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Support Vector Machines

Introduction

Support Vector Machine (SVM) constitutes a special type of
kernel-based algorithm that has sparse solutions.

As a result, predictions for new inputs depend only on the kernel
function evaluated at a subset of the training data points.

SVM became popular for solving problems in classification, regression,
and novelty detection.

An important property is that the determination of the model
parameters corresponds to a convex optimization problem, and so any
local solution is also a global optimum.

The discussion of support vector machines makes extensive use of
Lagrange multipliers.

The SVM is a decision machine and so does not provide posterior
probabilities.
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Support Vector Machines Review of Lagrange Multipliers

Subsection 1

Review of Lagrange Multipliers
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Support Vector Machines Review of Lagrange Multipliers

Without Lagrange Multipliers

Lagrange multipliers are used to find the extreme points of a
function of several variables subject to one or more constraints.

Consider the problem of finding the maximum of a function f (x1, x2)
subject to a constraint relating x1 and x2, which we write in the form
g(x1, x2) = 0.

One approach would be to

solve the constraint, thus expressing x2 as a function of x1: x2 = h(x1);
substitute into f (x1, x2) to give a function of x1: f (x1, h(x1));
find the maximum with respect to x1 by differentiation in the usual way.

This approach may entail drawbacks:

It may be difficult to find an analytic solution of the constraint
equation that allows x2 to be expressed as an explicit function of x1.
Variables x1 and x2 are treated differently, whence the natural
symmetry between these variables is spoiled.
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∇g is Normal to g = 0

Consider a D-dimensional variable x with components x1, . . . , xD .

The constraint equation g(x) = 0 represents a
(D − 1)-dimensional surface in x-space:

At any point on the constraint surface the
gradient ∇g(x) of the constraint function will
be orthogonal to the surface:

If x lies on the constraint surface, consider
x+ ǫ that also lies on the surface.

Take a Taylor expansion around x: g(x+ ǫ) ≃ g(x) + ǫT∇g(x).
Because both x and x+ ǫ lie on the constraint surface, we have
g(x) = g(x + ǫ) and hence ǫT∇g(x) ≃ 0. In the limit ‖ǫ‖ → 0 we
have ǫT∇g(x) = 0. Since ǫ is then parallel to the constraint surface
g(x) = 0, we see that the vector ∇g is normal to the surface.
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Lagrange Multipliers

We seek a point x∗ on the constraint surface such that f (x) is
maximized.

Such a point must have the property that
the vector ∇f (x) is also orthogonal to the
constraint surface: Otherwise we could
increase the value of f (x) by moving a
short distance along the constraint surface.

Thus ∇f and ∇g are parallel (or anti-parallel) vectors, and so there
must exist a parameter λ such that ∇f + λ∇g = 0, where λ 6= 0 is
known as a Lagrange multiplier.

Note that λ can have either sign.
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Optimizing the Lagrangian

The Lagrangian function is defined by

L(x, λ) = f (x) + λg(x).

The previous condition is obtained by setting ∇xL = 0.

Furthermore, the condition ∂L
∂λ

= 0 yields g(x) = 0.

Thus, to find the maximum of a function f (x) subject to the
constraint g(x) = 0:

Form the Lagrangian function;
Find the extreme point of L(x, λ) with respect to both x and λ.

For a D-dimensional vector x, this gives D + 1 equations that
determine both the extreme point x∗ and the value of λ.

If we are only interested in x∗, we can eliminate λ.
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An Example Illustrating the Method

Suppose we wish to find the stationary
point of the function

f (x1, x2) = 1− x21 − x22

subject to the constraint
g(x1, x2) = x1 + x2 − 1 = 0

The corresponding Lagrangian function is given by

L(x, λ) = 1− x21 − x22 + λ(x1 + x2 − 1).

The conditions for this Lagrangian to be stationary with respect to
x1, x2 and λ give −2x1 + λ = 0

−2x2 + λ = 0
x1 + x2 − 1 = 0

Solving, we get (x∗1 , x
∗
2 ) = (12 ,

1
2), and λ = 1.
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Optimization Subject to Inequality Constraints

We consider: Maximize f (x) subject to an
inequality constraint of the form g(x) ≥ 0.

There are now two kinds of solution possible

The constrained stationary point may lie in
the region where g(x) > 0; In which case the
constraint is inactive.
It may also lie on the boundary g(x) = 0; In
this case the constraint is said to be active.

In the former case, the function g(x) plays no role and the extremal
condition is ∇f (x) = 0, corresponding to λ = 0.

In the case where the solution lies on the boundary, we get an
extreme point of the Lagrange function, with λ 6= 0.

Now, however, the sign of the Lagrange multiplier is crucial, because
the function f (x) will only be at a maximum if its gradient is oriented
away from the region g(x) > 0.

So ∇f (x) = −λ∇g(x), for some value of λ > 0.
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Karush-Kuhn-Tucker Conditions

For either case, the product λg(x) = 0.

Thus, the solution to the problem of maximizing f (x) subject to
g(x) ≥ 0 is obtained by optimizing the Lagrange function

L(x, λ) = f (x) + λg(x)

with respect to x and λ subject to the conditions

g(x) ≥ 0
λ ≥ 0

λg(x) = 0

These are known as the Karush-Kuhn-Tucker (KKT) conditions.

Note that if we wish to minimize (rather than maximize) the function
f (x) subject to an inequality constraint g(x) ≥ 0, then we minimize
the Lagrangian function L(x, λ) = f (x)− λg(x) with respect to x,
again subject to λ ≥ 0.
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Multiple Equality and Inequality Constraints

It is straightforward to extend the technique of Lagrange multipliers
to the case of multiple equality and inequality constraints.

Suppose we wish to maximize f (x) subject to gj(x) = 0 for
j = 1, . . . , J, and hk(x) ≥ 0, for k = 1, . . . ,K .

We then introduce Lagrange multipliers {λj} and {µk}, and then
optimize the Lagrangian function given by

L(x, {λj}, {µk}) = f (x) +
J∑

j=1

λjgj(x) +
K∑

k=1

µkhk(x),

subject to µk ≥ 0 and µkhk(x) = 0 for k = 1, . . . ,K .
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Subsection 2

Maximum Margin Classifiers
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The Two-Class Classification Problem

We return to the two-class classification problem using linear models
of the form y(x) = wTφ(x) + b, where φ(x) denotes a fixed
feature-space transformation, and b is a bias parameter.

The training data set comprises N input vectors x1, . . . , xN , with
corresponding target values t1, . . . , tN where tn ∈ {−1, 1}, and new
data points x are classified according to the sign of y(x).

Assume for the moment that the training data set is linearly separable
in feature space, so that there exists at least one choice of the
parameters w and b such that the function y(x) satisfies

y(xn) > 0, if tn = +1, and y(xn) < 0, if tn = −1.

Note this means that tny(xn) > 0 for all training data points.

There may of course exist many such solutions.

We studied the perceptron algorithm that is guaranteed to find a
solution in a finite number of steps.
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Margin

The solution that the perceptron finds depends on
the initial values chosen for w and b and
the order in which the data points are presented.

If there are multiple solutions, then we should try to find the one that
will give the smallest generalization error.

The support vector machine approaches this problem through the
concept of the margin, which is defined to be the smallest distance
between the decision boundary and any of the samples.
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Maximum Margin

In support vector machines the decision boundary is chosen to be the
one for which the margin is maximized.

The perpendicular distance of a point x from a hyperplane defined by
y(x) = 0 where y(x) = wTφ(x) + b is given by |y(x)|

‖w‖ .

We are only interested in solutions for which all data points are
correctly classified, so that tny(xn) > 0 for all n.

Thus, the distance of a point xn to the decision surface is given by
tny(xn)
‖w‖ =

tn(wTφ(xn)+b)
‖w‖ .

The margin is given by the perpendicular distance to the closest point
xn from the data set and we wish to optimize the parameters w and b

in order to maximize this distance.

Thus the maximum margin solution is found by solving

argmax
w,b

{
1

‖w‖
min
n

[tn(w
Tφ(xn) + b)]

}
.
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The Canonical Representation of the Decision Hyperplane

Direct solution of this optimization problem is very complex.

We convert it into an easier to solve equivalent problem.

If we re-scale w → κw and b → κb, then the distance from any point
xn to the decision surface, given by tny(xn)

‖w‖ is unchanged

We can, thus, set tn(w
Tφ(xn) + b) = 1 for the point that is closest

to the surface.

Then, all data points will satisfy

tn(w
Tφ(xn) + b) ≥ 1, n = 1, . . . ,N.

This is the canonical representation of the decision hyperplane.

The constraints are said to be active for those data points for which
equality holds, and inactive for the remainder.

By definition, there will always be at least one active constraint,
because there will always be a closest point.

Moreover, once the margin has been maximized there will be at least
two active constraints.
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Reduction to Quadratic Programming Optimization

The optimization problem now requires that we maximize 1
‖w‖ .

This is equivalent to minimizing ‖w‖2.

So we have to solve the optimization problem

argmin
w,b

1

2
‖w‖2,

subject to the constraints

tn(w
Tφ(xn) + b) ≥ 1, n = 1, . . . ,N.

The factor of 1
2 is included for later convenience.

This is an example of a quadratic programming problem in which we
are trying to minimize a quadratic function subject to a set of linear
inequality constraints.

The bias parameter b is determined implicitly, because the constraints
require that changes to ‖w‖ be compensated by changes to b.
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The Dual Representation

To solve, introduce Lagrange multipliers an ≥ 0, with one multiplier
an for each of the constraints.
With a = (a1, . . . , aN)

T , we get the Lagrangian function

L(w, b, a) =
1

2
‖w‖2 −

N∑

n=1

an[tn(w
Tφ(xn) + b)− 1].

The minus in front of the Lagrange term is due to minimization with
respect to w and b, and maximization with respect to a.
Calculate the derivatives of L(w, b, a) with respect to w and b and
set them equal to zero:

w =
∑N

n=1 antnφ(xn) 0 =
∑N

n=1 antn.

Use these to eliminate w and b from L(w, b, a). Obtain the dual
representation: maximize with respect to a

L̃(a) =
N∑

n=1

an −
1

2

N∑

n=1

N∑

m=1

anamtntmk(xn, xm), k(x, x′) = φ(x)Tφ(x′)

subject to an ≥ 0, n = 1, . . . ,N, and
∑N

n=1 antn = 0.
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Advantages of Passing to the Dual

The solution to a quadratic programming problem in M variables in
general has computational complexity O

(
M3
)
.

In going to the dual formulation we have turned the original
optimization problem, which involved minimization over M variables,
into the dual problem, which has N variables.

For a fixed set of basis functions whose number M is smaller than the
number N of data points, the move to the dual problem appears
disadvantageous.
However, it allows the model to be reformulated using kernels:

The maximum margin classifier can be applied efficiently to feature
spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces.
The kernel formulation also makes clear the role of the constraint that
the kernel function k(x, x′) be positive definite; This ensures that the

Lagrangian function L̃(a) is bounded below; In turn, this gives rise to a
well defined optimization problem.
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Classification of New Data Points

To classify a new x, we evaluate y(x) = wTφ(x) + b.

In terms of the parameters {an} and the kernel function, we get
y(x) =

∑N
n=1 antnk(x, xn) + b.

It can be shown that a constrained optimization of this form satisfies
the Karush-Kuhn-Tucker (KKT) conditions:

an ≥ 0, tny(xn)− 1 ≥ 0, an[tny(xn)− 1] = 0.

Thus for every data point, either an = 0 or tny(xn) = 1.

Any data point for which an = 0 will not appear in the sum and hence
plays no role in making predictions for new data points.

The remaining data points are called support vectors, and because
they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space.

This property is central to the practical applicability of support vector
machines. Once the model is trained, a significant proportion of the
data points can be discarded and only the support vectors retained.
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Value of the Threshold Parameter b

Having solved the quadratic programming problem for a, we can then
determine the value of b by noting that any support vector xn
satisfies tny(xn) = 1.

This gives
tn(
∑

m∈S

amtmk(xn, xm) + b) = 1,

where S is the set of indices of the support vectors.

Multiplying through by tn, making use of t2n = 1, and then averaging
over all support vectors and solving for b, gives

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn, xm)

)
,

where NS is the total number of support vectors.
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Illustration of an SVM Classification

The figure shows an example of the
classification resulting from training a
support vector machine on a simple data
set using a Gaussian kernel

k(x, x′) = e
−

‖x−x′‖2

2σ2 .

The data set is not linearly separable in the data space x.

It is linearly separable in the nonlinear feature space defined implicitly
by the nonlinear kernel function.

Thus, training data are perfectly separated in the original space.

We get a geometrical insight into the origin of sparsity in the SVM.
The maximum margin hyperplane is defined by the location of the
support vectors; other data points can be moved around freely
without changing the decision boundary.
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Subsection 3

Overlapping Class Distributions
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Handling Non-Separability of Training Points

Thus far, we have assumed that the training data points are linearly
separable in the feature space φ(x).

The resulting support vector machine will give exact separation of the
training data in the original input space x, although the corresponding
decision boundary will be nonlinear.

In practice the class-conditional distributions may overlap, in which
case exact separation can lead to poor generalization.

We need a way to modify the support vector machine so as to allow
some of the training points to be misclassified.

In the case of separable classes, an error function that gave infinite
error if a data point was misclassified and zero error if it was classified
correctly was used.

We modify this approach so that data points are allowed to be on the
“wrong side” of the margin boundary, but with a penalty that
increases with the distance from that boundary.
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Introducing Slack Error Variables

It is convenient to make this penalty a linear function of the distance.

We introduce slack variables, ξn ≥ 0, n = 1, . . . ,N, with one slack
variable for each training data point.

These are defined by ξn = 0 for data points that are on or inside the
correct margin boundary and ξn = |tn − y(xn)| for other points.

A data point that is on the decision boundary y(xn) = 0 will have
ξn = 1, and points with ξn > 1 will be misclassified.

The exact classification constraints are replaced by

tny(xn) ≥ 1− ξn, n = 1, . . . ,N,

in which the slack variables are constrained to satisfy ξn ≥ 0.
Data points for which ξn = 0 are correctly classified and are either on
the margin or on the correct side of the margin.
Points for which 0 < ξn ≤ 1 lie inside the margin, but on the correct
side of the decision boundary.
Data points for which ξn > 1 lie on the wrong side of the decision
boundary and are misclassified.
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Softening the Margin

We say the hard margin constraint is relaxed
to give a soft margin that allows some of the
training set data points to be misclassified.

While slack variables allow for overlapping
class distributions, the framework is still
sensitive to outliers because the penalty for
misclassification increases linearly with ξ.

Our goal is now to maximize the margin while softly penalizing points
that lie on the wrong side of the margin boundary.

We minimize
C

N∑

n=1

ξn +
1

2
‖w‖2,

where the parameter C > 0 controls the trade-off between the slack
variable penalty and the margin.

Note
∑

n ξn is an upper bound on the number of misclassified points.

In the limit C → ∞, we recover the framework for separable data.
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Obtaining the Karush-Kuhn-Tucker Conditions

The problem is to minimize C
∑N

n=1 ξn +
1
2‖w‖2, subject to the

constraints tny(xn) ≥ 1− ξn, n = 1, . . . ,N, and ξn ≥ 0.

The corresponding Lagrangian is

L(w, b, a) =
1

2
‖w‖2 +C

N∑

n=1

ξn −

N∑

n=1

an [tny(xn)− 1 + ξn]−

N∑

n=1

µnξn,

where {an ≥ 0} and {µn ≥ 0} are Lagrange multipliers.

The corresponding set of KKT conditions are, for n = 1, . . . ,N,

an ≥ 0
tny(xn)− 1 + ξn ≥ 0

an(tny(xn)− 1 + ξn) = 0
µn ≥ 0
ξn ≥ 0

µnξn = 0
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The Dual Lagrangian

We optimize out w, b and {ξn} making use of y(x) = wTφ(x) + b:
∂L
∂w = 0 ⇒ w =

∑N
n=1 antnφ(xn)

∂L
∂b

= 0 ⇒
∑N

n=1 antn = 0
∂L
∂ξn

= 0 ⇒ an = C − µn.

Using these, we eliminate w, b and {ξn} from the Lagrangian and
obtain the dual Lagrangian:

L̃(a) =

N∑

n=1

an −
1

2

N∑

n=1

N∑

m=1

anamtntmk(xn, xm).

which is identical to the separable case, except that the constraints
are somewhat different.
Since an ≥ 0 and µn ≥ 0, we get an ≤ C . So minimization of L̃(a)
with respect to {an} is subject to

0 ≤ an ≤ C ,

N∑

n=1

antn = 0.

For predictions for new data points: y(x) =
∑N

n=1 ank(x, xn) + b.
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Positioning of Support Vectors

A subset of the data points may have an = 0, in which case they do
not contribute to the predictive model y(x) =

∑N
n=1 ank(x, xn) + b.

The remaining data points, with an > 0 constitute the support

vectors.

Support vectors satisfy tny(xn) = 1− ξn.

If an < C , then µn > 0, whence ξn = 0 and such points lie on the
margin.
Points with an = C can lie inside the margin and can

either be correctly classified if ξn ≤ 1
or misclassified if ξn > 1.
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Determining b

To determine the parameter b in y(x) =
∑N

n=1 ank(x, xn) + b, we
note that those support vectors for which 0 < an < C have ξn = 0.

So tny(xn) = 1 and hence

tn

(
∑

m∈S

amtmk(xn, xm) + b

)
= 1.

A numerically stable solution is obtained by averaging to give

b =
1

NM

∑

n∈M

(
tn −

∑

m∈S

amtmk(xn, xm)

)
,

where M denotes the set of indices of data points having 0 < an < C .

Although predictions for new inputs are made using only the support
vectors, the training phase makes use of the whole data set, and so it
is important to have efficient algorithms for solving the quadratic
programming problem.
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The Quadratic Programming Problem

The objective function L̃(a) is quadratic and so any local optimum
will also be a global optimum provided the constraints define a convex
region (a consequence of being linear).
Direct solution of the quadratic programming problem using
traditional techniques is often computationally infeasible.
More practical approaches have been suggested:

Chunking (Vapnik, 1982) breaks the full problem into a series of
smaller ones, exploiting the fact that the value of the Lagrangian is
unchanged if we remove the rows and columns of the kernel matrix
corresponding to Lagrange multipliers that have value 0.
Decomposition methods (Osuna et al., 1996) also solve a series of
smaller problems but are designed so that each of these is of a fixed
size, and so the technique can be applied to arbitrarily large data sets.
Sequential minimal optimization, or SMO (Platt, 1999) takes the
concept of chunking to the extreme limit and considers just two
Lagrange multipliers at a time. In this case, the subproblem can be
solved analytically, avoiding numerical quadratic programming.
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Subsection 4

Multiclass SVMs
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Extensions to K Classes: One-versus-the-rest

The support vector machine is a two-class classifier.

In practice, we often have to tackle problems involving K > 2 classes.

Various methods have been proposed for combining multiple two-class
SVMs in order to build a multiclass classifier.

The one-versus-the-rest approach (Vapnik, 1998) constructs K
separate SVMs. The k-th model yk (x) is trained using the data from
class Ck as the positive examples and the data from the remaining
K − 1 classes as the negative examples.

Can lead to inconsistent results.
If y(x) = maxk yk (x) is used scaling issues arise.
Another problem is that the training sets are imbalanced.

A variant of the one-versus-the-rest (Lee et al., 2001) modifies the
target values so that the positive class has target +1 and the negative
class has target −1

K−1 .
Weston and Watkins (1999) define a single objective function for
training all K SVMs simultaneously, based on maximizing the margin
from each to remaining classes. This can result in much slower training.
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Extensions to K Classes: One-versus-one and DAGSVM

Other methods used to build a multiclass classifier:
The one-versus-one approach is to train K(K−1)

2 different 2-class
SVMs on all possible pairs of classes, and then to classify test points
according to which class has the highest number of “votes”.

This can lead to ambiguities in the resulting classification.
For large K this approach requires significantly more training time.

This problem can be alleviated by organizing the pairwise classifiers
into a directed acyclic graph, leading to the DAGSVM (Platt et al.,

2000). For K classes, the DAGSVM has a total of K(K−1)
2 classifiers.

To classify a new test point only K − 1 pairwise classifiers need to be
evaluated depending on which path through the graph is traversed.
Based on error-correcting output codes, another approach, generalizing
the one-versus-one approach by allowing more general partitions of the
classes used to train the individual classifiers, was developed (Dietterich
and Bakiri, 1995, Allwein et al., 2000). It adds robustness to errors and
to ambiguity in the outputs of the individual classifiers.

In practice the one-versus-the-rest approach is the most widely used
despite its limitations.

George Voutsadakis (LSSU) Artificial Intelligence February 2014 35 / 42



Support Vector Machines SVMs for Regression

Subsection 5

SVMs for Regression
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Regularized ǫ-Insensitive Error

Support vector machines can be extended to regression problems
while at the same time preserving the property of sparseness.

In simple linear regression, we minimize a regularized error function

1

2

N∑

n=1

(yn − tn)
2 +

λ

2
‖w‖2.

To obtain sparse solutions, the quadratic error function is replaced by
an ǫ-insensitive error function (Vapnik, 1995), which gives zero
error if the absolute difference between the prediction y(x) and the
target t is less than ǫ, where ǫ > 0.

A simple example of an ǫ-insensitive error function is

Eǫ(y(x)− t)

=

{
0, if |y(x)− t| < ǫ

|y(x)− t| − ǫ, otherwise
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The Optimization Problem

We minimize a regularized error function

C

N∑

n=1

Eǫ(y(xn)− tn) +
1

2
‖w‖2,

where y(x) = wTφ(x) + b.
By convention the (inverse) regularization parameter, denoted C ,
appears in front of the error term.
For each data point xn, we now introduce two slack variables ξn ≥ 0
and ξ̂n ≥ 0, where

ξn > 0 corresponds to a point for
which tn > y(xn) + ǫ;

ξ̂n > 0 corresponds to a point for
which tn < y(xn)− ǫ.

The condition for a target point to lie inside the ǫ-tube is that
yn − ǫ ≤ tn ≤ yn + ǫ, where yn = y(xn).
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The Optimization Problem

Introducing the slack variables allows points to lie outside the tube
provided the slack variables are nonzero:

tn ≤ y(xn) + ǫ+ ξn, tn ≥ y(xn)− ǫ− ξ̂n.

The error function for support vector regression is

C

N∑

n=1

(ξn + ξ̂n) +
1

2
‖w‖2

which must be minimized subject to ξn ≥ 0, ξ̂n ≥ 0 and the preceding
two conditions.

We introduce Lagrange multipliers an ≥ 0, ân ≥ 0, µn ≥ 0, µ̂n ≥ 0
and optimize the Lagrangian:

L = C
∑N

n=1(ξn + ξ̂n) +
1
2

∑N
n=1(µnξn + µ̂nξ̂n)

−
∑N

n=1 an(ǫ+ ξn + yn − tn)−
∑N

n=1 ân(ǫ+ ξ̂n − yn + tn).

Substitute y(x) = wTφ(x) + b and then set the derivatives of the
Lagrangian with respect to w, b, ξn and ξ̂n to zero.
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The Dual Problem

We thus get the system:
∂L
∂w = 0 ⇒ w =

∑N
n=1(an − ân)φ(xn)

∂L
∂b

= 0 ⇒
∑N

n=1(an − ân) = 0
∂L
∂ξn

= 0 ⇒ an + µn = C
∂L

∂x̂in
= 0 ⇒ ân + µ̂n = C .

Using these results to eliminate the corresponding variables from the
Lagrangian, we get the dual problem: maximize

L̃(a, â) = −1
2

∑N
n=1

∑N
m=1(an − ân)(am − âm)k(xn, xm)

−ǫ
∑N

n=1(an + ân) +
∑N

n=1(an − ân)tn,

with respect to {an} and {ân}, where k(x, x′) = φ(x)Tφ(x′).

To find the constraints, note that an ≥ 0 and ân ≥ 0, and, since
µn ≥ 0 and µ̂n ≥ 0, we get an ≤ C and ân ≤ C .

Thus
0 ≤ an ≤ C , 0 ≤ ân ≤ C ,

N∑

n=1

(an − ân) = 0.
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Predictions and KKT Conditions

Since w =
∑N

n=1(an − ân)φ(xn), predictions for new x can made
using

y(x) =
N∑

n=1

(an − ân)k(x, xn) + b.

The corresponding KKT conditions are

an(ǫ+ ξn + yn − tn) = 0

ân(ǫ+ ξ̂n − yn + tn) = 0
(C − an)ξn = 0

(C − ân)ξ̂n = 0

Note that an can only be nonzero if ǫ+ ξn + yn − tn = 0, which
implies that the data point

either lies on the upper boundary of the ǫ-tube (ξn = 0) or
lies above the upper boundary (ξn > 0).

Similarly, a nonzero value for ân implies ǫ+ ξ̂n − yn + tn = 0, and
such points must lie

either on or below the lower boundary of the ǫ-tube.
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Support Vectors and Evaluation of b

The two constraints ǫ+ ξn + yn − tn = 0 and ǫ+ ξ̂n − yn + tn = 0 are
incompatible, whence, for every xn, either an or ân (or both) must be
zero.
The support vectors are those points for which an 6= 0 or ân 6= 0.

These are points that lie on the boundary of the ǫ-tube or outside.
All points within the tube have an = ân = 0.

The parameter b can be found by considering a data point for which
0 < an < C , i.e., since (C − an)ξn = 0, for which ξn = 0. Since
an(ǫ+ ξn + yn − tn) = 0, they must satisfy ǫ+ yn − tn = 0.

Solving y(x) = wTφ(x) + b for b:

b = tn − ǫ− wTφ(xn)

= tn − ǫ−
∑N

m=1(am − âm)k(xn, xm).

Alternatively, we may consider a point for which 0 < ân < C .

In practice, it is better to average over all such estimates of b.
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