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Maximality Principles Zorn’s Lemma and the Axiom of Choice

Subsection 1

Zorn’s Lemma and the Axiom of Choice
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Maximality Principles Zorn’s Lemma and the Axiom of Choice

The Axiom of Choice and Maximality Axioms

The Axiom of Choice may be stated as follows:

(AC) Given a non-empty family A = {Ai}i∈I of non-empty sets, there exists a
choice function for A, that is, a map

f ∶ I →⋃
i∈I

Ai , such that (∀i ∈ I) f (i) ∈ Ai .

Alternately, we may take the following statement as a postulate:

(ZL) Let P be a non-empty ordered set in which every nonempty chain has
an upper bound. Then P has a maximal element.

We shall also need the following three axioms concerning the
existence of maximal elements:

(ZL)′ Let E be a non-empty family of sets such that ⋃i∈I Ai ∈ E whenever
{Ai}i∈I is a non-empty chain in ⟨E ;⊆⟩. Then E has a maximal element.

(ZL)′′ Let P be a CPO. Then P has a maximal element.
(KL) Let P be an ordered set. Then every chain in P is contained in a

maximal chain.
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Maximality Principles Zorn’s Lemma and the Axiom of Choice

Equivalence of Maximality Axioms

(ZL)′ is just the restriction of (ZL) to families of sets.

We now show that the five assertions (AC), (ZL), (ZL)′, (ZL)′′ and
(KL) are all equivalent.

The implication (AC)⇒(ZL) is Zorn’s Lemma.
Some authors use Zorn’s Lemma to mean the statement (ZL) instead.
Similarly, the implication (AC)⇒(KL) is Kuratowski’s Lemma.

Theorem

The conditions (AC), (ZL), (ZL)′, (ZL)′′ and (KL) are equivalent.

We prove (AC)⇒(ZL)′′⇒(KL)⇒(ZL)⇒(ZL)′⇒(AC).
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Maximality Principles Zorn’s Lemma and the Axiom of Choice

Equivalence of Maximality Axioms: (AC)⇒(ZL)′′

(AC)⇒(ZL)′′: Suppose (AC) holds and let P be a CPO, such that
every element is not maximal. This says that for every x ∈ P , the set
Ax = {y ∈ P ∶ y > x} is nonempty. By (AC), for every x , there exists
F (x) ∈ Ax , i.e., F (x) ∈ P , such that F (x) > x . By the fixed-point
theorem for CPO’s, F ∶ P → P has a fixed-point, i.e., there exists
x ∈ P , such that F (x) = x , a contradiction. Therefore, P has a
maximal element.

(ZL)⇒(ZL)′ is trivial, since (ZL)′ is a restricted form of (ZL).
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Maximality Principles Zorn’s Lemma and the Axiom of Choice

Equivalence of Maximality Axioms: (ZL)′′⇒(KL)

(ZL)′′⇒(KL): Take an ordered set P and let P denote the family of
all chains in P which contain a fixed chain C 0. Order this family of
sets by inclusion.

Claim: P is a CPO.

It suffices to show that every chain in P has a least upper bound in
P . Let C = {Ci}i∈I be a chain in P. If I is empty, then ⋁P C = C 0,
since C 0 is the bottom of P . Now assume that I is non-empty. Let
C = ⋃i∈I Ci . We claim that C ∈ P, that is, C is a chain. Then,

⋁P C = C . Let x , y ∈ C . We are required to show that x and y are
comparable. There exist i , j ∈ I , such that x ∈ Ci and y ∈ Cj . Since C
is a chain, we have Ci ⊆ Cj or Cj ⊆ Ci . Assume, without loss of
generality, that Ci ⊆ Cj . Then x , y both belong to the chain Cj , and
hence x and y are comparable, whence C is a chain, as required. We
may therefore apply (ZL)′′ to P to obtain a maximal element C∗ in P.
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Maximality Principles Zorn’s Lemma and the Axiom of Choice

Equivalence of Maximality Axioms: (KL)⇒(ZL)

(KL)⇒(ZL): Let P be a nonempty ordered set in which every
non-empty chain has an upper bound. By (KL), an arbitrarily chosen
chain C in P is contained in a maximal chain C∗. By hypothesis, C∗

has an upper bound u in P . If u were not a maximal element of P ,
we could find v > u. Clearly v ∉ C∗, since u ≥ c , for all c ∈ C∗. Thus,
C∗ ∪ {v} would be a chain strictly containing the maximal chain C∗,
a contradiction.
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Maximality Principles Zorn’s Lemma and the Axiom of Choice

Equivalence of Maximality Axioms: (ZL)′⇒(AC)

(ZL)′⇒(AC): Consider the ordered set P of partial maps from I to

⋃i∈I Ai . By identifying maps with their graphs we may regard P as a
family of sets ordered by inclusion. Let

E = {π ∈ P ∶ (∀i ∈ domπ) π(i) ∈ Ai}.
Certainly E ≠ ∅, since the partial map with empty domain vacuously
belongs to E . Now let C = {πj}j∈J be a non-empty chain in E .
Because C is a chain, the partial maps πj are consistent and the union
of their graphs is the graph of a partial map, which necessarily belongs
to E . By (ZL)′, E has a maximal element, f ∶ domf → ⋃Ai , say.

If f is a total map, it serves as the required choice function.
Suppose f is not total. Then there exists k ∈ I /domf . Because Ak ≠ ∅,

there exists ak ∈ Ak . Define g by g(j) = { ak , if j = k
f (j), if j ∈ domf

. Then

g ∈ E and g > f . But this contradicts the maximality of f .
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Maximality Principles Zorn’s Lemma and the Axiom of Choice

Inductive Ordered Sets

An ordered set P in which every nonempty chain has an upper bound
is often referred to as inductive.

Contrast this with the earlier definition of P being completely

inductive: every chain in P has a least upper bound.

In the definition of “inductive” it is convenient to exclude the empty
chain (which, of course, has every element of P as an upper bound).
(ZL) and (ZL)′′ can be restated as:

(ZL) Every non-empty inductive ordered set has a maximal element;
(ZL)′′ Every completely inductive ordered set has a maximal element.
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Maximality Principles Zorn’s Lemma and the Axiom of Choice

(ZL) In Action

Axiom (ZL) (or more usually (ZL)′) is used to assert the existence of
an object X which cannot be directly constructed.
Proofs involving (ZL)′ follow a pattern. We let X be an object whose
existence we wish to establish. We proceed as follows:
(i) Take a non-empty family E of sets ordered by inclusion, in which X is a

(hypothetical) maximal element;
(ii) Check that (ZL)′ is applicable;
(iii) Verify that the maximal element supplied by (ZL)′ has all the

properties demanded of X .

A quick review of these steps:
Choosing E is usually straightforward.
We then have to exhibit an element of E to ensure E ≠ ∅.
To confirm that (ZL)′ applies, we need to show that the union of a
non-empty chain of sets in E is itself in E .
In many (ZL) applications, E is an algebraic ⋂-structure, and it is this
fact that ensures success in this step.
If (iii) is non-trivial, we usually argue by contradiction.
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Maximality Principles Prime and Maximal Ideals

Subsection 2

Prime and Maximal Ideals
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Maximality Principles Prime and Maximal Ideals

Prime Ideals

Let L be a lattice. Recall that a non-empty subset J of L is called an
ideal if:

(i) a,b ∈ J implies a ∨ b ∈ J;
(ii) a ∈ L,b ∈ J and a ≤ b imply a ∈ J.
J is proper if J ≠ L.

A proper ideal J of L is said to be prime if a,b ∈ L and a∧ b ∈ J imply
a ∈ J or b ∈ J.

The set of prime ideals of L is denoted Ip(L).
It is ordered by set inclusion.
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Maximality Principles Prime and Maximal Ideals

Prime Filters

Let L be a lattice. Recall that a non-empty subset F of L is called a
filter if:

(i) a,b ∈ F implies a ∧ b ∈ F ;
(ii) a ∈ F ,b ∈ L and a ≤ b imply b ∈ F .
F is proper if F ≠ L.

A proper filter F of L is said to be prime if a,b ∈ L and a ∨ b ∈ F
imply a ∈ F or b ∈ F .

The set of prime filters of L is denoted Fp(L).
It is ordered by set inclusion.

A subset J of a lattice L is a prime ideal if and only if L/J is a prime
filter.

Thus, it is easy to switch between Ip(L) and Fp(L).
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Maximality Principles Prime and Maximal Ideals

Join Irreducibles and Prime Ideals

Lemma

Let L be a finite distributive lattice and let a ∈ L. Then the map x ↦ L/↑x
is an order-isomorphism of J (L) onto Ip(L) that maps {x ∈ J (L) ∶ x ≤ a}
onto {I ∈ Ip(L) ∶ a ∉ I}.

We have

L/↑x ∈ Ip(L) iff ↑x ∈ Fp(L)
iff (∀y , z ∈ L)y ∨ z ∈ ↑x ⇒ y ∈ ↑x or z ∈ ↑x
iff (∀y , z ∈ L)x ≤ y ∨ z ⇒ x ≤ y or x ≤ z
iff x ∈ J (L).

Hence, Ip(L) = {L/↑x ∶ x ∈ J (L)}. We now know that ϕ maps J (L)
onto Ip(L). Since x ≤ y if and only if ↑x ⊇ ↑y , ϕ is an
order-embedding.

We also have (x ∈ J (L) & x ≤ a) iff (x ∈ J (L) & a ∈ ↑x) iff(x ∈ J (L) & a ∉ L/↑x) iff a ∉ I ∈ Ip(L).
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Maximality Principles Prime and Maximal Ideals

Join Irreducibles and Prime Ideals (Cont’d)

Corollary

Let L be a finite distributive lattice and let a ≰ b in L. Then there exists
I ∈ Ip(L), such that a ∉ I and b ∈ I .

a ≰ b iff there exists x ∈ J (L), such that x ≤ a and x ≰ b iff there
exists x ∈ J (L), such that a ∈ ↑x and b ∉ ↑x iff there exists x ∈ J (L),
such that a ∉ L/↑x and b ∈ L/↑x iff there exists I ∈ Ip(L), such that
a ∉ I and b ∈ I .

Corollary

Let B be a finite Boolean algebra and let a ∈ B . Then the map x ↦ B/↑x
is a bijection of A(L) onto Ip(B) that maps {x ∈ A(L) ∶ x ≤ a} onto{I ∈ Ip(B) ∶ a ∉ I}.
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Maximality Principles Prime and Maximal Ideals

Maximal Ideals and Maximal Filters

Let L be a lattice and I a proper ideal of L. Then I is said to be a
maximal ideal if the only ideal properly containing I is L.

In other words, I is a maximal ideal if and only if it is a maximal
element in ⟨I(L)/{L};⊆⟩.
A maximal filter, also known as an ultrafilter, is defined dually.

Theorem

Let L be a distributive lattice with 1. Then every maximal ideal in L is
prime. Dually, in a distributive lattice with 0, every ultrafilter is a prime
filter.

Let I be a maximal ideal in L and let a,b ∈ L. Assume a ∧ b ∈ I and
a ∉ I . Define Ia = ↓{a ∨ c ∶ c ∈ I}. Then Ia is an ideal containing I and
a. Because I is maximal, we have Ia = L. In particular 1 ∈ Ia, so
1 = a ∨ d , for some d ∈ I . Then I ∋ (a ∧ b) ∨ d = (a ∨ d) ∧ (b ∨ d)
= b ∨ d . Since b ≤ b ∨ d , we have b ∈ I .

George Voutsadakis (LSSU) Lattices and Order April 2020 17 / 48



Maximality Principles Prime and Maximal Ideals

Prime and Maximal Ideals in Boolean Lattices

The preceding theorem is true whether or not L has any bounds.

In a Boolean lattice we can do better:

Theorem

Let B be a Boolean lattice and let I be a proper ideal in B . Then the
following are equivalent:

(i) I is a maximal ideal;

(ii) I is a prime ideal;

(iii) for all a ∈ B, it is the case that a ∈ I if and only if a′ ∉ I .
(i)⇒(ii): By the preceding theorem.

(ii)⇒(iii): Note that, for any a ∈ B , we have a ∧ a′ = 0. Because I is
prime, a ∈ I or a′ ∈ I . If both a and a′ belong to I then 1 = a∨ a′ ∈ I , a
contradiction.

(iii)⇒(i): Let J be an ideal properly containing I . Fix a ∈ J/I . Then
a′ ∈ I ⊆ J, so 1 = a ∨ a′ ∈ J. Therefore J = B . Thus, I is maximal.
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Maximality Principles Prime and Maximal Ideals

Ultrafilters on a Set

Let S be a non-empty set. An ultrafilter of the Boolean lattice P(S)
is called an ultrafilter on S .

An ultrafilter on S is said to be principal, if it is a principal filter, and
non-principal, otherwise.

For each s ∈ S , the set {A ∈ P(S) ∶ s ∈ A} is a principal ultrafilter on
S , and every principal ultrafilter is of this form.

All ultrafilters on a finite set are, of course, principal.
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Maximality Principles Prime and Maximal Ideals

Characterizations of Ultrafilters on a Set

Theorem

Let F be a proper filter in P(S). Then the following are equivalent:

(i) F is an ultrafilter;

(ii) F is a prime filter;

(iii) for each A ⊆ S , either A ∈ F or S/A ∈ F ;
(iv) for each B ⊆ S , if A ∩B ≠ ∅, for all A ∈ F , then B ∈ F ;

(v) given pairwise disjoint sets A1, . . . ,An, such that A1 ∪⋯∪ An = S ,
there exists a unique j , such that Aj ∈ F .

For the proof, one shows (ii)⇒(v)⇒(iii)⇒(iv)⇒(i)⇒(ii).
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Maximality Principles Prime and Maximal Ideals

Characterizations of Ultrafilters on a Set (Proof)

(ii)⇒(v): Suppose that F is prime. Let A1, . . . ,An ⊆ S be disjoint
subsets, such that A1 ∪⋯∪An = S . Since S ∈ F and F is prime, there
exists j < n, such that Aj ∈ F . If there exist i , j < n, i ≠ j , such that
Ai ,Aj ∈ F , then ∅ = Ai ∩Aj ∈ F , a contradiction. Thus, there exists
unique j < n, such that Aj ∈ F .

(v)⇒(iii): Suppose (v) holds. Let A ⊆ S , such that A ∉ F . Since
A ∪ (S/A) = S , we get, by hypothesis, S/A ∈ F .
(iii)⇒(iv): Assume that (iii) holds. Let B ⊆ S , such that A ∩ B ≠ ∅,
for all A ∈ F . Then S/B ∉ F , since (S/B) ∩B = ∅. Thus, by
hypothesis, B ∈ F .

(iv)⇒(i): Suppose (iv) holds. Let B ⊆ S , such that B ∉ F . Then, for
all A ∈ F , A ⊈ B . Hence, for all A ∈ F , A ∩ (S/B) ≠ ∅. By hypothesis,
S/B ∈ F .
(i)⇒(ii): This has already been shown.
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Maximality Principles Prime and Maximal Ideals

Existence of Prime Ideals: (BPI) and (DPI)

Consider a Boolean lattice B .

The preceding theorem implies that a prime ideal in B is just a
maximal element of ⟨I(B)/{B};⊆⟩.
The existence of maximal elements has closer affinities with set theory
than with lattice theory. To circumvent such a treatment, we resort
to the following:

The statements (BPI) and (DPI) introduced below assert the existence
of certain prime ideals.

On one level, (BPI) and (DPI) may be taken as axioms, whose
lattice-theoretic implications we pursue.
At a deeper level, we show how (BPI) and (DPI) may be derived from
(ZL).

The difference between these two philosophies is less than might
appear, as will be indicated.
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Maximality Principles Prime and Maximal Ideals

(DPI) and (BPI)

(DPI) Given a distributive lattice L and an ideal J and a filter G of L, such
that J ∩G = ∅, there exist I ∈ Ip(L) and F = L/I ∈ Fp(L), such that
J ⊆ I and G ⊆ F .

(BPI) Given a proper ideal J of a Boolean lattice B , there exists I ∈ Ip(B),
such that J ⊆ I .

Theorem

(ZL) implies (BPI).

Let B be a Boolean lattice and J be a proper ideal of B . We apply
the special case (ZL)′ of (ZL) to the set E ∶= {K ∈ I(B) ∶ B ≠ K ⊇ J},
ordered by inclusion.

The set E contains J, and so is non-empty.
Let C = {Kλ ∶ λ ∈ Λ} be a chain in E . We require K ∶= ⋃λ∈ΛKλ ∈ E .
Certainly K ≠ B, K ⊇ J and K is a down-set. If a,b ∈ K , a ∈ Kλ and
b ∈ Kµ, for some λ,µ ∈ Λ. Since C is a chain, assume Kλ ⊆ Kµ. Then
a,b ∈ Kµ, so a ∨ b ∈ Kµ ⊆ K .
The maximal element of E given by (ZL)′ is the required maximal ideal.
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Maximality Principles Prime and Maximal Ideals

(ZL) Implies (DPI)

For distributive lattices, we have:

Theorem

(ZL) implies (DPI).

Take L,G and J as in the statement (DPI). Define
E = {K ∈ I(L) ∶ K ⊇ J and K ∩G = ∅}. We use a similar argument to
the one in the preceding theorem to show that ⟨E ;⊆⟩ has a maximal
element I .

Let K = {Kλ ∶ λ ∈ Λ} be a chain in E . Set K = ⋃λ∈ΛKλ. Clearly,
J ⊆ K . Moreover, K ∩G = ⋃λ∈ΛKλ ∩G = ⋃λ∈Λ(Kλ ∩G) = ∅. Since
every set in E is a down-set, the same holds for K . To see that K is
an ideal, let a,b ∈ K . Then, there exist λ,µ ∈ Λ, such that a ∈ Kλ and
b ∈ Kµ. Since K is a chain, either Kλ ⊆ Kµ or Kµ ⊆ Kλ. Assume,
without loss of generality, that the former holds. Then, a,b ∈ Kµ.
Since Kµ is an ideal, a ∨ b ∈ Kµ. Therefore, a ∨ b ∈ K . By (ZL)′, we
conclude that ⟨E ,⊆⟩ has a maximal element.
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Maximality Principles Prime and Maximal Ideals

(ZL) Implies (DPI) (Cont’d)

We showed that ⟨E ;⊆⟩ has a maximal element I .

It remains to prove that I is prime.

Suppose a,b ∈ L/I , but a ∧ b ∈ I . Because I is maximal, any ideal
properly containing I is not in E . Consequently, Ia = ↓{a ∨ c ∶ c ∈ I}
(the smallest ideal containing I and a) intersects G . Therefore there
exists ca ∈ I , such that a ∨ ca is above an element of G . Hence, since
G is an up-set, a ∨ ca ∈ G . Similarly, we can find cb ∈ I , such that
b ∨ cb ∈ G . Now consider

(a ∧ b) ∨ (ca ∨ cb) = ((a ∨ ca) ∨ cb) ∧ ((b ∨ cb) ∨ ca).
The right-hand side is in G , since G is a filter, while the left is in I ,
since I is an ideal. Thus, I ∩G ≠ ∅, a contradiction.
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Maximality Principles Prime and Maximal Ideals

(BPI) and (DPI) in Distributive Lattices with 1

When L is a distributive lattice with 1, we may take G = {1} in (DPI).
Then (DPI) implies the existence of a maximal ideal of L containing a
given proper ideal J. So (DPI), restricted to Boolean lattices, yields
(BPI) as a special case.

Much less obviously, (BPI)⇒(DPI). This is proved by constructing an
embedding of a given distributive lattice into a Boolean lattice, to
which (BPI) is applied.

Hence (BPI) and (DPI) are equivalent.
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Maximality Principles Prime and Maximal Ideals

A Choice of Axioms

We proved that (ZL) is equivalent to the Axiom of Choice (AC)
Another equivalent statement is:

(DMI) every distributive lattice with 1, which has more than one element,
contains a maximal ideal.

It is easy to derive (DMI) from (ZL).

Conversely it can be proved that (AC) can be derived from (DMI),
applied to a suitable lattice of sets.
By contrast, (BPI) and (DPI) belong to a family of conditions known
to be equivalent to the choice principle (AC)F (asserting that every
family of non-empty finite sets has a choice function).

It is known that (AC)F is strictly weaker than (AC), so that it is not
true that (DPI) implies (DMI).
However, (AC)F is not derivable within Zermelo-Fraenkel set theory.
To obtain results such as (DPI) and (BPI) some additional axiom must
be added (whether (AC), (ZL), or (DPI) itself, is a matter of choice).
Thus, our suggestion that readers ignorant of (ZL) should take (DPI)
as a hypothesis has a sound logical basis.
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Maximality Principles Prime and Maximal Ideals

(BUF) and Relations Between Axioms

We finally introduce

(BUF) Given a proper filter G of a Boolean lattice B, there exists F ∈ Fp(B),
such that G ⊆ F .

A proper filter (an ultrafilter) of a Boolean lattice B is a proper ideal
(a maximal ideal) of B∂ (which is also a Boolean lattice).

Thus, the statements (BPI) and (BUF) are equivalent.

We summarize the established relations between the various
conditions:

(AC) ⇐====⇒ (ZL) ====⇒ (BPI) ⇐==⇒ (BUF)

(DMI)

/
/
=========================⇒ (DPI)

/
/
⇐==⇒ (AC)F

/
/
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Subsection 3

Power Set Algebras and Down-Set Lattices
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Maximality Principles Power Set Algebras and Down-Set Lattices

Extended the Representations to the Infinite Case

The representation theorems in the finite case show that:

Any finite Boolean algebra is isomorphic to a powerset;
Any finite distributive lattice is isomorphic to the lattice of down-sets
of an ordered set.

We cannot expect these statements to remain universally true when
we delete the word “finite”: We already gave an example of a
Boolean algebra which is not isomorphic to a powerset algebra.

We will use the results of the preceding section to show that every
distributive lattice has a concrete representation as a lattice of sets,
or, in a Boolean case, an algebra of sets.

Then we will characterize among Boolean algebras and bounded
distributive lattices those which are, respectively, powerset algebras
and down-set lattices.
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Maximality Principles Power Set Algebras and Down-Set Lattices

Lattice and Power Set of Prime Ideals

Lemma

Let L be a lattice and let X = Ip(L). Then the map η ∶ L→ P(X ) defined
by η ∶ a ↦ Xa ∶= {I ∈ Ip(L) ∶ a ∉ I} is a lattice homomorphism.

We must show Xa∨b = Xa ∪Xb and Xa∧b = Xa ∩ Xb, for all a,b ∈ L.
Take I ∈ Ip(L). Since I is an ideal, a ∨ b ∈ I if and only if a ∈ I and
b ∈ I . Since I is prime, a ∧ b ∈ I if and only if a ∈ I or b ∈ I . Thus, we
have

Xa∨b = {I ∈ Ip(L) ∶ a ∨ b ∉ I}
= {I ∈ Ip(L) ∶ a ∉ I or b ∉ I}
= Xa ∪ Xb.

Similarly,

Xa∧b = {I ∈ Ip(L) ∶ a ∧ b ∉ I}
= {I ∈ Ip(L) ∶ a ∉ I and b ∉ I}
= Xa ∩ Xb.
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Maximality Principles Power Set Algebras and Down-Set Lattices

Characterization of Distributivity

We would like η to give a faithful copy of L in the lattice P(Ip(L)):
This cannot be proven without the additional hypothesis of
distributivity, because a lattice of sets must be distributive.
It turns out (DPI) is exactly what is needed to ensure that a
distributive lattice L has enough prime ideals for η ∶ L → P(Ip(L)) to
be an embedding.

Theorem

Let L be a lattice. Then the following are equivalent:

(i) L is distributive;

(ii) given an ideal J of L and a filter G of L with J ∩G = ∅, there exists a prime
ideal I , such that J ⊆ I and I ∩G = ∅;

(iii) given a,b ∈ L, with a ≰ b, there exists a prime ideal I , such that a ∉ I , b ∈ I ;

(iv) the map η ∶ a ↦ Xa ∶= {I ∈ Ip(L) ∶ a ∉ I} is an embedding of L intoP(Ip(L));
(v) L is isomorphic to a lattice of sets.
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Maximality Principles Power Set Algebras and Down-Set Lattices

Proving the Characterization of Distributivity

(i)⇒(ii): By (DPI).

(ii)⇒(iii): Suppose (ii) holds. Let a,b ∈ L, such that a ≰ b. Then, ↑a
is a filter of L, ↓b is an ideal of L and ↑a ∩ ↓b = ∅. By hypothesis,
there exists a prime ideal I ∈ Ip(L), such that ↑a ∩ I = ∅ and ↓b ⊆ I .
Thus, a ∉ I and b ∈ I .

(iii)⇒(iv): By the preceding lemma, it suffices to show that, for all
a,b ∈ L, a ≰ b implies Xa ⊈ Xb. But, if a ≰ b, then, by hypothesis,
there exists I ∈ Ip(L), such that a ∉ I and b ∈ I . Thus, I ∈ Xa, but
I ∉ Xb, whence Xa ⊈ Xb.

(iv)⇒(v): Trivial.

(v)⇒(i): Trivial.
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The Case of Boolean Algebras

Theorem

Let B be a Boolean algebra. Then:

(i) Given a proper ideal J of B , there exists a maximal ideal I ∈ Ip(B)
with J ⊆ I ;

(ii) Given a ≠ b in B , there exists a maximal ideal I ∈ Ip(B), such that I
contains one and only one of a and b;

(iii) The map η ∶ a ↦ Xa ∶= {I ∈ Ip(B) ∶ a ∉ I} is a Boolean algebra
embedding of B into the powerset algebra P(Ip(L)).

(ii) (i) holds by the (BPI). Take a,b ∈ B , with a ≠ b. We may assume
a ≰ b. This gives 1 ≠ a′ ∨ b. Apply (i) with J = ↓(a′ ∨ b). Any prime
ideal I containing J contains b, but not a.

(iii) The map η ∶ a ↦ Xa ∶= {I ∈ Ip(B) ∶ a ∉ I} is a lattice homomorphism.
X0 = ∅ because each prime ideal contains 0. X1 = X , since each prime
ideal is proper. So, η is a Boolean algebra homomorphism. Since (ii)
holds, η is also one-to-one.
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Infinite Distributive Laws

Note that since lattices of sets are distributive, complete lattices of
sets, and in particular powersets, must satisfy a very strong
distributive law:

Infinite Distributive Laws: A complete lattice L is said to be
completely distributive if, for any doubly indexed subset {xij}i∈I ,j∈J
of L, we have

⋀
i∈I

(⋁
j∈J

xij) = ⋁
α∶I→J

(⋀
i∈I

xiα(i)). (CD)

The formulation of (CD) is simply a formal way of saying that any
meet of joins is converted into the join of all possible elements
obtained by taking the meet over i ∈ I of elements xik , where k

depends on i ; the functions α ∶ I → J do the job of picking out the
indices k .

The law (CD) can be shown to be self-dual, as distributivity is: L
satisfies (CD) if and only if L∂ does.
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Join- and Meet-Infinite Distributive Laws

Certainly any powerset ⟨P(X );⊆⟩ satisfies (CD).
So does any complete lattice of sets, and in particular any lattice⟨O(P);⊆⟩, where P is an ordered set.

As an instance of (CD), obtained by taking I = {1,2}, x1j = x and
x2j = yj , for all j ∈ J, we have the Join-Infinite Distributive Law: for
any subset {yj}j∈J of L and any x ∈ L,

x ∧⋁
j∈J

yj = ⋁
j∈J

x ∧ yj . (JID)

The dual condition is the Meet-Infinite Distributive Law, (MID),
and it too holds in any completely distributive lattice.

x ∨⋀
j∈J

yj = ⋀
j∈J

x ∨ yj . (MID)
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Power Set Boolean Algebras

Theorem

Let B be a Boolean algebra. Then the following are equivalent:

(i) B ≅ P(X ), for some set X ;

(ii) B is complete and atomic;

(iii) B is complete and completely distributive.

(i)⇒(ii) & (iii): is clear.

(ii)⇒(i): The map η ∶ a ↦ {x ∈ A(B) ∶ x ≤ a} is a Boolean algebra
isomorphism mapping B onto P(A(B)). Thus, (ii) implies (i).

(iii)⇒(ii): We apply (CD) with I = B and J = {±1}, with
xij = { i , if j = 1

i ′, if j = −1 .

Note that, for any i , we have ⋁j∈J xij = i ∨ i ′ = 1.
George Voutsadakis (LSSU) Lattices and Order April 2020 37 / 48



Maximality Principles Power Set Algebras and Down-Set Lattices

Power Set Boolean Algebras (Cont’d)

We saw that ⋁j∈J xij = 1.

Therefore, by (CD),

⋁
α∶I→J

(⋀
i∈I

xiα(i)) = ⋀
i∈I

(⋁
j∈J

xij) = 1.
Let y ∈ B . Then by (JID) we have

⋁
α∶I→J

(y ∧⋀
i∈I

xiα(i)) = y ∧ ⋁
α∶I→J

(⋀
i∈I

xiα(i)) = y .

Claim: zα ∶= y ∧⋀i∈I xiα(i) is an atom whenever it is nonzero.

Suppose 0 < u ≤ zα. Then u ≤ xuα(u). This forces α(u) = 1 since
otherwise u ≤ u′ in contradiction to u ≠ 0. But α(u) = 1 gives
xuα(u) = u, so that u ≥ zα. Therefore u = zα, so that zα ∈ A(B), as
claimed.

We conclude that B is atomic.
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Instances of Algebraic Lattices

Characterizing down-set lattices requires substantially more work.

We note that any lattice O(P) is algebraic.
⟨N0;≼⟩ fails (JID).
By contrast, any bounded distributive lattice which satisfies (ACC)
(respectively (DCC)) does satisfy (JID) (respectively (MID));

George Voutsadakis (LSSU) Lattices and Order April 2020 39 / 48



Maximality Principles Power Set Algebras and Down-Set Lattices

Properties of Algebraic Lattices

Proposition

Let L be an algebraic lattice.

(i) Meet distributes over directed joins in L, that is,
x ∧⊔{yi ∶ i ∈ I} = ⊔{x ∧ yi ∶ i ∈ I}.

(ii) If L is distributive, then it satisfies (JID).

(i) Let D = {yi}i∈I be directed. It is easy to see that {x ∧ yi}i∈I is also
directed. Note that x ∧⊔{yi ∶ i ∈ I} ≥ ⊔{x ∧ yi ∶ i ∈ I}, since the
left-hand side is an upper bound for {x ∧ yi}i∈I . Suppose for a
contradiction that the inequality is strict. Because L is algebraic, this
implies that there exists k ∈ F (L), such that k ≤ x ∧⊔{yi ∶ i ∈ I} but
k ≰ ⊔{x ∧ yi ∶ i ∈ I}. Then k ≤ x and k ≤ ⊔D, from which we get
k ≤ yj , for some j . But then k ≤ x ∧ yj ≤ ⊔{x ∧ yi}, a contradiction.

(ii) For any non-empty set S , ⋁S = ⊔{⋁F ∶ ∅ ≠ F ⊆ S}. But meet
distributes over directed joins and over finite joins. Hence, meet
distributes over arbitrary joins.
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Completely Join-Irreducible Elements

After seeing various analogues, (CD), (JID) and (MID), of the
distributive laws (D) and (D)∂ that a complete lattice may satisfy, we
visit analogues of join- and meet-irreducible elements:

An element a of a complete lattice is called completely

join-irreducible if a = ⋁S implies that a ∈ S , for every subset S of L;
in particular, a ≠ 0 (take S = ∅).
The element a is called completely join-prime if a ≤ ⋁S implies
a ≤ s, for some s ∈ S .

We denote the set of completely join-prime elements in L by Jp(L).
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Completely Join-Prime and Completely Join-Irreducibles

Lemma

Let L be a complete lattice.

(a) Every completely join-prime element is completely join-irreducible;

(b) In the presence of (JID), every completely join-irreducible element is
completely join-prime.

(a) Assume that a is completely join-prime. Let S ⊆ L, such that a = ⋁S .
Then a ≤ ⋁S . Since a is completely join-prime, there exists s ∈ S ,
such that a ≤ s. But, by hypothesis, s ≤ a, whence a = s ∈ S .
Therefore, a is completely join-irreducible.

(b) Assume L satisfies the (JID) and a is completely join-irreducible in L.
Let S ⊆ L, such that a ≤ ⋁S . Then a = a ∧⋁S = ⋁s∈S(a ∧ s). Since a

is completely join-irreducible, there exists s ∈ S , such that a = a ∧ s,
i.e., a ≤ s. Therefore, a is completely join-prime.
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Completely Meet-Irreducible Elements

Let L be a complete lattice.

An element a of a complete lattice is called completely

meet-irreducible if a = ⋀S implies that a ∈ S , for every subset S of
L; in particular, a ≠ 1 (take S = ∅).
The element a is called completely meet-prime if ⋀S ≤ a implies
s ≤ a, for some s ∈ S .

We denote the set of completely meet-prime elements in L byMp(L).
It is easy to see that every completely meet-prime element is
completely meet-irreducible.

In the presence of (MID), every completely meet-irreducible element
is completely meet-prime.
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Weak Atomicity

We say that a lattice L is weakly atomic if, given x < y in L, there
exist a,b ∈ L, such that x ≤ b ⋖ a ≤ y .
This condition is satisfied in any down-set lattice and it is self-dual.

Proposition

Let L be a complete lattice.

(i) Assume that L is algebraic. Then the completely meet-irreducible elements
are meet-dense in L.

(ii) Assume that L satisfies (JID) and is weakly atomic. Then the completely
meet-irreducible elements are meet-dense in L.

(ii) To prove meet-density of a set Q it suffices to show that if s, t ∈ L,
with t > s, then there exists m ∈ Q, with m ≥ s and m ≱ t.
Assume L satisfies (JID) and is weakly atomic. Take t > s. Then
there exist p,q ∈ L, such that t ≥ q ⋗ p ≥ s. Define
P = {x ∈ L ∶ x ≥ p and x ≱ q}.
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Weak Atomicity (Cont’d)

We set P = {x ∈ L ∶ x ≥ p and x ≱ q}.
The set P contains p and so P ≠ ∅.
Let C be a non-empty chain in P , and suppose for a contradiction that

⋁C ∉ P . This means that ⋁C ≥ q. Invoking (JID) we have⋁x∈C (x ∧ q) = q. If we had x ∧ q ≤ p, for all x ∈ C , then

⋁x∈C (x ∧ q) ≤ p, a contradiction. Pick x ∈ C , such that x ∧ q ≰ p.
Then, using the contrapositive of the Connecting Lemma,
p < (x ∧ q) ∨ p. By distributivity, which is implied by (JID),
p < (x ∧ q)∨ p = (x ∨ p)∧ (q ∨ p) = x ∧ q ≤ q. Hence, because q ⋗ p, we
have x ∧ q = q, a contradiction.

By (ZL), P has a maximal element, m say, and this satisfies m ≥ p
and m ≱ q. By transitivity, m ≥ s and m ≱ t.

Finally suppose for a contradiction that m = ⋀S , but that m ≠ y , for
every y ∈ S . Because m is maximal in P , every y ∈ S lies outside P .
But y ≥ m ≥ p, so we must have y ≥ q, for all y ∈ S . But then
m = ⋀S ≥ q, a contradiction. Hence m is completely meet-irreducible.
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Algebraicity Implies Weak Atomicity

Proposition

Every algebraic lattice L is weakly atomic.

Let x < y in L. Recall that K ∶= [x , y] is an algebraic lattice.

Claim: If a ∈ K is finite and x < a, then there exists b ∈ K , such that
x ≤ b ⋖ a.

Let a ∈ K be finite and x < a. Consider the set P = {b ∈ K ∶ x ≤ b < a}.
Since x ∈ P , P ≠ ∅. Let C ⊆ P be a nonempty chain in P . Since, for
all c ∈ C , x ≤ c < a, we get that x ≤ ⋁C ≤ a. If ⋁C = a, then, since a

is finite, there would exist c ∈ C , such that a = c , a contradiction.
Hence, x ≤ ⋁C < a. Thus, every nonempty chain C in P has an
upper bound in P . By (ZL), P has a maximal element b.

To see that b is a lower cover of a, suppose that there exists z ∈ K ,
such that b ≤ z < a. Then z ∈ P . Since b is maximal in P , we get that
z = b. Thus, b is indeed a lower cover of a.
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Characterization of Down-Set Lattices

Theorem (Characterization of Down-Set Lattices)

Let L be a lattice. Then the following are equivalent:

(i) L is isomorphic to O(P) for some ordered set P ;

(ii) L is isomorphic to a complete lattice of sets;

(iii) L is distributive and both L and L∂ are algebraic;

(iv) L is complete, L satisfies (JID) and the completely join-irreducible
elements are join-dense;

(v) the map η ∶ x ↦ {x ∈ Jp(L) ∶ x ≤ a} is an isomorphism from L onto
O(Jp(L));

(vi) L is completely distributive and L is algebraic;

(vii) L is complete,satisfies (JID) and (MID) and is weakly atomic.
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Proof of the Chain of Implications

(i)⇒(ii): Trivially;

(ii)⇒(iii): Trivially;

(iii)⇒(iv): We proved that, if an algebraic lattice L is distributive,
then it satisfies the (JID). We also proved that, if L is algebraic, then
the completely meet-irreducible elements of L are meet-dense in L.
By the dual, we get (iv).

(iv)⇒(v): Analogous to the Birkhoff Representation Theorem;

(v)⇒(i): Trivially;

(ii)⇒(vi): We have seen that any complete lattice of sets is
completely distributive and algebraic;

(vi)⇒(vii): By the preceding proposition;

(vii)⇒(iv): We have seen that, if a complete lattice satisfies the (JID)
and is weakly atomic, then the completely meet-irreducible elements
are meet-dense. The dual gives (iv).
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