
Introduction to Artificial Intelligence

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Artificial Intelligence February 2014 1 / 43

Outline

1 Reinforcement Learning
Introduction
The Task
Uninformed Combinatorial Search
Value Iteration and Dynamic Programming
Q-Learning
Exploration and Exploitation
Approximation, Generalization and Convergence
Applications
Curse of Dimensionality
Summary

George Voutsadakis (LSSU) Artificial Intelligence February 2014 2 / 43

Reinforcement Learning Introduction

Subsection 1

Introduction

George Voutsadakis (LSSU) Artificial Intelligence February 2014 3 / 43

Reinforcement Learning Introduction

Reinforcement versus Supervised Learning

All learning algorithms we saw, except clustering, belong to
supervised learning.

The task is to learn a mapping from the input to the output variables.
In training examples, both input and output values are given.
The algorithm has to filter out the noise and find a function which
approximates the mapping well, even between the given data points.

In reinforcement learning the situation is different and more difficult
because no training data are available.

Reinforcement learning is valuable in robotics, where the tasks are
frequently complex enough to defy encoding as programs and no
training data is available.
The robot’s task consists of finding out, through trial and error (or
success), which actions are good and which are not.
In many cases humans learn in a very similar way:

When a child learns to walk, this usually happens without instruction,

but rather through reinforcement.

Positive and negative reinforcement help in successful learning in school

and in many sports.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 4 / 43

Reinforcement Learning Introduction

An Example from Robotics: Description of Task

A robot consists of a rectangular block and an arm with two joints gy
and gx :

The only possible actions are

the movement of gy up or down;
the movement of gx right or left.
Only movements of fixed discrete units (e.g., ±10◦) are allowed.

The agent’s task consists of learning a policy which allows it to move
as quickly as possible to the right.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 5 / 43

Reinforcement Learning Introduction

An Example from Robotics: A Successful Sequence

A successful action sequence is

The action at time t =
2 results in the loaded
arm moving the body
one unit to the right.

To model the task
mathematically we
describe the state by
the two variables gx
and gy for the position
of the joints: (gx , gy).

The number of possible joint positions is nx , or respectively ny .

George Voutsadakis (LSSU) Artificial Intelligence February 2014 6 / 43

Reinforcement Learning Introduction

An Example from Robotics: Rewards and Punishments

Movements

to the right are rewarded with positive changes to x ;
to the left are punished with negative changes.

The state space for joints having two and four positions each,
respectively:

An optimal policy is shown in the right.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 7 / 43

Reinforcement Learning The Task

Subsection 2

The Task

George Voutsadakis (LSSU) Artificial Intelligence February 2014 8 / 43

Reinforcement Learning The Task

States, Actions, Transitions and Rewards

We distinguish between the agent and its environment.
At time t the world is described
by a state st ∈ S.

The set S is an abstraction of the
actual possible states:

The world cannot be exactly described;
The agent often has incomplete information about the actual state.

The agent carries out an action at ∈ A at time t.

The action changes the world and results in state st+1 at time t + 1.

The state transition function δ defined by the environment
determines the new state st+1 = δ(st , at).

After executing at , the agent obtains immediate reward rt = r(st , at)

In some applications, such as chess playing, no immediate reward
happens for a long time.

Assigning rewards at the end of a sequence of actions to each of the
actions is known as the credit assignment problem.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 9 / 43

Reinforcement Learning The Task

Policies, Rewards and Optimality

A policy π : S → A is a mapping from states to actions.
The goal of reinforcement learning is learning an optimal policy based
on experiences.
We define the value, or the discounted reward, of a policy π at
starting state st

V π(st) = rt + γrt+1 + γ2rt+2 + · · · =

∞∑

i=0

γi rt+i .

Here 0 ≤ γ < 1 is a constant, which ensures that future feedback is
discounted more the farther in the future it happens.
Another reward function is the average reward

V π(st) = lim
h→∞

1

h

h∑

i=0

rt+i .

A policy π∗ is called optimal, if for all policies π,

V ∗ := V π
∗

(s) ≥ V π(s), for all states s.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 10 / 43

Reinforcement Learning The Task

Markov Decision Processes

The agents discussed here, or their policies, use information only
about the current state st to determine the next state, and not
information about the prior history.

This is justified if the reward of an action only depends on the current
state and current actions.

Such processes are called Markov decision processes (MDP).

In many applications, especially in robotics, the actual state of the
agent is not exactly known, which makes planning actions even more
difficult.

This may be due, e.g., to a noisy sensor signal.

We call such processes partially observable Markov decision

processes (POMDP).

George Voutsadakis (LSSU) Artificial Intelligence February 2014 11 / 43

Reinforcement Learning Uninformed Combinatorial Search

Subsection 3

Uninformed Combinatorial Search

George Voutsadakis (LSSU) Artificial Intelligence February 2014 12 / 43

Reinforcement Learning Uninformed Combinatorial Search

Combinatorial Explosion of Search Space

The simplest way to find the best policy is enumeration of all policies.

But, there are so many that combinatorial search is infeasible.

In the robot example the number of possible actions at each state is:

For arbitrary values of nx and ny there are always four corner nodes
with two possible actions, 2(nx − 2) + 2(ny − 2) edge nodes with three
actions, and (nx − 2)(ny − 2) inner nodes with four actions.

nx , ny # States # Policies

2 4 24 = 16

3 9 24344 = 5184

4 16 243844 ≈ 2.7 · 107

5 25 2431249 ≈ 2.2 · 1012

From that, the number of possible policies is calculated as the
product on the right:

Thus there are 2432(nx−2)+2(ny−2)4(nx−2)(ny−2) different policies for
fixed nx and ny , rising exponentially with the number of states.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 13 / 43

Reinforcement Learning Uninformed Combinatorial Search

Robot’s Discounted Rewards

xt+1 − xt can be used as an immediate reward for at , i.e.,
every movement of the robot’s body to the right is rewarded with 1;
every movement of the robot’s body to the left is penalized with −1.

Consider the following two policies:

γ 0.9 0.8375 0.8
V π1(s0) 2.52 1.156 0.77
V π2(s0) 2.39 1.156 0.80

The immediate reward is zero except in the bottom row.

The left policy π1 is better in the long term because, for long action
sequences, the average progress per action is 3

8 = 0.375 for π1 and
2
6 ≈ 0.333 for π2.

Using the discounted reward V π(s), the result is the following table
with starting state s0 at the top left and various γ values:

Policy π1 is superior to policy π2 when γ = 0.9, the reverse is true
when γ = 0.8 and both policies are equally good for γ = 0.8375.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 14 / 43

Reinforcement Learning Value Iteration and Dynamic Programming

Subsection 4

Value Iteration and Dynamic Programming

George Voutsadakis (LSSU) Artificial Intelligence February 2014 15 / 43

Reinforcement Learning Value Iteration and Dynamic Programming

Dynamic Programming (Bellman 1957)

Even though there are too many policies, some policies may only
differ slightly.

Instead of generating and evaluating anew all policies we may save
intermediate results for parts of policies and reuse them.

This approach to solving optimization problems is called dynamic

programming.

For an optimal policy it is the case that:

Independent of the starting state st and the first action at , all

subsequent decisions proceeding from every possible successor

state st+1 must be optimal.

Bellman principle: It is possible to find a globally optimal policy
through local optimization of individual actions.

We will derive this principle for MDPs together with a suitable
iteration algorithm.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 16 / 43

Reinforcement Learning Value Iteration and Dynamic Programming

The Bellman Equation

We aim for an optimal policy π∗ which fulfills V ∗(s) ≥ V π(s), where
V π(st) =

∑
∞

i=0 γ
i rt+i .

We obtain

V ∗(st) = max
at ,at+1,at+2,...

(r(st , at) + γr(st+1, at+1) + γ2r(st+2, at+2) + · · ·).

But r(st , at) only depends on st and at , so we get

V ∗(st) = max
at

[r(st , at) + γ max
at+1,at+2,...

(r(st+1, at+1) + γr(st+2, at+2) + · · ·)]

= max
at

[r(st , at) + γV ∗(st+1)].

Simplifying, we get the Bellman equation

V ∗(s) = max
a

[r(s, a) + γV ∗(δ(s, a))].

Thus, to calculate V ∗(s), the immediate reward is added to the
reward of all successor states, discounted by the factor γ.

If V ∗(δ(s, a)) is known, then V ∗(s) clearly results by simple local
optimization over all possible actions a in state s.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 17 / 43

Reinforcement Learning Value Iteration and Dynamic Programming

Computing the Optimal Value

The optimal policy π∗(s) carries out an action in state s which results
in the maximum value V ∗:

V ∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))].

From the recursion equation, we get an iteration rule for
approximating V ∗:

V̂ (s) = max
a

[r(s, a) + γV̂ (δ(s, a))].

The approximate values V̂ (s) are initialized (e.g., with 0s) for all states.
Now V̂ (s) is repeatedly updated for each state by recursively falling
back on the value V̂ (δ(s, a)) of the best successor state.

This process of calculating V ∗ is called value iteration.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 18 / 43

Reinforcement Learning Value Iteration and Dynamic Programming

The Value Iteration Algorithm

ValueIteration()

For all s ∈ S

V̂ (s) = 0
Repeat

For all s ∈ S

V̂ (s) = max
a

[r(s, a) + γV̂ (δ(s, a))]

Until V̂ (s) does not change

It can be shown that value iteration converges to V ∗.

Exploiting contraction properties of value iteration, convergence can
be proven using Banach’s fixed-point theorem.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 19 / 43

Reinforcement Learning Value Iteration and Dynamic Programming

Application to Robotics

The algorithm is applied to the robot with γ = 0.9:

In each iteration the states are processed row-wise from bottom left
to top right.

To find an optimal policy from V ∗ it would be wrong to choose the
action in state st which results in the state with the maximum V ∗.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 20 / 43

Reinforcement Learning Value Iteration and Dynamic Programming

How to Find π
∗ from V

∗

The immediate reward r(st , at) must also be added because we are
searching for V ∗(st) and not V ∗(st+1).

E.g., applied to state s = (2, 3), this means

π∗(2, 3) = argmax

a∈{left,right,up}

[r(s, a) + γV ∗(δ(s, a))]

= argmax

{left,right,up}

{1 + 0.9 · 2.66,−1 + 0.9 · 4.05, 0 + 0.9 · 3.28}

= argmax

{left,right,up}

{3.39, 2.65, 2.95}= left.

The agent in state st must know the immediate reward rt and the
successor state st+1 = δ(st , at) to choose the optimal action at .

Thus, it must have a model of the functions r and δ.

Since this is not the case for many practical applications, algorithms
are needed which can also work without knowledge of r and δ.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 21 / 43

Reinforcement Learning Q-Learning

Subsection 5

Q-Learning

George Voutsadakis (LSSU) Artificial Intelligence February 2014 22 / 43

Reinforcement Learning Q-Learning

Evaluation Functions

When an agent does not know which state a possible action leads to,
a policy based on evaluation of successor states is not feasible.

For example, a robot which is supposed to grasp complex objects
cannot predict whether the object will be securely held in its grip after
a gripping action, or whether it will remain in place.

If there is no model of the world, an evaluation of an action at carried
out in state st is needed even if it is still unknown where it leads to.

Formally, we introduce an evaluation function Q(st , at) from states
and their associated actions.

The choice of the optimal action follows π∗(s) = argmaxa Q(s, a).

To define the evaluation function we again use discounting of the
evaluation for state-action pairs which occur further into the future.

We, thus, want to maximize rt + γrt+1 + γ2rt+2 + · · ·.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 23 / 43

Reinforcement Learning Q-Learning

Evaluation of Actions in States

Therefore, to evaluate action at in state st we define

Q(st , at) = max
at+1,at+2,...

(r(st , at) + γr(st+1, at+1) + γ2r(st+2, at+2) + · · ·).

As before, we rewrite

Q(st , at) = max
at+1,at+2,...

(r(st , at) + γr(st+1, at+1) + γ2r(st+2, at+2) + · · ·)

= r(st , at) + γ max
at+1,at+2,...

(r(st+1, at+1) + γr(st+2, at+2) + . . .)

= r(st , at) + γmax
at+1

(r(st+1, at+1) + γmax
at+2

(r(st+2, at+2) + · · ·))

= r(st , at) + γmax
at+1

Q(st+1, at+1)

= r(st , at) + γmax
at+1

Q(δ(st , at), at+1)

= r(s, a) + γmax
a′

Q(δ(s, a), a′).

Instead of V ∗, the function Q is saved, and the agent can choose its
actions from the functions δ and r without a model of the world.

We still lack a process that can learn Q without knowledge of V ∗.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 24 / 43

Reinforcement Learning Q-Learning

Description of Q-Learning

From the recursive formulation of Q(s, a), an iteration algorithm for
determining Q(s, a) can be derived.

We initialize a table Q̂(s, a) for all states arbitrarily;
We iteratively compute Q̂(s, a) = r(s, a) + γmax

a′
Q̂(δ(s, a), a′).

It remains to note that we do not know the functions r and δ.

We solve this problem quite pragmatically:

We let the agent in its environment in state s carry out action a.
The successor state is then clearly δ(s, a) and the agent receives its
reward from the environment.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 25 / 43

Reinforcement Learning Q-Learning

The Q-Learning Algorithm

Q-Learning()

For all s ∈ S, a ∈ A

Q̂(s, a) = 0
Repeat

Select (e.g. randomly) a state s

Repeat

Select an action a and carry it out
Obtain reward r(s, a) and new state s ′

Q̂(s, a) := r(s, a) + γmax
a′

Q̂(s ′, a′)

s := s ′

Until s is an ending state Or time limit reached

Until Q̂ converges

George Voutsadakis (LSSU) Artificial Intelligence February 2014 26 / 43

Reinforcement Learning Q-Learning

Applying the Q-Learning Algorithm

The application of the algorithm to the robot with γ = 0.9 and
nx = 3, ny = 2 (that is, in a 2× 3 grid) is shown

All Q values are initialized to zero.
After the first action sequence, the four nonzero r values become
visible as Q values.
In the last picture, the learned optimal policy is given.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 27 / 43

Reinforcement Learning Q-Learning

Convergence of Q-Learning

Convergence Theorem

Let a deterministic MDP with limited immediate reward r(s, a) be given.
Equation Q̂(s, a) = r(s, a) + γmax

a′
Q̂(δ(s, a), a′), with 0 ≤ γ < 1 is used

for learning. Let Q̂n(s, a) be the value for Q̂(s, a) after n updates. If each
state-action pair is visited infinitely often, then Q̂n(s, a)

n→∞

−→ Q(s, a) for
all values s and a.

Since each state-action transition occurs infinitely often, we look at
successive time intervals with the property that, in every interval, all
state-action transitions occur at least once.

We show that the maximum error for all entries in the Q̂ table is
reduced by at least the factor γ in each of these intervals.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 28 / 43

Reinforcement Learning Q-Learning

Proof of Convergence

Let ∆n = max
s,a

|Q̂n(s, a)− Q(s, a)| be the maximum error in the table

Q̂n and s ′ = δ(s, a).

For each table entry Q̂n(s, a) we calculate its contribution to the error
after an interval as

|Q̂n+1(s, a)− Q(s, a)| = |(r + γmax
a′

Q̂n(s
′, a′))− (r + γmax

a′
Q̂(s ′, a′))|

= γ|max
a′

Q̂n(s
′, a′)−max

a′
Q̂(s ′, a′)|

≤ γmax
a′

|Q̂n(s
′, a′)− Q̂(s ′, a′)|

≤ γmax
s′′,a′

|Q̂n(s
′′, a′)− Q̂(s ′′, a′)| = γ∆n.

So ∆n+1 ≤ γ∆n.

Since the error in each interval is reduced by a factor of at least γ,
after k intervals it is at most γk∆0, and, as a result, ∆0 is bounded.

Since each state is visited infinitely many times, there are infinitely
many intervals and ∆n converges to zero.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 29 / 43

Reinforcement Learning Q-Learning

Nondeterministic Environments

In many applications, the agent’s environment is nondeterministic.

The action a in state s at two different points in time can result in
different successor states and rewards.

Such a nondeterministic Markov process is modeled by a probabilistic
transition function δ(s, a) and probabilistic immediate reward r(s, a).

To define the Q function, each time the expected value must be
calculated over all possible successor states:

Q(st , at) = E (r(s, a)) + γ
∑

s′

P(s ′|s, a)max
a′

Q(s ′, a′),

where P(s ′|s, a) is probability of moving from s to s ′ with action a.

Unfortunately there is no guarantee of convergence for Q-learning in
the nondeterministic case if we proceed as before.

This is because, in successive runs through the outer loop of the
algorithm, the reward and successor state can be completely different
for the same state s and same action a.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 30 / 43

Reinforcement Learning Q-Learning

Modification for Nondeterministic Environments

To avoid alternating sequences which jump back and forth between
several values and stabilize the iteration, we add the old weighted Q

value to the right side of Q̂(s, a) = r(s, a) + γmax
a′

Q̂(δ(s, a), a′)

The new learning rule is

Q̂n(s, a) = (1− αn)Q̂n−1(s, a) + αn[r(s, a) + γmax
a′

Q̂n−1(δ(s, a), a
′)].

with a time-varying weighting factor αn = 1
1+bn(s,a)

.

The value bn(s, a) indicates how often the action a was executed in
state s at the n-th iteration.

For small values of bn (at the beginning of learning) the stabilizing
term Q̂n−1(s, a) does not come into play, for we want the learning
process to make quick progress.

Later, bn gets bigger and thereby prevents excessively large jumps in
the sequence of Q̂ values.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 31 / 43

Reinforcement Learning Q-Learning

(Temporal Difference) TD-Learning

Consider again
Q̂n(s, a) = (1− αn)Q̂n−1(s, a) + αn[r(s, a) + γmax

a′
Q̂n−1(δ(s, a), a

′)].

Assume αn = α is a constant:

Q̂n(s, a) = (1− α)Q̂n−1(s, a) + α[r(s, a) + γmax
a′

Q̂n−1(δ(s, a), a
′)]

= Q̂n−1(s, a) + α [r(s, a) + γmax
a′

Q̂n−1(δ(s, a), a
′)− Q̂n−1(s, a)]

︸ ︷︷ ︸
TD-Error

The new Q value Q̂n(s, a) is the old Q̂n−1(s, a) plus α times a
correction term which is the same as the Q value’s change in this step.

This term is called the TD-error, or temporal difference error.

The above equation for changing the Q value is a special case of
TD-Learning, an important class of learning algorithms.

For α = 1 we obtain the Q-learning described above.

For α = 0 the Q̂ values are unchanged, so no learning occurs.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 32 / 43

Reinforcement Learning Exploration and Exploitation

Subsection 6

Exploration and Exploitation

George Voutsadakis (LSSU) Artificial Intelligence February 2014 33 / 43

Reinforcement Learning Exploration and Exploitation

Exploration and Exploitation

How do we select a starting state each time and the actions to be
carried out in the inner loop of the Q-learning algorithm?

For the selection of the next action there are two possibilities:
Among the possible actions, one can be chosen randomly. This results
in uniform exploration, but has slow convergence.
An alternative is the exploitation of previously learned Q̂ values, always
choosing the action with the highest Q̂ value. This results in relatively
fast convergence of a specific trajectory, but other paths remain
unvisited all the way to the end. Thus, in the extreme case, we can
obtain non-optimal policies.

Best is to combine exploration and exploitation with a high
exploration portion at the beginning, being reduced over time.

The choice of the starting state also influences the speed of learning.
Starting states should be initially chosen near points with state-action
pairs yielding higher immediate reward.
More distant starting states can be selected later.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 34 / 43

Reinforcement Learning Approximation, Generalization and Convergence

Subsection 7

Approximation, Generalization and Convergence

George Voutsadakis (LSSU) Artificial Intelligence February 2014 35 / 43

Reinforcement Learning Approximation, Generalization and Convergence

Infinite State Spaces and Approximation

A table with all Q values needs to be explicitly saved, which requires
a finite state space with finitely many actions.

If the state space is infinite, then it is neither possible to save all Q
values nor to visit all state-action pairs during learning.

In that case, the Q(s, a) table is replaced by a neural network, e.g., a
back-propagation network, with the input variables s, a and the Q
value as the target output.

For every update of a Q value, the neural network is presented a
training example with (s, a) as input and Q(s, a) as target output.
At the end we have a finite representation of the function Q(s, a).

Instead of a neural network, we can also use another supervised
learning algorithm or a function approximator such as a support
vector machine or a Gaussian process.

The drawback is that Q-learning with function approximation might
not converge.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 36 / 43

Reinforcement Learning Approximation, Generalization and Convergence

Partially Observable Markov Decision Processes

Convergence issues may also arise in the case of finitely many
state-action pairs when Q-learning is used on a POMDP.

For a POMDP it can happen that the agent, perhaps due to noisy
sensors, perceives many different states as one.
Often many states in the real world are purposefully mapped to a single
observation to obtain a smaller state space, whereby learning becomes
faster and overfitting can be avoided.
The drawback is that the agent can no longer differentiate between the
actual states, whence an action may lead it into many different
successor states, depending on which actual state it is in.

Policy improvement methods and their derived policy gradient
methods do not change Q, but rather the policy.

A policy is searched for which maximizes the cumulative discounted
reward by following, e.g., the gradient of the cumulative reward to a
maximum.
This algorithm can speed up learning in applications with large state
spaces.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 37 / 43

Reinforcement Learning Applications

Subsection 8

Applications

George Voutsadakis (LSSU) Artificial Intelligence February 2014 38 / 43

Reinforcement Learning Applications

Practical and Industrial Applications

Small selection of practical applications using reinforcement learning:
TD-learning, together with a backpropagation network, was used very
successfully in TD-gammon, a backgammon program.
In the RoboCup Soccer Simulation League, the best robot soccer
teams now successfully use reinforcement learning.
Balancing a pole, which is relatively easy for a human, has been solved
successfully many times with reinforcement learning.
Russ Tedrake at IROS 2008 showed how a model airplane learns to
land at an exact point, just like a bird landing on a branch. Because air
currents become very turbulent, the associated Navier-Stokes equation
is unsolvable, whence classical control is not possible.
Today it is also possible to learn to control a real car in only 20
minutes using Q-learning and function approximation.

Real robots still have difficulty learning in high-dimensional
state-action spaces due to slow feedback from the environment.

Besides fast learning algorithms, methods are needed which allow part
of the learning to happen offline, without feedback.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 39 / 43

Reinforcement Learning Curse of Dimensionality

Subsection 9

Curse of Dimensionality

George Voutsadakis (LSSU) Artificial Intelligence February 2014 40 / 43

Reinforcement Learning Curse of Dimensionality

Hierarchical and Distributed Learning

In reinforcement learning, even the best learning algorithms known
today are impractical for high-dimensional state and action spaces.

This problem is known as the “curse of dimensionality”.
Learning in nature takes place on many levels of abstraction.

A learned ability results later on at a more advanced action and such
complex higher-level actions reduce the size of the action space.
States can also be abstracted to shrink the state space.

This learning on multiple levels is called hierarchical learning.
Another approach to modularization of learning is distributed
learning, or multiagent learning.

When learning motor skills, a 50-motor robot must “move” in a
50-dimensional state space and also a 50-dimensional action space.
To reduce complexity, central control is replaced by distributed control.

The learning task is facilitated by a good initial policy.
One possibility is pre-programming a policy which is considered good.
Alternatively, training of the robot can begin by proscribing the right
actions manually. This is called demonstration learning.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 41 / 43

Reinforcement Learning Summary

Subsection 10

Summary

George Voutsadakis (LSSU) Artificial Intelligence February 2014 42 / 43

Reinforcement Learning Summary

Looking Forward

Many learning algorithms are available for training machines.

The task for the trainer is still demanding for complex applications.

Experimentation for adopting a particular training technique can be
very tedious because of the need for designing and programming.
Tools are needed which, besides learning algorithms, allow using
traditional programming and demonstration learning.

Teaching-Box, in addition to a large program library, offers tools for
configuring projects and for communication with the environment.
The human teacher can give feedback from the keyboard or through a
speech interface in addition to feedback from the environment.

Reinforcement learning is an area of research with more and more
applications and increasing influence.

Robot control systems, but also other programs, will learn through
feedback from the environment.
The scaling problem means that, for small action and state spaces
impressive results can be achieved, but, if the number of degrees of
freedom grows, then learning becomes very expensive.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 43 / 43

	Reinforcement Learning
	Introduction
	The Task
	Uninformed Combinatorial Search
	Value Iteration and Dynamic Programming
	Q-Learning
	Exploration and Exploitation
	Approximation, Generalization and Convergence
	Applications
	Curse of Dimensionality
	Summary

