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A Brief Topological Detour

Topological Spaces

o A topological space (X;7) consists of a set X and a family 7 of
subsets of X, such that:

(T1) €T and X €T;
(T2) a finite intersection of members of T isin T;
(T3) an arbitrary union of members of T isin T.

@ The family T is called a topology on X;
o The members of T are called open sets.

o We write X in place of (X;7) when T is the only topology under
consideration.
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A Brief Topological Detour

A Standard Example

@ The standard topology 7R on R consists of
{USR:(VxeU)(3§>0) (x—0,x+0) c U},

where § may depend on x.

o Equivalently, 7 consists of those sets which can be expressed as
unions of open intervals, together with @.
o The equation
NG+ 2= {0}
nx1 NN

exhibits an intersection of open sets which is not open.
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A Brief Topological Detour

Closed Sets, Clopen Sets, Connected Spaces

o Given a topological space (X;T), we define a subset of X to be
closed if it belongs to ['(X) :=={X\U: UeT}.

o The family ['(X) is closed under arbitrary intersections and finite
unions.

o For every AC X, there exists a smallest closed set A containing A,
called the closure of A.
@ Sets which are both open and closed are called clopen.
o A topological space is connected if its only clopen subsets are the
whole space and the empty set.
o Many of the topological spaces encountered in elementary analysis and
geometry are connected;
@ By contrast, the spaces that will be used in our representation theory
have an ample supply of clopen sets.
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A Brief Topological Detour

Subspaces, Bases and Subbases

o Let (X;T) be a topological space. Any subset Y of X inherits a
subspace topology given by

Ty ={VcY:V=UnY, for some UcT}.

o To create a topology on a set X in which a specified family S of
subsets of X, including @ and X, are open sets, we do the following:
o If S is already closed under finite intersections, we define 7 to be those
sets which are unions of sets in S.
Then T satisfies (T1), (T2) and (T3) and S is said to be a basis for 7.
@ In general,
o we first form B, the family of sets which are finite intersections of
members of S,
o and then define 7 to be all arbitrary unions of members of B.

In this case S is called a subbasis for 7T .
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A Brief Topological Detour

Continuity and Homeomorphisms

o Let (X;7T) and (X’;T") be topological spaces and f: X - X’ a map.
Then the following conditions are equivalent:
(i) f71(U) is open in X whenever U is open in X’;
(i)’ £f71(V) is closed in X whenever V is closed in X’;
(i) £f71(U) is open in X, for every U € S, where S is a given basis or
subbasis for 7.

When f satisfies any of these conditions it is said to be continuous.
Example: If (X;7)=(X";7T") = (R;Tr) and S is the family of
subintervals (a,b) (for —oco < a< b < ), plus R and @, (ii) is just a
restatement of the e-J definition of continuity.

o The map f: X — X' is said to be a homeomorphism if f is bijective
and both f and £~1 are continuous.

Homeomorphisms are topology's isomorphisms.
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A Brief Topological Detour

Hausdorff Spaces

o There is a hierarchy of separation conditions, one of which is the
Hausdorff condition.

The topological space (X;T) is said to be Hausdorff if, given
x,y € X, with x # y, there exist open sets Uy, Uy, such that

xely, yelh, and Unl,=2.

@ Mnemonically, X is Hausdorff if Ui G
distinct points can be “housed off”
in disjoint open sets. X y
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A Brief Topological Detour

Singletons are Closed in Hausdorff Spaces

Let (X;7T) be a Hausdorff space. Then, for all x € X, {x} is closed.

o For every y € X, with y # x, there exist open sets U, V), such that
xelU,, yeV, and U,nV,=0.

Set V' = Uxzyex V). Since V is the union of open sets, it is open.
To show that {x} is closed, it suffices to show that {x} = X\V.
9 X E€Myax Uy c ny¢x(X\Vy) = X\Uy¢x V, = X\V.
o If y #x, then y € V), whence y € V. So y ¢ X\V.
We conclude that X\V = {x}.
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A Brief Topological Detour

Compactness

o Let (X;T) be a topological space and let U := {U;};e) € T.

The family U is called an open cover of Y ¢ X if Y ¢ U U;.

A finite subset of ¢/ whose union still contains Y is a finite subcover.
o We say Y is compact if every open cover of Y has a finite subcover.

Example: The famous Heine-Borel Theorem states that a subset of
R is closed and bounded if and only if it is compact.

o Compactness is a fundamental topological concept and may be
regarded as a substitute for finiteness.

It frequently compensates for the restriction to finite intersections in
axiom (T2) by allowing arbitrary families of open sets to be reduced
to finite families.

o All the spaces we use in our representation theory are compact.
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A Brief Topological Detour

Compact Hausdorff Spaces and Continuous Maps

o We present two basic results about compact Hausdorff spaces.

o The first relates compactness and closedness and shows that
continuous maps behave well:

Lemma

Let (X;T) be a compact Hausdorff space.

(1) A subset C of X is compact if and only if it is closed.

(1) Let f: X — X' be a continuous map, where (X’; T") is any topological
space.

(a) f(X) is a compact subset of X'.
(b) If (X’;T") is Hausdorff and f : X - X' is bijective, then f is a
homeomorphism.
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A Brief Topological Detour

Proof of (i)

@ Suppose, first, that C is a compact subset of a Hausdorff space X.

Let x be some fixed point in X\C. We show that there exists an open
set Uy containing x and with Uy € X\C. This will show that X\C is
open, whence C is closed.

For each c € C, there exist disjoint open sets U, V., with x € U,

c € V.. The collection {V,.:ce C} is an open cover of C. By
compactness there is a finite subcover, say {V,,,...,C }. Let

Ux =Nj_; Ug. As a finite intersection of open sets, Uy is open in X.
Clearly x € Uy, since x € U, for all i.

We finally show that Uy, ¢ X\C.

For each i=1,...,r, we have U, c U,. So UxnV, c U, nV, =@.
Hence Uy,n Cc Ugsn (Ui; V) = Ul (Ucn V) =@. So Uy € X\C,
as required.
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A Brief Topological Detour

Proof of (i) (Converse)

@ Suppose C is a closed subset of a compact space X.

Let U be any cover of C by sets open in X. Since C is closed in X,
X\C is open in X. If we add it to U we get an open cover of X. But
X is compact, so there is a finite subcover, say {Ui,...,U,}. This
certainly covers C since it covers all of X.

o If X\C is one of these U; then we may throw it out and the remaining

r—1 sets will still cover C.
o If X\C is not one of the U; then we leave {Uj, ..., U,} alone.

In either case we get a finite subcover of U for C. So C is compact.
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A Brief Topological Detour

Proof of (ii)(a)

o Suppose X is compact and f : X — X’ is continuous.

Let U is an open cover of f(X). Since f is continuous, f1(U) is
open in X for every U elU. The family

{FLU):Uel}

covers X since U covers f(X). Hence by compactness of X, there is
a finite subcover, say

{FY(U),...,F L (U)}.

Then {Us,..., U} is a finite subcover of f(X). We conclude that
f(X) is compact in X'.
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A Brief Topological Detour

Proof of (ii)(b)

o Let f: X — X’ be a bijective continuous map from a compact
Hausdorff space X onto a Hausdorff space X'.
Since f is bijective, we know that there is an inverse function
f~1: X" > X. We just have to prove that = is continuous.
Suppose that V is closed in X. It is enough to show that (f71)71(V)
is closed in X’. Note that (f"1)71(V) = f(V). Then we have:

V closed in X =V is compact
closed subset of a compact space is compact
= f(V) is compact
the continuous image of a
compact space is compact
= f(V)is closed in X'.
a compact subspace of a
Hausdorff space is closed

So (FH)™1(V)=f(V)is closed in X'.
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A Brief Topological Detour

Strengthening the Hausdorff Separability Axiom

o The following lemma strengthens the Hausdorff condition, which is
recaptured by taking the closed sets to be singletons:

Lemma

Let (X;7T) be a compact Hausdorff space.

(1) Let V be a closed subset of X and x ¢ V. Then there exist disjoint open
sets Wi and W, such that x e Wi and V ¢ Ws.

(1) Let Vi and V5 be disjoint closed subsets of X. Then there exist disjoint
open sets U; and U, such that V; c U;, for i=1,2.

o For y € V, by the Hausdorff axiom, there are open sets U;"*” and U;*”
containing x and y, respectively. Then U, := {U;” : y € V} is an open
cover of V. By the preceding lemma, V is compact. Take a finite
subcover {U,” :j=1,...,n}. Let U :=Nyicjcn U and
Uy == Uigjen U ™. Each Uy does not intersect the corresponding
U;". So, it is disjoint from Uy. Hence, Uy and U5 are disjoint.
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A Brief Topological Detour

Strengthening the Hausdorff Separability Axiom (Cont'd)

o Also Uf and U3 are open. These sets contain x and V/, respectively.
Take W := Uy and W, := U to obtain (i).

o For (ii) we repeat the process, taking V := V, and letting x vary over
V4. The family Uy := {U5 : x € V1} is an open cover of the compact
set V4. Take a finite subcover {Uy" :i=1,...,m}. Define
Ut = Uici<m Ufi and Uz == Nigjicm Uf"-
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A Brief Topological Detour

Finiteness of a Compact Hausdorff Space

@ The next lemma enables us to fit our finite representation theory into
the general theory:

Lemma

Let (X;7T) be a compact Hausdorff space. Then the following conditions
are equivalent:

(1) X is finite;
(11) Every subset of X is open (that is, 7 is discrete);
(111) Every subset of X is clopen.
(i)« (iii): trivial.
(iii)=(i): Consider the open cover {{x} : x € X}.

(i)=(ii): Finally, assume (i). For @ # Y c X, the set X\Y is a finite
union of singleton sets, which are closed because X is Hausdorff. So
X\Y is closed. Hence Y is open.
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A Brief Topological Detour

Alexander’'s Subbasis Lemma

o We prove Alexander’s Subbasis Lemma using (BPI).

Alexander’'s Subbasis Lemma

Let (X;7T) be a topological space and S a subbasis for 7. Then X is
compact if every open cover of X by members of S has a finite subcover.

o Let B be the basis formed from all finite intersections of members of
S. To prove X is compact it is enough to show that every open cover
U of X by sets in B has a finite subcover. Suppose this is false and
let U be an open cover of X by sets in B, which does not have a
finite subcover. Define J to be the ideal in P(X) generated by U. So
a typical element of J is a subset of Uy U---u Uy, for some
Ui,..., Uk €U. Jis proper, by our hypothesis. Use (BPI) to
construct a prime ideal / of P(X) containing J.
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A Brief Topological Detour

Alexander’s Subbasis Lemma (Cont'd)

o For each x € X, there exists U(x) €U, with x € U(x). Each U(x) is a
finite intersection of members of S and belongs to / since d € /. As /
is prime we may assume that U(x) itself lies in S. Let

V:={U(x):x e X}.

Then V is an open cover of X by members of S. So, by assumption,
V has a finite subcover. But then X = U(x;) u---u U(x,), for some
finite subset {xi,...,x,} of X. Therefore X €/, a contradiction.
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