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A Brief Topological Detour

Topological Spaces

A topological space (X ;T ) consists of a set X and a family T of
subsets of X , such that:

(T1) ∅ ∈ T and X ∈ T ;
(T2) a finite intersection of members of T is in T ;
(T3) an arbitrary union of members of T is in T .

The family T is called a topology on X ;

The members of T are called open sets.

We write X in place of (X ;T ) when T is the only topology under
consideration.
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A Brief Topological Detour

A Standard Example

The standard topology TR on R consists of

{U ⊆ R ∶ (∀x ∈ U)(∃δ > 0) (x − δ, x + δ) ⊆ U},

where δ may depend on x .

Equivalently, TR consists of those sets which can be expressed as
unions of open intervals, together with ∅.

The equation

⋂
n≥1

(−
1

n
,
1

n
) = {0}

exhibits an intersection of open sets which is not open.
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A Brief Topological Detour

Closed Sets, Clopen Sets, Connected Spaces

Given a topological space (X ;T ), we define a subset of X to be
closed if it belongs to Γ(X ) ∶= {X /U ∶ U ∈ T }.

The family Γ(X ) is closed under arbitrary intersections and finite
unions.

For every A ⊆ X , there exists a smallest closed set A containing A,
called the closure of A.

Sets which are both open and closed are called clopen.

A topological space is connected if its only clopen subsets are the
whole space and the empty set.

Many of the topological spaces encountered in elementary analysis and
geometry are connected;
By contrast, the spaces that will be used in our representation theory
have an ample supply of clopen sets.
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A Brief Topological Detour

Subspaces, Bases and Subbases

Let (X ;T ) be a topological space. Any subset Y of X inherits a
subspace topology given by

TY ∶= {V ⊆ Y ∶ V = U ∩Y , for some U ⊆ T }.

To create a topology on a set X in which a specified family S of
subsets of X , including ∅ and X , are open sets, we do the following:

If S is already closed under finite intersections, we define T to be those
sets which are unions of sets in S.
Then T satisfies (T1), (T2) and (T3) and S is said to be a basis for T .
In general,

we first form B, the family of sets which are finite intersections of
members of S,
and then define T to be all arbitrary unions of members of B.

In this case S is called a subbasis for T .
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A Brief Topological Detour

Continuity and Homeomorphisms

Let (X ;T ) and (X ′;T ′) be topological spaces and f ∶ X → X ′ a map.

Then the following conditions are equivalent:

(i) f −1(U) is open in X whenever U is open in X ′;
(i)′ f −1(V ) is closed in X whenever V is closed in X ′;
(ii) f −1(U) is open in X , for every U ∈ S, where S is a given basis or

subbasis for T ′.

When f satisfies any of these conditions it is said to be continuous.

Example: If (X ;T ) = (X ′;T ′) = (R;TR) and S is the family of
subintervals (a,b) (for −∞ < a < b < ∞), plus R and ∅, (ii) is just a
restatement of the ǫ-δ definition of continuity.

The map f ∶ X → X ′ is said to be a homeomorphism if f is bijective
and both f and f −1 are continuous.

Homeomorphisms are topology’s isomorphisms.
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A Brief Topological Detour

Hausdorff Spaces

There is a hierarchy of separation conditions, one of which is the
Hausdorff condition.

The topological space (X ;T ) is said to be Hausdorff if, given
x , y ∈ X , with x ≠ y , there exist open sets U1,U2, such that

x ∈ U1, y ∈ U2, and U1 ∩U2 = ∅.

Mnemonically, X is Hausdorff if
distinct points can be “housed off”
in disjoint open sets.
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A Brief Topological Detour

Singletons are Closed in Hausdorff Spaces

Lemma

Let (X ;T ) be a Hausdorff space. Then, for all x ∈ X , {x} is closed.

For every y ∈ X , with y ≠ x , there exist open sets Uy ,Vy , such that

x ∈ Uy , y ∈ Vy and Uy ∩Vy = ∅.

Set V = ⋃x≠y∈X Vy . Since V is the union of open sets, it is open.

To show that {x} is closed, it suffices to show that {x} = X /V .

x ∈ ⋂y≠x Uy ⊆ ⋂y≠x(X /Vy ) = X /⋃y≠x Vy = X /V .

If y ≠ x , then y ∈ Vy , whence y ∈ V . So y ∉ X /V .

We conclude that X /V = {x}.
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A Brief Topological Detour

Compactness

Let (X ;T ) be a topological space and let U ∶= {Ui}i∈I ⊆ T .

The family U is called an open cover of Y ⊆ X if Y ⊆ ⋃i∈I Ui .

A finite subset of U whose union still contains Y is a finite subcover.

We say Y is compact if every open cover of Y has a finite subcover.

Example: The famous Heine-Borel Theorem states that a subset of
R is closed and bounded if and only if it is compact.

Compactness is a fundamental topological concept and may be
regarded as a substitute for finiteness.

It frequently compensates for the restriction to finite intersections in
axiom (T2) by allowing arbitrary families of open sets to be reduced
to finite families.

All the spaces we use in our representation theory are compact.
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A Brief Topological Detour

Compact Hausdorff Spaces and Continuous Maps

We present two basic results about compact Hausdorff spaces.

The first relates compactness and closedness and shows that
continuous maps behave well:

Lemma

Let (X ;T ) be a compact Hausdorff space.

(i) A subset C of X is compact if and only if it is closed.

(ii) Let f ∶ X → X ′ be a continuous map, where (X ′;T ′) is any topological
space.

(a) f (X) is a compact subset of X ′.
(b) If (X ′;T ′) is Hausdorff and f ∶ X → X

′ is bijective, then f is a
homeomorphism.
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A Brief Topological Detour

Proof of (i)

Suppose, first, that C is a compact subset of a Hausdorff space X .

Let x be some fixed point in X /C . We show that there exists an open
set Ux containing x and with Ux ⊆ X /C . This will show that X /C is
open, whence C is closed.

For each c ∈ C , there exist disjoint open sets Uc , Vc , with x ∈ Uc ,
c ∈ Vc . The collection {Vc ∶ c ∈ C} is an open cover of C . By
compactness there is a finite subcover, say {Vc1 , . . . ,Ccr }. Let
Ux = ⋂r

i=1Uci . As a finite intersection of open sets, Ux is open in X .
Clearly x ∈ Ux , since x ∈ Uci , for all i .

We finally show that Ux ⊆ X /C .

For each i = 1, . . . , r , we have Ux ⊆ Uci . So Ux ∩Vci ⊆ Uci ∩ Vci = ∅.
Hence Ux ∩C ⊆ Ux ∩ (⋃r

i=1Vci ) = ⋃
r
i=1(Ux ∩ Vci ) = ∅. So Ux ⊆ X /C ,

as required.
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A Brief Topological Detour

Proof of (i) (Converse)

Suppose C is a closed subset of a compact space X .

Let U be any cover of C by sets open in X . Since C is closed in X ,
X /C is open in X . If we add it to U we get an open cover of X . But
X is compact, so there is a finite subcover, say {U1, . . . ,Ur}. This
certainly covers C since it covers all of X .

If X /C is one of these Ui then we may throw it out and the remaining
r − 1 sets will still cover C .
If X /C is not one of the Ui then we leave {U1, . . . ,Ur} alone.

In either case we get a finite subcover of U for C . So C is compact.
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A Brief Topological Detour

Proof of (ii)(a)

Suppose X is compact and f ∶ X → X ′ is continuous.

Let U is an open cover of f (X ). Since f is continuous, f −1(U) is
open in X for every U ∈ U . The family

{f −1(U) ∶ U ∈ U}

covers X since U covers f (X ). Hence by compactness of X , there is
a finite subcover, say

{f −1(U1), . . . , f
−1(Ur)}.

Then {U1, . . . ,Ur} is a finite subcover of f (X ). We conclude that
f (X ) is compact in X ′.
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A Brief Topological Detour

Proof of (ii)(b)

Let f ∶ X → X ′ be a bijective continuous map from a compact
Hausdorff space X onto a Hausdorff space X ′.

Since f is bijective, we know that there is an inverse function
f −1 ∶ X ′ → X . We just have to prove that f −1 is continuous.

Suppose that V is closed in X . It is enough to show that (f −1)−1(V )
is closed in X ′. Note that (f −1)−1(V ) = f (V ). Then we have:

V closed in X ⇒ V is compact
closed subset of a compact space is compact

⇒ f (V ) is compact
the continuous image of a
compact space is compact

⇒ f (V ) is closed in X ′.

a compact subspace of a
Hausdorff space is closed

So (f −1)−1(V ) = f (V ) is closed in X ′.
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A Brief Topological Detour

Strengthening the Hausdorff Separability Axiom

The following lemma strengthens the Hausdorff condition, which is
recaptured by taking the closed sets to be singletons:

Lemma

Let (X ;T ) be a compact Hausdorff space.

(i) Let V be a closed subset of X and x ∉ V . Then there exist disjoint open
sets W1 and W2, such that x ∈W1 and V ⊆W2.

(ii) Let V1 and V2 be disjoint closed subsets of X . Then there exist disjoint
open sets U1 and U2, such that Vi ⊆ Ui , for i = 1,2.

For y ∈ V , by the Hausdorff axiom, there are open sets Ux ,y
1 and U

x ,y
2

containing x and y , respectively. Then U2 ∶= {U
x ,y
2 ∶ y ∈ V } is an open

cover of V . By the preceding lemma, V is compact. Take a finite
subcover {U

x ,yj
2 ∶ j = 1, . . . ,n}. Let Ux

1 ∶= ⋂1≤j≤nU
x ,yj
1 and

Ux
2 ∶= ⋃1≤j≤nU

x ,yj
2 . Each U

x ,yj
2 does not intersect the corresponding

U
x ,yj
1 . So, it is disjoint from Ux

1 . Hence, U
x
1 and Ux

2 are disjoint.
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A Brief Topological Detour

Strengthening the Hausdorff Separability Axiom (Cont’d)

Also Ux
1 and Ux

2 are open. These sets contain x and V , respectively.
Take W1 ∶= Ux

1 and W2 ∶= Ux
2 to obtain (i).

For (ii) we repeat the process, taking V ∶= V2 and letting x vary over
V1. The family U1 ∶= {Ux

1 ∶ x ∈ V1} is an open cover of the compact
set V1. Take a finite subcover {Uxi

1 ∶ i = 1, . . . ,m}. Define
U1 ∶= ⋃1≤i≤mU

xi
1 and U2 ∶= ⋂1≤i≤mU

xi
2 .
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A Brief Topological Detour

Finiteness of a Compact Hausdorff Space

The next lemma enables us to fit our finite representation theory into
the general theory:

Lemma

Let (X ;T ) be a compact Hausdorff space. Then the following conditions
are equivalent:

(i) X is finite;

(ii) Every subset of X is open (that is, T is discrete);

(iii) Every subset of X is clopen.

(ii)⇔(iii): trivial.

(iii)⇒(i): Consider the open cover {{x} ∶ x ∈ X}.

(i)⇒(ii): Finally, assume (i). For ∅ ≠ Y ⊆ X , the set X /Y is a finite
union of singleton sets, which are closed because X is Hausdorff. So
X /Y is closed. Hence Y is open.
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A Brief Topological Detour

Alexander’s Subbasis Lemma

We prove Alexander’s Subbasis Lemma using (BPI).

Alexander’s Subbasis Lemma

Let (X ;T ) be a topological space and S a subbasis for T . Then X is
compact if every open cover of X by members of S has a finite subcover.

Let B be the basis formed from all finite intersections of members of
S. To prove X is compact it is enough to show that every open cover
U of X by sets in B has a finite subcover. Suppose this is false and
let U be an open cover of X by sets in B, which does not have a
finite subcover. Define J to be the ideal in P(X ) generated by U . So
a typical element of J is a subset of U1 ∪⋯∪Uk , for some
U1, . . . ,Uk ∈ U . J is proper, by our hypothesis. Use (BPI) to
construct a prime ideal I of P(X ) containing J.

George Voutsadakis (LSSU) Lattices and Order April 2020 19 / 20



A Brief Topological Detour

Alexander’s Subbasis Lemma (Cont’d)

For each x ∈ X , there exists U(x) ∈ U , with x ∈ U(x). Each U(x) is a
finite intersection of members of S and belongs to I since U ⊆ I . As I
is prime we may assume that U(x) itself lies in S. Let

V ∶= {U(x) ∶ x ∈ X}.

Then V is an open cover of X by members of S. So, by assumption,
V has a finite subcover. But then X = U(x1) ∪ ⋯ ∪U(xn), for some
finite subset {x1, . . . , xn} of X . Therefore X ∈ I , a contradiction.
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