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Ordered Sets Ordered sets

Partial Orders

Definition (Order or Partial Order)

Let P be a set. An order (or partial order) on P is a binary relation ≤ on
P , such that, for all x , y , z ∈ P ,
(i) x ≤ x ; (Reflexivity)

(ii) x ≤ y and y ≤ x imply x = y ; (Antisymmetry)

(iii) x ≤ y and y ≤ z imply x ≤ z ; (Transitivity)

A set P equipped with an order relation ≤ is said to be an ordered

set (or partially ordered set or poset).

Usually we say simply “P is an ordered set”, but where it is necessary
to specify the order relation overtly we write ⟨P ;≤⟩.
On any set, = is an order, the discrete order.
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Additional Terminology and Notation

A relation ≤ on a set P which is reflexive and transitive but not
necessarily antisymmetric is called a quasi-order or a pre-order.

An order relation ≤ on P gives rise to a relation < of strict inequality:
x < y in P if and only if x ≤ y and x ≠ y .
Other notation associated with ≤:

We use x ≤ y and y ≥ x interchangeably;
We write x ≰ y to mean “x ≤ y is false”.

We use ∥ to denote non-comparability:

x ∥ y if x ≰ y and y ≰ x .
Let P be an ordered set and let Q be a subset of P . Then Q inherits

an order relation from P ; Given x , y ∈ Q, x ≤ y in Q if and only if
x ≤ y in P . We say in these circumstances that Q has the induced

order, or the order inherited from P .
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Chains and Antichains

Definition

Let P be an ordered set.

P is a chain if, for all x , y ∈ P , either x ≤ y or y ≤ x (i.e., if any two
elements of P are comparable).

Chains are called linearly ordered sets and totally ordered sets.

The ordered set P is an antichain if x ≤ y in P implies x = y .
Clearly, with the induced order, any subset of a chain (an antichain) is
a chain (an antichain).

Let P be the n-element set {0,1, . . . ,n − 1}.
We write n to denote the chain obtained by giving P the order in
which 0 < 1 < ⋯ < n − 1;
We write n for P regarded as an antichain.

Any set S may be converted into an antichain S by giving S the
discrete order.
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Order-Isomorphisms

Definition

Two ordered sets, P and Q, are (order-)isomorphic, written P ≅ Q, if
there exists a map ϕ from P onto Q, such that x ≤ y in P if and only if
ϕ(x) ≤ ϕ(y) in Q. Then ϕ is called an order-isomorphism.

Such a map ϕ is necessarily bijective (that is, one-to-one and onto):

ϕ(x) = ϕ(y) ⇔ ϕ(x) ≤ ϕ(y) & ϕ(y) ≤ ϕ(x)
(Reflexivity & Antisymmetry in Q)⇔ x ≤ y & y ≤ x (Order Isomorphism)⇔ x = y . (Refl. & Antisym. in P)

Not every bijective map between ordered sets is an order-isomorphism:
Consider P = Q = 2 and define ϕ by ϕ(0) = 1, ϕ(1) = 0.
Being a bijection, an order-isomorphism ϕ ∶ P → Q has a well defined
inverse, ϕ−1 ∶ Q → P .

It is easily seen that this is also an order-isomorphism.
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Example: Number Systems

The set R of real numbers, with its usual order, forms a chain.

Each of N (the natural numbers {1,2,3, . . .}), Z (the integers) and
Q (the rational numbers) also has a natural order making it a chain.

In each case this order relation is compatible with the arithmetic
structure in the sense that the sum and product of two elements
strictly greater than zero is also greater than zero.

We denote the set N ∪ {0}(= {0,1,2, . . .}) by N0. Endowed with the
order in which 0 < 1 < 2 < . . ., the set N0 becomes the chain known in
set theory as ω.

It is order-isomorphic to N: The successor function n ↦ n+ ∶= n + 1
from N0 to N is an order-isomorphism.

A different order on N0 is defined as follows: Write m ≼ n if and only
if there exists k ∈N0, such that km = n (that is, m divides n).

Then ≼ is an order relation. Of course, ⟨N0;≼⟩ is not a chain.
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Families of Sets

Definition

Let X be any set. The powerset P(X ) consists of all subsets of X . It is
ordered by set inclusion: For A,B ∈ P(X ), we define A ≤ B if and only if
A ⊆ B .

Any subset of P(X ) inherits the inclusion order.
Such a family of sets might be specified set-theoretically; E.g., it might
consist of all finite subsets of an infinite set X .
More commonly, families of sets arise where X carries some additional
structure; E.g., X might have an algebraic structure:

The set of all subgroups of a group G (denoted SubG), and the set of
all normal subgroups of G (denoted N -SubG);

Families of sets also occur in other mathematical contexts; E.g.:

For a topological space (X ;T ), we may consider the families of open,
closed, and clopen (meaning simultaneously closed and open) subsets
of X as ordered sets under inclusion.
For an ordered ser P, consider the family O(P) of its down-sets,
revisited later.
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The Poset of Predicates on a Set X

The ordered set ⟨P(X );⊆⟩ manifests itself in a different form, as the
set of predicates on X .

A predicate is a statement taking value T (true) or value F (false).

More precisely, a predicate on X is a function from X to {T,F}.
Example: The map p ∶ R→ {T,F}, given by p(x) = { T, if x ≥ 0

F, if x < 0 is

a predicate on R.

We write P(X ) for the set of predicates on X and order it by
implication: for p,q ∈ P(X ),

p⇛ q if and only if {x ∈ X ∶ p(x) = T} ⊆ {x ∈ X ∶ q(x) = T}.
Define a map ϕ ∶ P(X )→ P(X ) by ϕ(p) = {x ∈ X ∶ p(x) = T}.
Then ϕ is an order-isomorphism between ⟨P(X );⇛⟩ and ⟨P(X );⊆⟩.
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Subsection 2

Diagrams: The Art of Drawing Ordered Sets
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Ordered Sets Diagrams: The Art of Drawing Ordered Sets

The Covering Relation

Definition

Let P be an ordered set and let x , y ∈ P . We say x is covered by y (or y
covers x), and write x ⋖ y or y ⋗ x , if x < y and x ≤ z < y implies z = x .
The latter condition is demanding that there be no element z of P with
x < z < y .

Observe that, if P is finite, x < y if and only if there exists a finite
sequence of covering relations x = x0 ⋖ x1 ⋖ ⋯ ⋖ xn = y .
Thus, in the finite case, the order relation determines, and is
determined by, the covering relation.

Example:

In the chain N, we have m ⋖ n if and only if n = m + 1.
In R, there are no pairs x , y , such that x ⋖ y .
In P(X), we have A ⋖ B if and only if B = A ∪ {b}, for some b ∈ X /A.
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Hasse Diagrams of Posets

Let P be a finite ordered set. We can represent P by a configuration
of circles (representing the elements of P) and interconnecting lines
(indicating the covering relation):

(1) To each point x ∈ P , associate a point p(x) of the Euclidean plane R2,
depicted by a small circle with center at p(x).

(2) For each covering pair x ⋖ y in P , take a line segment ℓ(x , y) joining
the circle at p(x) to the circle at p(y).

(3) Carry out (1) and (2) in such a way that

(a) if x ⋖ y , then p(x) is “lower” than p(y) (that is, in standard Cartesian
coordinates, has a strictly smaller second coordinate);

(b) the circle at p(z) does not intersect the line segment ℓ(x , y) if z ≠ x
and z ≠ y .

It is easily proved by induction on the size, ∣P ∣, of P that Condition
(3) can be achieved.

A configuration satisfying Conditions (1)-(3) is called a diagram (or
Hasse diagram) of P .
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Using Hasse Diagrams

A diagram may be used to define a finite ordered set.

The figure shows two alter-
native diagrams for the or-
dered set P = {a,b, c ,d} in
which a < c , a < d , b < c and
b < d .
The figure has drawings that
are not legitimate diagrams
for P ; in the first, Condition
(3)(a) is violated, in the sec-
ond, Condition (3)(b) is.
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Ordered Sets Diagrams: The Art of Drawing Ordered Sets

Mining Information from Hasse Diagrams

It is easy to tell from a diagram whether one
element of an ordered set is less than another:
x < y if and only if there is a sequence of con-
nected line segments moving upwards from x

to y .
In the ordered set on the right, e ∥ f and a < g .
It is not possible to represent
the whole of an infinite or-
dered set by a diagram;
But if its structure is suffi-
ciently regular it can often be
suggested diagrammatically:
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Some Examples

All possible ordered sets with three elements:

The posets 2,4 and 3.

Two different drawings of P({1,2,3}) (known as the cube).
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Ordered Sets Diagrams: The Art of Drawing Ordered Sets

Some More Examples

A less Diagrams for SubG for G = V4, the Klein 4-group, and G = S3,
the symmetric group on 3 letters.

In each case the subset N -SubG is shaded.

The subset of Σ∗, consisting of strings of length not more than 3.
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Ordered Sets Diagrams: The Art of Drawing Ordered Sets

Order Isomorphisms and Coverings

Lemma

Let P and Q be finite ordered sets and let ϕ ∶ P → Q be a bijective map.
Then the following are equivalent:

(i) ϕ is an order-isomorphism;

(ii) x < y in P if and only if ϕ(x) < ϕ(y) in Q;

(iii) x ⋖ y in P if and only if ϕ(x) ⋖ ϕ(y) in Q.

The equivalence of (i) and (ii) is immediate from the definitions.

Now assume (ii) holds. Take x ⋖ y in P . Then x < y , so ϕ(x) < ϕ(y)
in Q. Suppose there exists w ∈ Q, with ϕ(x) < w < ϕ(y). Since ϕ is
onto, there exists u ∈ P , such that w = ϕ(u). By (ii), x < u < y , a
contradiction. Hence ϕ(x) ⋖ ϕ(y).
Conversely, assume ϕ(x) ⋖ ϕ(y). Then ϕ(x) < ϕ(y). Hence, x < y .
Suppose, there exists w ∈ P , such that x < w < y . Then ϕ(x) < ϕ(w)< ϕ(y). This contradicts ϕ(x) ⋖ ϕ(y). Hence (iii) holds.
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Ordered Sets Diagrams: The Art of Drawing Ordered Sets

Order Isomorphisms and Coverings (Cont’d)

Now assume (iii). Let x < y in P . Then there exist elements
x1, x2, . . . , xn−1 ∈ P , such that x = x0 ⋖ x1 ⋖ ⋯ ⋖ xn = y . By (iii),
ϕ(x) = ϕ(x0) ⋖ ϕ(x1) ⋖ ⋯ ⋖ ϕ(xn) = ϕ(y). Hence ϕ(x) < ϕ(y).
Suppose, conversely, that ϕ(x) < ϕ(y) in Q.

Then there exist w1,w2, . . . ,wn−1 ∈ Q, such that

ϕ(x) ⋖ w1 ⋖ w2 ⋖ ⋯ ⋖ wn−1 ⋖ ϕ(y).
By surjectivity, there exist x1, x2, . . . , xn−1 ∈ P , such that ϕ(xi ) = wi ,
i = 1, . . . ,n − 1. Hence, we get

ϕ(x) ⋖ ϕ(x1) ⋖ ϕ(x2) ⋖ ⋯ ⋖ ϕ(xn−1) ⋖ ϕ(y).
Thus, by Condition (iii), x ⋖ x1 ⋖ x2 ⋖ ⋯ ⋖ xn−1 ⋖ y and, therefore,
x < y , by transitivity.
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Order Isomorphisms and Hasse Diagrams

Proposition

Two finite ordered sets P and Q are order-isomorphic if and only if they
can be drawn with identical diagrams.

Assume there exists an order-isomorphism ϕ ∶ P → Q. To show that
the same diagram represents both P and Q, note that the diagram is
determined by the covering relation and invoke the lemma.

Conversely, assume P and Q can both be represented by the same
diagram, D. Then there exist bijective maps f and g from P and Q

onto the points of D. The composite map ϕ = g−1 ○ f is bijective and
satisfies Condition (iii) of the lemma. So it is an order-isomorphism.

George Voutsadakis (LSSU) Lattices and Order April 2020 20 / 56



Ordered Sets Constructing and De-Constructing Ordered Sets

Subsection 3

Constructing and De-Constructing Ordered Sets
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The Dual Partial Ordering

Given any ordered set P we can form a new ordered set P∂ (the dual

of P) by defining x ≤ y to hold in P∂ if and only if y ≤ x holds in P .

For P finite, we obtain a diagram for P∂ simply by “turning upside
down” a diagram for P .

To each statement about the ordered set P there corresponds a
statement about P∂ .

Example: In P , there exists a unique element covering just three
other elements. In P∂ there exists a unique element covered by just
three other elements.
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The Duality Principle

In general, given any statement Φ about ordered sets, we obtain the
dual statement Φ∂ by replacing each occurrence of ≤ by ≥:

The Duality Principle

Given a statement Φ about ordered sets which is true in all ordered sets,
the dual statement Φ∂ is also true in all ordered sets.
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Bottom and Top

Let P be an ordered set. We say P has a bottom element if there
exists � ∈ P (called bottom) with the property that � ≤ x , for all
x ∈ P .
Dually, P has a top element if there exists ⊺ ∈ P , such that x ≤ ⊺, for
all x ∈ P .
By the Duality Principle the true statement “� is unique when it
exists” (by the antisymmetry of ≤) has as its dual version the
statement “⊺ is unique when it exists”.

Example:

In ⟨P(X);⊆⟩, we have � = ∅ and ⊺ = X .
A finite chain always has bottom and top elements, but an infinite
chain need not have.
For example, the chain N has bottom element 1, but no top, while the
chain Z of integers possesses neither bottom nor top.
Bottom and top do not exist in any antichain with more than one
element.
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Lifting

Lack of a bottom element can be easily remedied by adding one.
Given an ordered set P (with or without �), we form P� (called P
“lifted”) as follows.

Take an element 0 ∉ P and define ≤ on P� = P ∪ {0} by
x ≤ y if and only if x = 0 or x ≤ y in P .

Any set S gives rise to an ordered set with �, as follows.
Order S by making it an antichain, S ;
Then form S�.

Ordered sets obtained in this way are called flat.

In applications it is likely that S ⊆ R and, for simplicity, we write S�
instead of the more correct S�.
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Maximal and Minimal Elements

Let P be an ordered set and let Q ⊆ P .
a ∈ Q is a maximal element of Q if a ≤ x and x ∈ Q imply a = x .
We denote the set of maximal elements of Q by MaxQ.

If Q (with the order inherited from P) has a top element, ⊺Q , then
MaxQ = {⊺Q}.
In this case ⊺Q is called the greatest (or maximum) element of Q,
and we write ⊺Q =maxQ.

b ∈ Q is a minimal element of Q if x ≤ b and x ∈ Q imply b = x .
We denote the set of maximal elements of Q by MinQ.

If Q (with the order inherited from P) has a bottom element, �Q ,
then MinQ = {�Q}.
In this case �Q is called the least (or minimum) element of Q, and
we write �Q = minQ.
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Maximal and Minimal Elements: Examples

P1 has maximal elements a1,a2,a3, but no greatest element.

a is the greatest element of P2.
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Remarks on the Existence of Maximal Elements

Let P be a finite ordered set.

Then any non-empty subset of P has at least one maximal element.

Moreover, for each x ∈ P , there exists y ∈MaxP , with x ≤ y .
In general a subset Q of an ordered set P may have many maximal
elements, just one, or none.

A subset of the chain N has a maximal element if and only if it is finite
and non-empty.
In the subset Q of P(N) consisting of all subsets of N other than N

itself, there is no top element, but N/{n} ∈MaxQ for each n ∈ N.
The subset of P(N) consisting of all finite subsets of N has no
maximal elements.

An important set-theorists’ tool, known as Zorn’s Lemma, discussed
in a later set, guarantees the existence of maximal elements, under
suitable conditions.
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Disjoint Union of Ordered Sets

In subsequent “sum constructions” we require that the sets being
joined are disjoint.

Suppose that P and Q are (disjoint) ordered sets.

The disjoint union P ⊍Q of P and Q is the ordered set formed by
defining x ≤ y in P ⊍Q if and only if either:

x , y ∈ P and x ≤ y in P or
x , y ∈ Q and x ≤ y in Q.

A diagram for P ⊍Q is formed by placing side by side diagrams for P
and Q.
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The Linear Sum of Ordered Sets

Again let P and Q be (disjoint) ordered sets.

The linear sum P ⊕Q is defined by taking the following order
relation on P ∪Q:

x ≤ y if and only if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x , y ∈ P and x ≤ y in P

or x , y ∈ Q and x ≤ y in Q

or x ∈ P and y ∈ Q.
A diagram for P ⊕Q (when P and Q are finite) is obtained by placing
a diagram for P directly below a diagram for Q and then adding a
line segment from each maximal element of P to each minimal
element of Q.

The lifting construction is a special case of a linear sum: P� = 1⊕ P .

Similarly, P ⊕ 1 represents P with a (new) top element added.
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Remarks of the Sum Operations

Each of the operations ⊍ and ⊕ is associative:

For (pairwise disjoint) ordered sets P ,Q and R ,

P ⊍ (Q ⊍R) = (P ⊍Q) ⊍R ;
P ⊕ (Q ⊕ R) = (P ⊕Q)⊕R .

This allows us to write iterated disjoint unions and linear sums
unambiguously without brackets.

We denote by Mn the sum 1⊕ n ⊕ 1.
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Examples of the Sum Operations

Examples of sums:

George Voutsadakis (LSSU) Lattices and Order April 2020 32 / 56



Ordered Sets Constructing and De-Constructing Ordered Sets

Products

Let P1, . . . ,Pn be ordered sets.

The Cartesian product P1 ×⋯× Pn can be made into an ordered set
by imposing the coordinate wise order defined by

(x1, . . . , xn) ≤ (y1, . . . , yn) ⇐⇒ (∀i) xi ≤ yi in Pi .

Given an ordered set P , the notation Pn is used as shorthand for the
n-fold product P ×⋯× P .

There is another way to order the product of ordered sets P and Q:

Define the lexicographic order by

(x1, x2) ≤ (y1, y2) if x1 < y1 or (x1 = y1 and x2 ≤ y2).
By iteration a lexicographic order can be defined on any finite product
of ordered sets.

Unless otherwise stated we shall always equip a product with the
coordinate wise order.
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Drawing a Product

A product P ×Q is drawn by replacing each point of a diagram of P
by a copy of a diagram for Q, and connecting “corresponding” points
(assuming the rules for diagram-drawing are obeyed).

The four-dimensional hypercube 24 drawn in various ways:

Note that 23 ≅ P({1,2,3}) (they have the same diagram).
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Order Isomorphism Between P(X) and 2n

Proposition

Let X = {1,2, . . . ,n} and define ϕ ∶ P(X ) → 2n by ϕ(A) = (ε1, . . . , εn),
where εi = { 1, if i ∈ A

0, if i ∉ A . Then ϕ is an order-isomorphism.

Given A,B ∈ P(X ), let ϕ(A) = (ε1, . . . , εn) and ϕ(B) = (δ1, . . . , δn).
Then

A ⊆ B ⇐⇒ (∀i) i ∈ A implies i ∈ B
⇐⇒ (∀i) εi = 1 implies δi = 1
⇐⇒ (∀i) εi ≤ δi
⇐⇒ ϕ(A) ≤ ϕ(B) in 2n.

To show ϕ is onto, take x = (ε1, . . . , εn) ∈ 2n. Then x = ϕ(A), where
A = {i ∶ εi = 1}, so ϕ is onto.
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Subsection 4

Down-Sets and Up-Sets
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Ordered Sets Down-Sets and Up-Sets

Down-Sets and Up-Sets

Definition

Let P be an ordered set and Q ⊆ P .
(i) Q is a down-set (alternative terms include decreasing set and order

ideal) if, whenever x ∈ Q, y ∈ P and y ≤ x , we have y ∈ Q.

(ii) Dually, Q is an up-set (alternative terms are increasing set and
order filter) if, whenever x ∈ Q, y ∈ P and x ≤ y , we have y ∈ Q.

We think of a down-set as one which is “closed under going down”.

Q1 is a down-set and Q2 an upset. Q is not a down-set.
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Generated Down-Sets and Up-Sets

Given an arbitrary subset Q of P , we define

↓Q = {y ∈ P ∶ (∃x ∈ Q) y ≤ x} and ↑Q = {y ∈ P ∶ (∃x ∈ Q) y ≥ x}.
These are read “down Q” and “up Q”.

Given an arbitrary element x ∈ P , we define

↓x = {y ∈ P ∶ y ≤ x} and ↑x = {y ∈ P ∶ y ≥ x}.
These are read “down x” and “up x”.

Down-sets (up-sets) of the form ↓x (↑x) are called principal.

George Voutsadakis (LSSU) Lattices and Order April 2020 38 / 56



Ordered Sets Down-Sets and Up-Sets

Properties of Generated Down-Sets and Up-Sets

It is easily checked that:

↓Q is the smallest down-set containing Q.
Q is a down-set if and only if Q = ↓Q.

Dually, it is also easily checked that:

↑Q is the smallest up-set containing Q.
Q is an up-set if and only if Q = ↑Q.

We show the first property, which consists of three parts:

↓Q is a downset: Suppose x ∈ ↓Q and y ≤ x . By definition, there exists
z ∈ Q, such that x ≤ z . By transitivity, y ≤ z . By definition again,
y ∈ ↓Q.
Q ⊆ ↓Q: Suppose x ∈ Q. By reflexivity, x ≤ x . By definition, x ∈ ↓Q.
If P is a downset containing Q, then ↓Q ⊆ P : Suppose P is a downset
containing Q. Let x ∈ ↓Q. By definition, there exists y ∈ Q, such that
x ≤ y . Since P contains Q, y ∈ P . Since P is a downset, x ∈ P .
Therefore, ↓Q ⊆ P .
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The Ordered Set O(P) of Down-Sets

The family of all down-sets of P is denoted by O(P).
O(P) is itself an ordered set, under the inclusion order.

When P is finite, every non-empty down-set Q of P is expressible in
the form

k⋃
i=1

↓xi ,

where {x1, . . . , xk} =MaxQ is an antichain.

This provides a recipe for finding O(P), though one which is practical
only when P is small.
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Examples I

(1) Consider the set on the right. The sets {c},{a,b, c ,d , e} and {a,b,d , f } are all down-sets.
The set {b,d , e} is not a down-set. We have
↓{b,d , e} = {a,b, c ,d , e}. The set {e, f ,g} is an
up-set. The set {a,b,d , f } is not an up-set.

(2) O(P) in a simple case:
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Ordered Sets Down-Sets and Up-Sets

Examples II

(3) If P is an antichain, then O(P) = P(P).
(4) If P is the chain n, then O(P) consists of all the sets ↓x for x ∈ P ,

together with the empty set.

Hence O(P) is an (n + 1)-element chain.

(5) If P is the chain Q of rational numbers, then O(P) contains the
empty set, Q itself and all sets ↓x (for x ∈ Q).

There are other sets in O(P) too, e.g., ↓x/{x} (for x ∈ Q) and{y ∈ Q ∶ y < a} (for a ∈ R/Q).
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Ordered Sets Down-Sets and Up-Sets

Order Relation and Down-Sets

Lemma

Let P be an ordered set and x , y ∈ P . Then the following are equivalent:

(i) x ≤ y ;
(ii) ↓x ⊆ ↓y ;
(iii) (∀Q ∈ O(P)) y ∈ Q ⇒ x ∈ Q.

(i)⇒(ii): Suppose x ≤ y . Let z ∈ ↓x . By definition, z ≤ x . By
transitivity, z ≤ y . Again by definition, z ∈ ↓y . Hence, ↓x ⊆ ↓y .
(ii)⇒(iii): Suppose ↓x ⊆ ↓y . Let Q ∈ O(P), such that y ∈ Q. Since
x ∈ ↓x , we get, by hypothesis, x ∈ ↓y . Thus, by definition, x ≤ y .
Since Q ∈ O(P) and y ∈ Q, x ∈ Q. This proves the implication.

(iii)⇒(i): Suppose that, for every down-set Q, y ∈ Q implies x ∈ Q.
Take, in particular, Q ∶= ↓y ∈ O(P). Since y ∈ ↓y , we get, by
hypothesis, x ∈ ↓y . Hence, by definition, x ≤ y .
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Ordered Sets Down-Sets and Up-Sets

O(P) and Duality

Besides being related by duality, down-sets and up-sets are related by
complementation:

Q is a down-set of P if and only if P/Q is an up-set of P (equivalently,
a down-set of P∂).

Suppose Q is a down-set. Let x ∈ P/Q and x ≤ y . Then x ∉ Q. Thus,
since Q is a down-set and x ∉ Q, we get y ∉ Q. So y ∈ P/Q.
Therefore, P/Q is an up-set.

The converse can be shown similarly.

For subsets A,B of P , we have A ⊆ B if and only if P/A ⊇ P/B .

It follows that O(P)∂ ≅ O(P∂),
the order-isomorphism being the complementation map.
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Ordered Sets Down-Sets and Up-Sets

Poset of Down-Sets in Sums

Proposition

Let P be an ordered set. Then:

(i) O(P ⊕ 1) ≅ O(P)⊕ 1 and O(1⊕ P) ≅ 1⊕O(P);
(ii) O(P1 ⊍ P2) ≅ O(P1) ×O(P2).
(i) The down-sets of P ⊕ 1 are the down-sets of P together with P ⊕ 1

itself. The down-sets of 1⊕ P are the empty set and all down-sets of
P with the least element of 1⊕P adjoined. The required
isomorphisms are set up using these observations.

(ii) It can be verified that the map U ↦ (U ∩ P1,U ∩P2) defines an
order-isomorphism from O(P1 ⊍ P2) to O(P1) ×O(P2).
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Ordered Sets Down-Sets and Up-Sets

Example I

We have O(P1) ≅ O(1⊕ ((1⊕ 2) ⊍ 2))
≅ 1⊕O((1⊕ 2) ⊍ 2)
≅ 1⊕ (O(1⊕ 2) ×O(2))
≅ 1⊕ ((1⊕O(2)) ×O(2))≅ 1⊕ ((1⊕ 22) × 3).
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Ordered Sets Down-Sets and Up-Sets

Example II

Consider the partially ordered set P2.

How many elements does O(P2) have?
We have P2 ≅ (1⊕ 5) ⊍ (3⊕ 3).
Therefore, O(P2) ≅ (1⊕ 25) × (23 ⊕ 3).
Hence, its size is ∣O(P2)∣ = (1 + 25) × (23 + 3) = 363.
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Ordered Sets Maps Between Ordered Sets

Subsection 5

Maps Between Ordered Sets
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Ordered Sets Maps Between Ordered Sets

Maps Between Ordered Sets

We have already defined order-isomorphisms.

We consider more general structure-preserving maps:

Definition

Let P and Q be ordered sets. A map ϕ ∶ P → Q is said to be:

(i) order-preserving (or, alternatively, monotone) if

x ≤ y in P implies ϕ(x) ≤ ϕ(y) in Q;

(ii) an order-embedding (and we write ϕ ∶ P ↪ Q) if

x ≤ y in P if and only if ϕ(x) ≤ ϕ(y) in Q;

(iii) an order-isomorphism if it is an order-embedding which maps P onto Q.
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Ordered Sets Maps Between Ordered Sets

Examples

(1) The map ϕ1 is not order-preserving. ϕ2 is order-preserving, but not
an order-embedding.

ϕ3 is order-preserving, but not an order-embedding. ϕ6 is an order
embedding, but not an order-isomorphism.

(2) Let P be any ordered set. The map x ↦ ↓x sets up an order
embedding from P into O(P).
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Ordered Sets Maps Between Ordered Sets

Remarks on Maps Between Ordered Sets

(1) Let ϕ ∶ P → Q and ψ ∶ Q → R be order-preserving maps. Then the
composite map ψ ○ ϕ, given by (ψ ○ ϕ)(x) = ψ(ϕ(x)), for x ∈ P , is
order-preserving.

More generally the composite of a finite number of order-preserving
maps is order-preserving, if it is defined.

(2) Let ϕ ∶ P ↪ Q and let ϕ(P) (defined to be {ϕ(x) ∶ x ∈ P}) be the
image of ϕ. Then ϕ(P) ≅ P . This justifies the use of the term
embedding.

(3) An order-embedding is automatically a one-to-one map.

Suppose ϕ ∶ P → Q is an order embedding. Let x , y ∈ P , such that
ϕ(x) = ϕ(y). Then we get ϕ(x) ≤ ϕ(y) and ϕ(y) ≤ ϕ(x). Since ϕ is
an order embedding, x ≤ y and y ≤ x . By antisymmetry, x = y .
Therefore, ϕ is one-to-one.
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Ordered Sets Maps Between Ordered Sets

Remarks on Maps Between Ordered Sets (Cont’d)

(4) Ordered sets P and Q are order-isomorphic if and only if there exist
order-preserving maps ϕ ∶ P → Q and ψ ∶ Q → P , such that
ϕ ○ ψ = idQ and ψ ○ϕ = idP (where idS ∶ S → S denotes the identity

map on S given by idS(x) = x , for all x ∈ S).
Suppose that P and Q are order isomorphic. Then, there exists a
surjective order embedding ϕ ∶ P → Q. Consider x ′ ∈ Q. Since ϕ is
surjective, there exists x ∈ P , such that ϕ(x) = x ′. Since ϕ is an order
embedding, it is one-to-one. Thus, there exists a unique x ∈ P , such
that ϕ(x) = x ′. Define ψ ∶ Q → P by mapping x ′ ∈ Q to the unique
ψ(x ′) = x ∈ P , such that ϕ(x) = x ′. We have ϕ(ψ(x ′)) = ϕ(x) = x ′.
We also have ψ(ϕ(x)) = ψ(x ′) = x .
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Ordered Sets Maps Between Ordered Sets

Remarks on Maps Between Ordered Sets (Cont’d)

Assume, conversely, that there exist order-preserving maps ϕ ∶ P → Q

and ψ ∶ Q → P , such that ϕ ○ ψ = idQ and ψ ○ϕ = idP .
We show that ϕ is a surjective order embedding.

It is surjective because it has a two-sided inverse.

It is an order embedding since, for all x , y ∈ P :
By the monotonicity of ϕ,

x ≤ y implies ϕ(x) ≤ ϕ(y);
By the monotonicity of ψ,

ϕ(x) ≤ ϕ(y) ⇒ ψ(ϕ(x)) ≤ ψ(ϕ(y))⇒ x ≤ y .
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Ordered Sets Maps Between Ordered Sets

Pointwise Ordered Sets of Maps

Example: Consider the statement from elementary analysis

sin x ≤ ∣x ∣, on R.

The order relation implicit here is the pointwise order:

For functions f ,g ∶ R→ R, the relation

f ≤ g means f (x) ≤ g(x), for all x ∈ R.
Suppose X is any set and Y an ordered set. We may order the set
Y X of all maps from X to Y as follows:

f ≤ g if and only if f (x) ≤ g(x) in Y , for all x ∈ X .

When X is an n-element set, then Y X is really just Y n.

Any subset Q of Y X inherits the pointwise order.
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Ordered Sets Maps Between Ordered Sets

Order Preserving Sets of Maps

When both X and Y are ordered sets, we may take Q to be the set of
all order-preserving maps from X to Y ;

This is a set with order inherited from that of Y X and is denoted
Y ⟨X ⟩.

We sometimes write (X → Y ) in place of Y X and ⟨X → Y ⟩ in place
of Y ⟨X ⟩.

This alternative notation is needed because the notation Y X and
Y ⟨X ⟩ becomes unwieldy when X or Y is of the form P� or when
higher-order functions are involved (i.e., functions which map
functions to functions).
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Ordered Sets Maps Between Ordered Sets

Example

We have, for every ordered set X ,

⟨X → 2⟩ ≅ O(X )∂ .
For every monotone map f ∶ X → 2, define ϕ(f ) = {x ∈ X ∶ f (x) = 0}.

ϕ(f ) is a down-set of X : Suppose x ∈ ϕ(f ) and y ≤ x . By definition of
ϕ(f ), f (x) = 0. Since f ∶ X → 2 is order-preserving and y ≤ x ,
f (y) = 0. Hence, by definition of ϕ(f ), y ∈ ϕ(f ).
ϕ is an order-embedding:

f ≤ g iff f (x) ≤ g(x), all x ∈ X
iff g(x) = 0 implies f (x) = 0, all x ∈ X
iff ϕ(g) ⊆ ϕ(f ).

ϕ is onto: Let D ∈ O(P). Define fD ∶ X → 2, by setting

fD(x) = { 0, if x ∈ D
1, if x ∉ D . Then, ϕ(fD) = D. We must show that fD is

monotone. Let x , y ∈ X , such that x ≤ y . Suppose fD(x) = 1. Then
x ∉ D. Since D ∈ O(P) and x ≤ y , y ∉ D. Hence, fD(y) = 1. This
shows that fD is monotone.
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