∈ [0, 1]n , tp ∈ [0, 1]m.

We are looking for a function f : [0, 1]n → [0, 1]m which minimizes
the squared error N

∑

p=1

(f (qp)− tp)2.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 37 / 63

Neural Networks Linear Networks with Minimal Errors

Existence of Fitting Functions

If the data contains no contradictions, there exist infinitely many
functions which make the error zero.

We define the function

f (q) =

{

0, if q 6∈ {q1, . . . ,qN}
tp, if q = qp , p = 1, 2, . . . ,N

This function makes the error zero, but does not represent an
intelligent system because it does not generalize well from the training
data to new, unknown data from the same representative data set.

In fact this f overfits because it memorizes.

Optimally, we would like a function that is smooth and “evens out”
the space between the points.

Continuity and the ability to take multiple derivatives would be
sensible requirements.

Even with these conditions there are infinitely zero-error functions, so
we need to restrict the class of functions even further.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 38 / 63

Neural Networks Linear Networks with Minimal Errors

Square Error in Two-Layer Network

The simplest choice is a linear mapping.

We begin with a two-layer network

Neuron y activates according
to y = f (

∑n
i=1 wixi), where

f (x) = x .

We would like w to minimize
the squared error
E (w) =

∑N
p=1(wqp − tp)2 =

∑N
p=1

(
∑n

i=1 wiq
p
i − tp

)2
.

As a necessary condition all partial derivatives must be zero.

Therefore, for j = 1, . . . , n:

∂E

∂wj

= 2
N
∑

p=1

(
n

∑

i=1

wiq
p
i − tp)qpj = 0

George Voutsadakis (LSSU) Artificial Intelligence February 2014 39 / 63

Neural Networks Linear Networks with Minimal Errors

Least Squares Method: Minimizing Square Error

Continuing, we get

∂E
∂wj

= 2
∑N

p=1(
∑n

i=1 wiq
p
i − tp)qpj = 0

∑N
p=1(

∑n
i=1 wiq

p
i q

p
j − tpq

p
j) = 0

∑n
i=1 wi

∑N
p=1 q

p
i q

p
j =

∑N
p=1 t

pq
p
j

Aw = b, if Aij =
∑N

p=1 q
p
i q

p
j and bj =

∑N
p=1 t

pq
p
j .

These normal equations always have at least one solution.

If A is invertible, they have exactly one solution.

The matrix A is positive-definite, which implies that, in the unique
solution case, the discovered solution is a global minimum.

This algorithm is known as least squares method.

The calculation time for setting up the matrix A is Θ(N · n2) and the
time for solving the system is O

(

n3
)

.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 40 / 63

Neural Networks Linear Networks with Minimal Errors

Incremental vs. Batch Learning

Least squares (like the perceptron and decision tree learning) is a
batch learning algorithm, as opposed to incremental learning.

In batch learning, all training data must be learned in one run.

If new training data is added, it cannot be learned in addition, rather
the whole learning process must be repeated with the enlarged set.

This problem is solved by incremental learning algorithms, which
can adapt the learned model to each additional new example.

In the following algorithms we will additively update the weights for
each new training example by wj := wj +∆wj .

To derive an incremental variant of the least squares method, we
reconsider the above calculated n partial derivatives of the error
function

∂E

∂wj

= 2
N
∑

p=1

(
n

∑

i=1

wiq
p
i − tp)qpj .

George Voutsadakis (LSSU) Artificial Intelligence February 2014 41 / 63

Neural Networks Linear Networks with Minimal Errors

Using the Gradient of the Error for Incremental Learning

The gradient ∇E = (∂E
∂w1

, . . . , ∂E
∂wn

) as a vector of all partial
derivatives of the error function points in the direction of the strongest
rise of the error function in the n-dimensional space of the weights.

While searching for a minimum, we will therefore follow the opposite
direction:

∆wj = −
η

2

∂E

∂wj

= −η

N
∑

p=1

(
n

∑

i=1

wiq
p
i − tp)qpj ,

where the learning rate η is a freely selectable positive constant.

A larger η speeds up convergence but at the same time raises the risk
of oscillation around minima or flat valleys. A large η, e.g., η = 1, is
often used at the start and then slowly shrunk.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 42 / 63

Neural Networks Linear Networks with Minimal Errors

The Delta Learning Algorithm

By replacing yp =
∑n

i=1 wiq
p
i for training example qp, we obtain the

delta rule ∆wj = η
∑N

p=1(t
p − yp)qpj .

Thus, for every training example the difference between tp and yp is
calculated for the given qp.

The weights are changed proportionally to the sum over all patterns:

DeltaLearning(TrainingExamples, η)

Initialize all weights wj randomly
Repeat

∆w = 0

For all (qp , tp) ∈ TrainingExamples
Calculate network output yp = wpqp

∆w = ∆w + η(tp − yp)qp

w = w +∆w

Until w converges

George Voutsadakis (LSSU) Artificial Intelligence February 2014 43 / 63

Neural Networks Linear Networks with Minimal Errors

The Incremental Delta Learning Algorithm

The algorithm is still not really incremental because the weight
changes only occur after all training examples have been applied once.

We can correct this deficiency by directly changing the weights
(incremental gradient descent) after every training example, which is
no longer a correct implementation of the delta rule.

DeltaLearningIncremental(TrainingExamples, η)

Initialize all weights wj randomly
Repeat

For all (qp , tp) ∈ TrainingExamples
Calculate network output yp = wpqp

∆w = ∆w + η(tp − yp)qp

w = w + η(tp − yp)qp

Until w converges

George Voutsadakis (LSSU) Artificial Intelligence February 2014 44 / 63

Neural Networks Linear Networks with Minimal Errors

Comparing Perceptron, Least Squares and Delta Rule

Whereas for perceptrons a classifier for linearly separable classes is
learned through the threshold decision, the other two methods
generate a linear approximation to the data.

A classifier can be generated from the linear mapping, if desired, by
application of a threshold function.
The perceptron and the delta rule are iterative algorithms for which
the time until convergence depends heavily on the data.

In the case of linearly separable data, an upper limit on the number of
iteration steps can be found for the perceptron.
For the delta rule, in contrast, there is only a guarantee of asymptotic
convergence without limit.
For least squares, learning consists of setting up and solving a linear
system of equations for the weight vector and, thus, there is a hard
limit on the computation time.

Because of this, the least squares method is always preferable when
incremental learning is not needed.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 45 / 63

Neural Networks The Back-Propagation Algorithm

Subsection 5

The Back-Propagation Algorithm

George Voutsadakis (LSSU) Artificial Intelligence February 2014 46 / 63

Neural Networks The Back-Propagation Algorithm

Back-Propagation Networks

The back-propagation algorithm is the most-used neural model due to
its versatility for arbitrary approximation tasks.
The algorithm originates directly from the incremental delta rule, but

it applies a nonlinear sigmoid function on the weighted sum of the
inputs as its activation function and
a back-propagation network can have more than two layers of neurons.

In a typical backpropagation
network there is an input layer, a
hidden layer, and an output layer:

The current output value x
p
j of

the output layer is compared with
the target tpj .

Other than the input, all other neurons calculate their current value
xj by the rule xj = f (

∑n
i=1wjixi), where n is the number of neurons

in the previous layer.
George Voutsadakis (LSSU) Artificial Intelligence February 2014 47 / 63

Neural Networks The Back-Propagation Algorithm

The Back-Propagation Update Rule

We use the sigmoid function f (x) = 1
1+e−x .

Analogous to the incremental delta rule, the weights are changed
proportional to the negative gradient of the quadratic error function
summed over the output neurons for the training pattern p:
Ep(w) = 1

2

∑

k∈output(t
p
k − x

p
k)

2

So ∆pwji = −η
∂Ep

∂wji
.

The above expression is substituted for Ep .

Within the expression, xk is replaced by xj = f (
∑n

i=1 wjixi).

The outputs xi of the neurons of the next layer occur recursively, etc.

Applying the chain rule multiple times, we get the learning rule

Back-Propagation Rule

∆pwji = ηδ
p
j x

p
i with δ

p
j =

{

x
p
j (1− x

p
j)(t

p
j − x

p
j), if j is output

x
p
j (1− x

p
j)

∑

k δ
p
kwkj , if j is hidden

.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 48 / 63

Neural Networks The Back-Propagation Algorithm

Description of the Back-Propagation Algorithm

For all neurons, the formula wji = wji + ηδ
p
j x

p
i for changing the

weight wji contains, like in the Hebb rule, a term ηx
p
i x

p
j .

The new factor (1− x
p
j) creates the symmetry, which is missing from

the Hebb rule, between the activations 0 and 1 of neuron j .

For the output neurons, the factor (tpj − x
p
j) takes care of a weight

change proportional to the error.

For the hidden neurons, the value δ
p
j of neuron j is calculated

recursively from all changes δpk of the neurons of the next higher level.

After calculating the output of the network (forward propagation) for
a training example, the approximation error is calculated.

This is then used during backward propagation to alter the weights
backward from layer to layer.

The process is applied to all training examples and repeated until the
weights no longer change or a time limit is reached.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 49 / 63

Neural Networks The Back-Propagation Algorithm

The Back-Propagation Algorithm

BackPropagation(TrainingExamples, η)

Initialize all weights wj to random values
Repeat

For all (qp, tp) ∈ TrainingExamples
1. Apply the query vector qp to the input layer
2. Forward propagation:

For all layers from the first hidden layer upward
For each neuron of the layer

Calculate activation xj = f (
∑n

i=1 wjixi)
3. Calculation of the square error Ep(w)
4. Backward propagation :

For all levels of weights from the last downward
For each weight wji

wji = wji + ηδ
p
j x

p
i

Until w converges or time limit is reached

George Voutsadakis (LSSU) Artificial Intelligence February 2014 50 / 63

Neural Networks The Back-Propagation Algorithm

Linear versus Non-Linear Behavior

If we build a network with at least one hidden layer, nonlinear
mappings can be learned.

Without hidden layers, the output neurons are no more powerful than
a linear neuron, despite the sigmoid function (because the sigmoid
function is strictly monotonic).

The same is true for multi-layer networks which only use a linear
function as an activation function, for example the identity function,
because chained executions of linear mappings is linear in aggregate.

The class of the representable functions can be enlarged if we use a
variable sigmoid function f (x) = 1

1+e−(x−Θ) with threshold Θ.

This is implemented by a neuron, whose activation always has the
value one and which is connected to neurons in the next highest level,
that is inserted into the input layer and into each hidden layer.

The weights of these connections are learned normally and represent
the threshold Θ of the successor neurons.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 51 / 63

Neural Networks The Back-Propagation Algorithm

NETtalk: A Network is Set up to Speak

Sejnowski and Rosenberg demonstrated very impressively in 1986
what back-propagation is capable of performing.

They built a system that is able to understandably read English text
aloud from a text file.

It has an input layer with 7 · 29 = 203 neurons in which the current,
three previous and three subsequent letters are encoded.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 52 / 63

Neural Networks The Back-Propagation Algorithm

NETtalk: A Network Learns to Speak

The input is mapped onto the 26 output neurons over 80 hidden
neurons, each of which stands for a specific phoneme.

It was trained with 1,000 words, applied randomly one after another
letter by letter.

For each letter, the target output was manually given.

To translate the output attributes into actual sounds, part of the
speech synthesis system DECtalk was used.

The network has 203 × 80 + 80× 26 = 18320 weights.

It was trained with about 50 cycles over all words. Thus, at about 5
characters per word on average, about 5 · 50 · 1000 = 250000
iterations were needed. Training took roughly 69 hours.

The developers observed many properties of the system which are
quite similar to human learning. At first the system can only speak
unclearly or use simple words. With time it continued to improve and
finally reached 95% correctness of pronounced letters.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 53 / 63

Neural Networks The Back-Propagation Algorithm

Summary

Back-propagation has proved itself in various applications.

When the network has many thousands of weights and there is a lot
of training data to learn, two problems come up:

The network often converges to local minima of the error function.
Furthermore, back-propagation often converges very slowly.

Many improvements have been suggested to alleviate these problems.

Oscillations can be avoided by slowly reducing the learning rate η

To reduce oscillations we may use a momentum term while updating
the weights so that the direction of gradient descent does not change
too dramatically: ∆pwji(t) = ηδ

p
j x

p
i + γ∆pwji (t − 1), 0 < γ < 1.

Another idea is to minimize the linear instead of the square error.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 54 / 63

Neural Networks Support Vector Machines

Subsection 6

Support Vector Machines

George Voutsadakis (LSSU) Artificial Intelligence February 2014 55 / 63

Neural Networks Support Vector Machines

Taking Advantage of both Linearity and Non-Linearity

Feed-forward neural networks with only one layer of weights are linear.

Linearity leads to simple networks and fast learning with guaranteed
convergence.
Furthermore, the danger of overfitting is small for linear models.

For many applications, however, the linear models are not strong
enough, for example because the relevant classes are not linearly
separable.

Here multi-layered networks such as back-propagation come into use,
with the consequence that local minima, convergence problems, and
overfitting can occur.

A promising approach, which brings together the advantages of linear
and nonlinear models, follows the theory of support vector

machines (SVM).

George Voutsadakis (LSSU) Artificial Intelligence February 2014 56 / 63

Neural Networks Support Vector Machines

Support Vectors

In the case of two linearly separable classes, it is easy to find a
dividing hyperplane, for example with the perceptron learning rule,
but there are usually infinitely many such planes:

We are looking for a plane which
has the largest minimum distance
to both classes.

This plane is usually uniquely
defined by a few points in the
border area, the support vectors,
all at the same distance from the
dividing line.
To find the support vectors, there is an efficient optimizing algorithm.

Since the optimal dividing hyperplane is determined by a few
parameters, the support vectors, the danger of overfitting is small.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 57 / 63

Neural Networks Support Vector Machines

Support Vector Machines: The General Idea

Support vector machines apply this algorithm to non linearly
separable problems in a two-step process:

In the first step, a nonlinear transformation is applied to the data, with
the property that the transformed data is linearly separable.
In the second step the support vectors are determined in the
transformed space.

It is always possible to make the classes linearly separable by
transforming the vector space if the data contain no contradictions.

Such a separation can be reached for example by introducing a new

(n + 1)-st dimension and the definition xn+1 =

{

1, if x ∈ class1
0, if x ∈ class0

.

This formula does not help much because it is not generalizable.

We need a general transformation which is as independent as possible
from the current data.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 58 / 63

Neural Networks Support Vector Machines

Support Vector Machines: Some Remarks

There exist such generic transformations even for arbitrarily shaped
class division boundaries in the original vector space and in the
transformed space, the data are then linearly separable.

The drawback is that the number of dimensions of the new vector
space grows exponentially with the number of dimensions of the
original vector space.

However, the large number of new dimensions is not so problematic
because, when using support vectors, the dividing plane is determined
by only a few parameters.

The central nonlinear transformation of the vector space is called the
kernel, because of which support vector machines are also known as
kernel methods.

The original SVM theory developed for classification tasks has been
extended and can now be used on regression problems also.

The mathematics used are rather advanced, so we return to the topic
later.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 59 / 63

Neural Networks Applications

Subsection 7

Applications

George Voutsadakis (LSSU) Artificial Intelligence February 2014 60 / 63

Neural Networks Applications

Applications of Neural Networks

There are countless applications for neural networks:

A very important area is pattern recognition (analysis of photographs,
recognizing schools of fish from sonar images, recognition and
classification of military vehicles from radar scans, etc.).
Another is recognition of spoken language and handwritten text.
They are also trained to control simple robots using sensor data, as
well as for heuristically controlling search in backgammon, chess, etc.

Additional areas include

Applications in combination with reinforcement learning techniques;
Supplementing statistical methods for forecasting stock markets and
for evaluating the creditworthiness of banking customers.

Neural networks have been more successful and popular than all other
machine learning algorithms but their prevalence is being pushed back
in favor of other methods because of the great commercial success of
data mining and support vector machines.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 61 / 63

Neural Networks Summary

Subsection 8

Summary

George Voutsadakis (LSSU) Artificial Intelligence February 2014 62 / 63

Neural Networks Summary

Associative Memory Models

We saw the perceptron, the delta rule, and back-propagation and
their relationship to naive Bayes and the least squares method.

We also visited Hopfield networks, inspired by biological models, but
difficult to manage in practice due to their complex dynamics.
Associative memory models are important in practice.

In all neural models, information is stored distributed over many
weights, so the network is robust against small disruptions and has
the ability to recognize patterns with errors.

The disadvantage is that it is difficult to localize information and this
is rectified in the learned decision tree, in which learned knowledge is
easy to understand and, also, to represent as a logical formula.

A problem with the networks introduced here comes up during
incremental learning: In a trained back-propagation network, further
training may result in forgetting old patterns.

To solve this problem, Carpenter and Grossberg developed adaptive

resonance theory (ART), a whole new line of neural models.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 63 / 63

	Neural Networks
	From Biology to Simulation
	Hopfield Networks
	Neural Associative Memory
	Linear Networks with Minimal Errors
	The Back-Propagation Algorithm
	Support Vector Machines
	Applications
	Summary

