Introduction to Lattices and Order

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

Topological Spaces

- A **topological space** (X; T) consists of a set X and a family T of subsets of X, such that:
 - (T1) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$;
 - (T2) a finite intersection of members of T is in T;
 - (T3) an arbitrary union of members of T is in T.
- The family \mathcal{T} is called a **topology** on X;
- The members of ${\mathcal T}$ are called **open sets**.
- We write X in place of (X; T) when T is the only topology under consideration.

A Standard Example

 $\bullet\,$ The standard topology $\mathcal{T}_{\mathbb{R}}$ on \mathbb{R} consists of

$$\{U \subseteq \mathbb{R} : (\forall x \in U) (\exists \delta > 0) \ (x - \delta, x + \delta) \subseteq U\},\$$

where δ may depend on x.

- Equivalently, T_ℝ consists of those sets which can be expressed as unions of open intervals, together with Ø.
- The equation

$$\bigcap_{n\geq 1}(-\frac{1}{n},\frac{1}{n}) = \{0\}$$

exhibits an intersection of open sets which is not open.

Closed Sets, Clopen Sets, Connected Spaces

- Given a topological space (X; T), we define a subset of X to be closed if it belongs to Γ(X) := {X \ U : U ∈ T}.
- The family Γ(X) is closed under arbitrary intersections and finite unions.
- For every A ⊆ X, there exists a smallest closed set A containing A, called the closure of A.
- Sets which are both open and closed are called **clopen**.
- A topological space is **connected** if its only clopen subsets are the whole space and the empty set.
 - Many of the topological spaces encountered in elementary analysis and geometry are connected;
 - By contrast, the spaces that will be used in our representation theory have an ample supply of clopen sets.

Subspaces, Bases and Subbases

 Let (X; T) be a topological space. Any subset Y of X inherits a subspace topology given by

 $\mathcal{T}_Y := \{ V \subseteq Y : V = U \cap Y, \text{ for some } U \subseteq \mathcal{T} \}.$

- To create a topology on a set X in which a specified family S of subsets of X, including Ø and X, are open sets, we do the following:
 - If S is already closed under finite intersections, we define T to be those sets which are unions of sets in S.

Then \mathcal{T} satisfies (T1), (T2) and (T3) and \mathcal{S} is said to be a **basis** for \mathcal{T} .

- In general,
 - we first form B, the family of sets which are finite intersections of members of S,

• and then define \mathcal{T} to be all arbitrary unions of members of \mathcal{B} .

In this case S is called a **subbasis** for T.

Continuity and Homeomorphisms

- Let $(X; \mathcal{T})$ and $(X'; \mathcal{T}')$ be topological spaces and $f : X \to X'$ a map. Then the following conditions are equivalent:
 - (i) $f^{-1}(U)$ is open in X whenever U is open in X';
 - (i)' $f^{-1}(V)$ is closed in X whenever V is closed in X';
 - (ii) $f^{-1}(U)$ is open in X, for every $U \in S$, where S is a given basis or subbasis for \mathcal{T}' .

When f satisfies any of these conditions it is said to be **continuous**. Example: If $(X; \mathcal{T}) = (X'; \mathcal{T}') = (\mathbb{R}; \mathcal{T}_{\mathbb{R}})$ and S is the family of subintervals (a, b) (for $-\infty < a < b < \infty$), plus \mathbb{R} and \emptyset , (ii) is just a restatement of the ϵ - δ definition of continuity.

• The map $f: X \to X'$ is said to be a **homeomorphism** if f is bijective and both f and f^{-1} are continuous.

Homeomorphisms are topology's isomorphisms.

Hausdorff Spaces

• There is a hierarchy of separation conditions, one of which is the *Hausdorff condition*.

The topological space $(X; \mathcal{T})$ is said to be **Hausdorff** if, given $x, y \in X$, with $x \neq y$, there exist open sets U_1, U_2 , such that

$$x \in U_1$$
, $y \in U_2$, and $U_1 \cap U_2 = \emptyset$.

 Mnemonically, X is Hausdorff if distinct points can be "housed off" in disjoint open sets.

Singletons are Closed in Hausdorff Spaces

Lemma

Let $(X; \mathcal{T})$ be a Hausdorff space. Then, for all $x \in X$, $\{x\}$ is closed.

• For every $y \in X$, with $y \neq x$, there exist open sets U_y, V_y , such that

$$x \in U_y, y \in V_y$$
 and $U_y \cap V_y = \emptyset$.

Set $V = \bigcup_{x \neq y \in X} V_y$. Since V is the union of open sets, it is open. To show that $\{x\}$ is closed, it suffices to show that $\{x\} = X \setminus V$.

- $x \in \bigcap_{y \neq x} U_y \subseteq \bigcap_{y \neq x} (X \setminus V_y) = X \setminus \bigcup_{y \neq x} V_y = X \setminus V.$
- If $y \neq x$, then $y \in V_y$, whence $y \in V$. So $y \notin X \setminus V$.

We conclude that $X \setminus V = \{x\}$.

Compactness

- Let (X; T) be a topological space and let U := {U_i}_{i∈I} ⊆ T.
 The family U is called an **open cover** of Y ⊆ X if Y ⊆ ∪_{i∈I} U_i.
 A finite subset of U whose union still contains Y is a **finite subcover**.
- We say Y is compact if every open cover of Y has a finite subcover.
 Example: The famous Heine-Borel Theorem states that a subset of R is closed and bounded if and only if it is compact.
- Compactness is a fundamental topological concept and may be regarded as a substitute for finiteness.

It frequently compensates for the restriction to finite intersections in axiom (T2) by allowing arbitrary families of open sets to be reduced to finite families.

• All the spaces we use in our representation theory are compact.

Compact Hausdorff Spaces and Continuous Maps

- We present two basic results about compact Hausdorff spaces.
- The first relates compactness and closedness and shows that continuous maps behave well:

Lemma

- Let $(X; \mathcal{T})$ be a compact Hausdorff space.
 - (i) A subset C of X is compact if and only if it is closed.
 - (ii) Let $f: X \to X'$ be a continuous map, where $(X'; \mathcal{T}')$ is any topological space.
 - (a) f(X) is a compact subset of X'.
 - (b) If $(X'; \mathcal{T}')$ is Hausdorff and $f : X \to X'$ is bijective, then f is a homeomorphism.

Proof of (i)

Suppose, first, that C is a compact subset of a Hausdorff space X.
 Let x be some fixed point in X\C. We show that there exists an open set U_x containing x and with U_x ⊆ X\C. This will show that X\C is open, whence C is closed.

For each $c \in C$, there exist disjoint open sets U_c , V_c , with $x \in U_c$, $c \in V_c$. The collection $\{V_c : c \in C\}$ is an open cover of C. By compactness there is a finite subcover, say $\{V_{c_1}, \ldots, C_{c_r}\}$. Let $U_x = \bigcap_{i=1}^r U_{c_i}$. As a finite intersection of open sets, U_x is open in X. Clearly $x \in U_x$, since $x \in U_{c_i}$, for all i.

We finally show that $U_x \subseteq X \setminus C$.

For each i = 1, ..., r, we have $U_x \subseteq U_{c_i}$. So $U_x \cap V_{c_i} \subseteq U_{c_i} \cap V_{c_i} = \emptyset$. Hence $U_x \cap C \subseteq U_x \cap (\bigcup_{i=1}^r V_{c_i}) = \bigcup_{i=1}^r (U_x \cap V_{c_i}) = \emptyset$. So $U_x \subseteq X \setminus C$, as required.

Proof of (i) (Converse)

• Suppose C is a closed subset of a compact space X.

Let \mathcal{U} be any cover of C by sets open in X. Since C is closed in X, $X \setminus C$ is open in X. If we add it to \mathcal{U} we get an open cover of X. But X is compact, so there is a finite subcover, say $\{U_1, \ldots, U_r\}$. This certainly covers C since it covers all of X.

- If $X \setminus C$ is one of these U_i then we may throw it out and the remaining r-1 sets will still cover C.
- If $X \setminus C$ is not one of the U_i then we leave $\{U_1, \ldots, U_r\}$ alone.

In either case we get a finite subcover of \mathcal{U} for C. So C is compact.

Proof of (ii)(a)

Suppose X is compact and f : X → X' is continuous.
 Let U is an open cover of f(X). Since f is continuous, f⁻¹(U) is open in X for every U ∈ U. The family

 $\{f^{-1}(U):U\in\mathcal{U}\}$

covers X since U covers f(X). Hence by compactness of X, there is a finite subcover, say

$$\{f^{-1}(U_1),\ldots,f^{-1}(U_r)\}.$$

Then $\{U_1, \ldots, U_r\}$ is a finite subcover of f(X). We conclude that f(X) is compact in X'.

Proof of (ii)(b)

- Let f: X → X' be a bijective continuous map from a compact Hausdorff space X onto a Hausdorff space X'.
 Since f is bijective, we know that there is an inverse function f⁻¹: X' → X. We just have to prove that f⁻¹ is continuous.
 Suppose that V is closed in X. It is enough to show that (f⁻¹)⁻¹(V) is closed in X'. Note that (f⁻¹)⁻¹(V) = f(V). Then we have:
 - V closed in $X \Rightarrow V$ is compact closed subset of a compact space is
 - closed subset of a compact space is compact
 - $\Rightarrow f(V) \text{ is compact} \\ \text{the continuous image of a} \\ \text{compact space is compact} \\ f(V) \text{ is the state of } Y'_{V}$
 - $\Rightarrow f(V) \text{ is closed in } X'.$ a compact subspace of a Hausdorff space is closed

So
$$(f^{-1})^{-1}(V) = f(V)$$
 is closed in X'.

Strengthening the Hausdorff Separability Axiom

• The following lemma strengthens the Hausdorff condition, which is recaptured by taking the closed sets to be singletons:

Lemma

Let $(X; \mathcal{T})$ be a compact Hausdorff space.

- (i) Let V be a closed subset of X and $x \notin V$. Then there exist disjoint open sets W_1 and W_2 , such that $x \in W_1$ and $V \subseteq W_2$.
- (ii) Let V_1 and V_2 be disjoint closed subsets of X. Then there exist disjoint open sets U_1 and U_2 , such that $V_i \subseteq U_i$, for i = 1, 2.

For y ∈ V, by the Hausdorff axiom, there are open sets U₁^{x,y} and U₂^{x,y} containing x and y, respectively. Then U₂ := {U₂^{x,y} : y ∈ V} is an open cover of V. By the preceding lemma, V is compact. Take a finite subcover {U₂^{x,y} : j = 1,...,n}. Let U₁^x := ∩_{1≤j≤n} U₁^{x,y} and U₂^{x,y} := ∪_{1≤j≤n} U₂^{x,y}. Each U₂^{x,y} does not intersect the corresponding U₁^{x,y}. So, it is disjoint from U₁^x. Hence, U₁^x and U₂^x are disjoint.

Strengthening the Hausdorff Separability Axiom (Cont'd)

- Also U_1^x and U_2^x are open. These sets contain x and V, respectively. Take $W_1 := U_1^x$ and $W_2 := U_2^x$ to obtain (i).
- For (ii) we repeat the process, taking V := V₂ and letting x vary over V₁. The family U₁ := {U₁^x : x ∈ V₁} is an open cover of the compact set V₁. Take a finite subcover {U₁^{x_i} : i = 1,...,m}. Define U₁ := ∪_{1≤i≤m} U₁^{x_i} and U₂ := ∩_{1≤i≤m} U₂^{x_i}.

Finiteness of a Compact Hausdorff Space

• The next lemma enables us to fit our finite representation theory into the general theory:

Lemma

Let $(X; \mathcal{T})$ be a compact Hausdorff space. Then the following conditions are equivalent:

- (i) X is finite;
- (ii) Every subset of X is open (that is, T is discrete);
- (iii) Every subset of X is clopen.

(ii)⇔(iii): trivial.
(iii)⇒(i): Consider the open cover {{x} : x ∈ X}.
(i)⇒(ii): Finally, assume (i). For Ø ≠ Y ⊆ X, the set X\Y is a finite union of singleton sets, which are closed because X is Hausdorff. So X\Y is closed. Hence Y is open.

Alexander's Subbasis Lemma

• We prove Alexander's Subbasis Lemma using (BPI).

Alexander's Subbasis Lemma

Let $(X; \mathcal{T})$ be a topological space and S a subbasis for \mathcal{T} . Then X is compact if every open cover of X by members of S has a finite subcover.

Let B be the basis formed from all finite intersections of members of S. To prove X is compact it is enough to show that every open cover U of X by sets in B has a finite subcover. Suppose this is false and let U be an open cover of X by sets in B, which does not have a finite subcover. Define J to be the ideal in P(X) generated by U. So a typical element of J is a subset of U₁ ∪ … ∪ U_k, for some U₁,..., U_k ∈ U. J is proper, by our hypothesis. Use (BPI) to construct a prime ideal I of P(X) containing J.

Alexander's Subbasis Lemma (Cont'd)

For each x ∈ X, there exists U(x) ∈ U, with x ∈ U(x). Each U(x) is a finite intersection of members of S and belongs to I since U ⊆ I. As I is prime we may assume that U(x) itself lies in S. Let

$$\mathcal{V} \coloneqq \{U(x) : x \in X\}.$$

Then \mathcal{V} is an open cover of X by members of \mathcal{S} . So, by assumption, \mathcal{V} has a finite subcover. But then $X = U(x_1) \cup \cdots \cup U(x_n)$, for some finite subset $\{x_1, \ldots, x_n\}$ of X. Therefore $X \in I$, a contradiction.