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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Subsection 1

Stone’s Representation Theorem for Boolean Algebras
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

The Prime Ideal Space of a Boolean Algebra

We showed every finite Boolean algebra is isomorphic to some
powerset algebra.

Finiteness is essential, since we saw that the finite-cofinite algebra
FC(N) is not isomorphic to a powerset algebra.

However, it is true that any Boolean algebra B is isomorphic to a
subalgebra of a powerset algebra.

We refine this result by describing precisely which subalgebra this is.

Let B be a Boolean algebra. The map η ∶ a ↦ Xa ∶= {I ∈ Ip(B) ∶ a ∉ I}
is a Boolean algebra embedding of B into P(Ip(B)).
We seek a characterization of the image imη of the embedding η in
terms of additional structure on the set of prime ideals.

A topology on a set X is a family of subsets of X containing X and∅ and closed under arbitrary unions and finite intersections.

We assume familiarity with topological concepts (see preceding set).
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

The Prime Ideal Space

The family of clopen subsets of a topological space ⟨X ;T ⟩ forms a
Boolean algebra.

This suggests that we might try to impose a topology T on Ip(B) so
that imη is characterized as the family of clopen subsets of the
topological space ⟨Ip(B);T ⟩.
Of course, Xa ∶= {I ∈ Ip(B) ∶ a ∉ I} must be in T , for each a ∈ B .

The family B ∶= {Xa ∶ a ∈ B} is not a topology because it is not closed
under the formation of arbitrary unions.

We have to define T on Ip(B) as follows:
T ∶= {U ⊆ Ip(B) ∶ U is a union of members of B}.

The family B is a basis for T (which is indeed a topology).

The topological space ⟨Ip(B);T ⟩ is called the prime ideal space or
dual space of B .

Let X ∶= Ip(B). Each element of B is clopen in X , because
X /Xa = Xa′ and so X /Xa is open.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Compactness of Prime Ideal Space

To prove that every clopen subset of ⟨X ;T ⟩ is of the form Xa, we
need further information about the prime ideal space.

Proposition

For B a Boolean algebra, the prime ideal space ⟨Ip(B);T ⟩ is compact.

Let U be an open cover of X ∶= Ip(B). We have to show that there
exist finitely many members of U whose union is X . Every open set is
a union of sets Xa and we may therefore assume without loss of
generality that U ⊆ B. Write U = {Xa ∶ a ∈ A}, where A ⊆ B . Let J be
the smallest ideal containing A, that is J = {b ∈ B ∶ b ≤ a1 ∨⋯∨ an,
for some a1, . . . ,an ∈ A}.

If J is not proper, then 1 ∈ J. So a1 ∨⋯∨ an = 1, for some finite subset{a1, . . . , an} of A. Then X = X1 = Xa1∨⋯∨an = Xa1 ∪⋯∪Xan and{Xa1 , . . . ,Xan} provides the required finite subcover of U .
If J is proper we can use (BPI) to obtain a prime ideal I containing J.
But then I belongs to X but to no member of U , a contradiction.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Clopen Subsets in the Prime Ideal Space

Proposition

Let X ∶= Ip(B) and let ⟨X ;T ⟩ be the prime ideal space of the Boolean
algebra B . Then the clopen subsets of X are exactly the sets Xa for a ∈ B .
Further, given distinct points x , y ∈ X , there exists a clopen subset V of
X , such that x ∈ V and y ∉ V .

As noted above, each set Xa is clopen. Also, given distinct I1 and I2
in Ip(B), there exists, without loss of generality, a ∈ I1/I2. Then Xa

contains I2 but not I1. This proves the final assertion.

It remains to prove that an arbitrary clopen subset U of X is of the
form Xa, for some a ∈ B . Because U is open, U = ⋃a∈AXa, for some
subset A of B . But U is also a closed subset of X and so compact.
Hence, there exists a finite subset A1 of A, such that U = ⋃a∈A1

Xa.
Then U = Xa, where a = ⋁A1.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Stone’s Representation Theorem for Boolean Algebras

Stone’s Representation Theorem for Boolean Algebras

Let B be a Boolean algebra. Then the map

η ∶ a ↦ Xa ∶= {I ∈ Ip(B) ∶ a ∉ I}
is a Boolean algebra isomorphism of B onto the Boolean algebra of clopen
subsets of the dual space ⟨Ip(B);T ⟩ of B .

To exploit this representation to the full we need to know more about
topological spaces with the properties possessed by Ip(B).
The last part of the preceding proposition asserts that the prime ideal
space of a Boolean algebra satisfies a separation condition
guaranteeing that the space has “plenty” of clopen subsets.

This result has some topological ramifications.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Totally Disconnected Spaces and Boolean Spaces

A topological space ⟨X ;T ⟩ is totally disconnected if, given distinct
points x , y ∈ X , there exists a clopen subset V of X , such that x ∈ V
and y ∉ V .

If ⟨X ;T ⟩ is both compact and totally disconnected, it is said to be a
Boolean space.

We have shown that ⟨Ip(B);T ⟩ is a Boolean space for every Boolean
algebra B .

We denote by PT (X ) the family of clopen subsets of a Boolean space⟨X ;T ⟩.
Given distinct points x , y in a totally disconnected space X , there
exist disjoint clopen sets V and W ∶= X /V , such that x ∈ V and
y ∈W .

This implies that a totally disconnected space is Hausdorff (exploited
in the following slides).
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Clopen Sets Satisfying Special Properties

Lemma

Let ⟨X ;T ⟩ be a Boolean space.

(i) Let Y be a closed subset of X and x ∉ Y . Then there exists a clopen
set V , such that Y ⊆ V and x ∉ V .

(ii) Let Y and Z be disjoint closed subsets of X . Then there exists a
clopen set U, such that Y ⊆ U and Z ∩U = ∅.

(i) Since X is totally disconnected, for each y ∈ Y , there exists a clopen
set Vy , with y ∈ Vy and x ∉ Vy . The open sets {Vy ∶ y ∈ Y } form an
open cover of Y . Since Y is compact, there exist y1, . . . , yn ∈ Y , such
that Y ⊆ V ∶= Vy1 ∪⋯∪ Vyn . As a finite union of clopen sets, V is
clopen. By construction it does not contain x .
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Clopen Sets Satisfying Special Properties (Cont’d)

(ii) Let Y and Z be disjoint closed subsets of X .

By Part (i), for all z ∈ Z , there exists a clopen set Uz , such that
Y ⊆ Uz and z ∉ Uz . Let Vz = X /Uz . The collection of clopen sets{Vz ∶ z ∈ Z} forms an open cover of Z . Since Z is compact, there
exist z1, z2, . . . , zn ∈ Z , such that Z ⊆ ⋃n

i=1Vzi . As a finite intersection
of clopen sets, U ∶= ⋂n

i=1Uzi is clopen. Moreover, we have Y ⊆ U and:

Z ∩U = Z ∩⋂n
i=1Uzi

= Z ∩⋂n
i=1(X /Vzi )

= Z ∩ (X /⋃n
i=1Vzi )

Z ⊆ ⋃
n
i=1 Vzi= ∅.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Obtaining Dual Spaces Indirectly

Theorem

(i) Let Y be a Boolean space, let B be the algebra PT (Y ) of clopen
subsets of Y and let X be the dual space of B . Then Y and X are
homeomorphic.

(ii) Let C be a Boolean algebra and Y a Boolean space such that
C ≅ PT (Y ). Then the dual space of C is (homeomorphic to) Y .

We define ε ∶ Y → X by ε(y) ∶= {a ∈ B ∶ y ∉ a}. Certainly ε(y) is a
prime ideal in B . We shall show that ε is a continuous bijection from
Y onto X . It then follows by a topological result that ε is a
homeomorphism.

Because Y is totally disconnected, if y ≠ z in Y then there exists a
clopen subset a of Y , such that y ∈ a and z ∉ a. Hence ε is injective.
To establish continuity of ε it suffices to show that ε−1(Xa) is clopen
for each a ∈ B: By the definition of Xa and the definition of ε we have
ε
−1(Xa) = {y ∈ Y ∶ ε(y) ∈ Xa} = {y ∈ Y ∶ a ∉ ε(y)} = a.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Obtaining Dual Spaces Indirectly (Cont’d)

It remains to prove the surjectivity of ε:

We prove that ε is surjective. ε(Y ) is a closed subset of X . Suppose
by way of contradiction that there exists x ∈ X /ε(Y ). Then there is a
subset Xa of X , such that ε(Y ) ∩Xa = ∅ and x ∈ Xa. We have

∅ ε(Y ) ∩ Xa = ∅= {x ∶ ε(x) ∈ Xa} = ε−1(Xa) = a.
But this contradicts x ∈ Xa.

This proves (i), and (ii) follows from it.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Example: The Finite-Cofinite Algebra FC(N)

Denote by N∞ the set of natural numbers with an additional point,∞, adjoined. We define T as follows: A subset U of N∞ belongs toT if:
either (a) ∞ ∉ U

or (b) ∞ ∈ U and N∞/U is finite.

T is a topology.

A subset V of N∞ is clopen if and only if both V and N∞/V are
open. It follows that the clopen subsets of N∞ are the finite sets not
containing ∞ and their complements.

Claim: N∞ is totally disconnected.

Given distinct points x , y ∈N∞, we may assume without loss of
generality that x ≠∞. Then {x} is clopen and contains x but not y .
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

The Finite-Cofinite Algebra FC(N) (Cont’d)

Claim: N∞ is compact.

Take an open cover U of N∞. Some member of U must contain ∞;
say U is such a set. Then N∞/U is finite, by (b). Hence only finitely
many members of U are needed to cover N∞/U. These, together
with U, provide the required finite subcover of U.

The algebra B of clopen sets of the Boolean space N∞ consists of the
finite sets not containing ∞ and their complements. Define

f ∶ FC(N)→ B by f (a) = { a, if a is finite
a ∪ {∞}, if a is cofinite

This map is easily seen to be an isomorphism. Therefore, the dual
space of FC(N) can be identified with N∞.

We can now recognize the elements of Ip(B).
The points of N are in one-to-one correspondence with the principal
prime ideals of FC(N), via the map n ↦ ↓(N/{n}). There is a single
non-principal prime ideal, associated with ∞: it consists of all finite
subsets of N.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Subsection 2

Priestley’s Representation Theorem for Distributive Lattices
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Order and Topology: Boolean and Finite Distributive Case

Let L be a distributive lattice and let X = Ip(L) be its set of prime
ideals ordered by inclusion.

We already have representations for L in two special cases:

When L is Boolean and X is topologized in the way described above, L
is isomorphic to the algebra PT (X) of clopen subsets of X .
Every prime ideal of a Boolean algebra is maximal. So the order on X

is discrete (that is, x ≤ y in X if and only if x = y). Thus the order has
no active role in this case.
When L is finite, L is isomorphic to the lattice O(X) of down-sets of X .
Suppose X has a topology T making it a Boolean space. Then T is
the discrete topology, in which every subset is clopen. In this case the
topology contributes nothing.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Encompassing all Bounded Distributive Lattices

To represent L in general we should equip X with
the inclusion order and
a suitable Boolean space topology.

A prime candidate for a lattice isomorphic to L would then be the
lattice of all clopen down-sets of X .
This lattice coincides with:

O(X) when L is finite,PT (X) when L is Boolean andP(X) when L is both finite and Boolean.

We prove that a bounded distributive lattice L is indeed isomorphic to
the lattice of clopen down-sets of Ip(L), ordered by inclusion and
appropriately topologized, and thereby obtain a natural common
generalization of Birkhoff’s and Stone’s theorems.

The boundedness restriction is necessary because the lattice of clopen
down-sets is bounded.
Extensions of the theorem to lattices lacking bounds do exist, but are
not discussed here.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

The Prime Ideal Space of a Bounded Distributive Lattice

Let L be a distributive lattice with 0 and 1 and, for each a ∈ L, let
Xa ∶= {I ∈ Ip(L) ∶ a ∉ I}.
Let X ∶= Ip(L).
We want a topology T on X so that each Xa is clopen. Accordingly,
we want all elements in S ∶= {Xb ∶ b ∈ L} ∪ {X /Xc ∶ c ∈ L} to be in T .
Compared with the Boolean case, there is a double complication:

The family S contains sets of two types;
It is also not closed under finite intersections.

We let B ∶= {Xb ∩ (X /Xc) ∶ b, c ∈ L}.
Since L has 0 and 1, the set B contains S.
Also B is closed under finite intersections.

Finally, we define T by U ∈ T if U is a union of members of B.
Then T is the smallest topology containing S, i.e., S is a subbasis forT and B a basis.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Compactness of Prime Ideal Space

Theorem

Let L be a bounded distributive lattice. Then the prime ideal space⟨Ip(L);T ⟩ is compact.

By Alexander’s Subbasis Lemma, it is sufficient to prove that any
open cover U of X = Ip(L) by sets in the subbasis S has a finite
subcover. Let

U = {Xb ∶ b ∈ A0} ∪ {X /Xc ∶ c ∈ A1}.
Let J be the ideal generated by A0 (this is {0} if A0 is empty) and
let G be the filter generated by A1 (this is {1} if A1 is empty).

Assume first that J ∩G = ∅. Invoke (DPI) to find a prime ideal I , such
that J ⊆ I and G ∩ I = ∅. Then, for all b ∈ A0, b ∈ J ⊆ I , whence I ∉ Xb.
Moreover, for all c ∈ A1, c ∈ G , whence, since G ∩ I = ∅, I ∉ X /Xc . This
means that U does not cover X , a contradiction.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Compactness of Prime Ideal Space (Cont’d)

Hence J ∩G ≠ ∅. Take a ∈ J ∩G .

If A0 and A1 are both non-empty, there exist b1, . . . ,bj ∈ A0 and
c1, . . . , ck ∈ A1, such that c1 ∧⋯ ∧ ck ≤ a ≤ b1 ∨⋯∨ bj , whence
X = X1 = Xb1 ∪⋯∪Xbj ∪ (X /Xc1) ∪⋯∪ (X /Xck ). In this case, therefore,U has a finite subcover.
Suppose, now, that A1 = ∅. Then G = {1}. Hence, since J ∩G ≠ ∅,
1 ∈ J and J is improper. Thus, there exist b1, . . . ,bj ∈ A0, such that
1 = b1 ∨⋯∨ bj . Hence, X = X1 = Xb1∨⋯∨bj = Xb1 ∪⋯ ∪Xbj . So U has a
finite subcover.
Suppose, finally, that A0 = ∅. Then J = {0}. Hence, since J ∩G ≠ ∅,
0 ∈ G and G is improper. Thus, there exist c1, . . . , ck ∈ A1, such that
0 = c1 ∧⋯∧ ck . Hence,
X = X /X0 = X /Xc1∧⋯∧ck = X /(Xc1 ∩⋯∩Xck ) = (X /Xc1) ∪⋯ ∪ (X /Xck ).
So U has a finite subcover.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Totally Order-Disconnected Spaces

A set X carrying an order relation ≤ and a topology T is called an
ordered (topological) space and denoted ⟨X ;≤,T ⟩ (or by X when
no ambiguity would result).

It is said to be totally order-disconnected

if, given x , y ∈ X , with x ≱ y , there exists
a clopen down-set U, such that x ∈ U and
y ∉ U.

A compact totally order-disconnected space is called a Priestley

space, also known as an ordered Stone space or a CTOD space.

We shall denote by OT (X ) the family of clopen down-sets of a
Priestley space X :

When the order on X is discrete, OT (X) coincides with PT (X);
When X is finite, OT (X) coincides with O(X).
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Existence of Certain Clopen Down-Sets

In many ways Priestley spaces behave like a cross between Boolean
spaces and ordered sets.

Lemma

Let ⟨X ;≤,T ⟩ be a Priestley space.

(i) x ≤ y in X if and only if y ∈ U implies x ∈ U , for every U ∈ OT (X).
(ii) (a) Let Y be a closed down-set in X and let x ∉ Y . Then there exists a clopen

down-set U such that Y ⊆ U and x ∉ U.
(i) Let Y and Z be disjoint closed subsets of X such that Y is a down-set and

Z is an up-set. Then there exists a clopen down-set U such that Y ⊆ U and
Z ∩U = ∅.

(a) Suppose x ≤ y and U ∈OT (X ), such that y ∈ U. Since U is a
down-set, x ∈ U.

Suppose, conversely, that x ≰ y . Since X is a Priestley space, there
exists U ∈ OT (X ), such that y ∈ U and x ∉ U.

George Voutsadakis (LSSU) Lattices and Order April 2020 23 / 40



Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Existence of Certain Clopen Down-Sets (Part (ii))

(a) Let Y be a closed down-set in X and let x ∉ Y . Since Y is a
down-set and x ∉ Y , for all y ∈ Y , x ≰ y . Since X is a Priestley space,
there exists a clopen down-set Uy , such that y ∈ Uy and x ∉ Uy . The
collection {Uy ∶ y ∈ Y } covers Y . Since Y is closed, it is compact.
Thus, there exists a finite subcover {Uy1, . . . ,Uyn}. Set U = ⋃n

i=1Uyi .
Since, for all y ∈ Y , Uy is a clopen downset, the same holds for U.
Moreover, Y ⊆ U and x ∉ U, since x ∉ Uy , for all y ∈ Y .

(b) By Part (a), for all z ∈ Z , there exists a clopen down-set Uz , such
that Y ⊆ Uz and z ∉ Uz . Then {X /Uz ∶ z ∈ Z} is a cover of the
compact set Z . Thus, there exists a finite subcover{X /Uz1, . . . ,X /Uzn}. Set U = ⋂n

i=1Uzi . Since each Uz is a clopen
down-set, so is U. Moreover, since Y ⊆ Uz , for all z ∈ Z , Y ⊆ U.
Finally, since Z ⊆ ⋃n

i=1(X /Uzi ) = X /⋂n
i=1Uzi , we get Z ∩U = ∅.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Clopen Sets and Down-Sets in Ip(L)

We characterize clopen sets and clopen down-sets in the dual space⟨Ip(L);⊆,T ⟩ of a bounded distributive lattice L.

Lemma

Let L be a bounded distributive lattice with dual space ⟨X ;⊆,T ⟩, where
X = Ip(L). Then:
(i) the clopen subsets of X are the finite unions of sets of the form

Xb ∩ (X /Xc), for b, c ∈ L;
(ii) the clopen down-sets of X are exactly the sets Xa, for a ∈ L.

(i) Suppose Y = ⋃n
i=1(Xbi ∩ (X /Xci )). Since, for all i , Xbi ∩ (X /Xci ) ∈ B,

we get that Y is open. On the other hand,
X /Y = X /⋃n

i=1(Xbi ∩ (X /Xci )) = ⋂n
i=1(X /(Xbi ∩ (X /Xci ))) =⋂n

i=1((X /Xbi ) ∪ Xci ). Since X /Xbi and Xci are open, we get that
X /Y is open, whence Y is also closed. Thus, it is clopen.

George Voutsadakis (LSSU) Lattices and Order April 2020 25 / 40



Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Clopen Sets and Down-Sets in Ip(L) (Cont’d)

Suppose, conversely, that Y is clopen. Since it is open it is a union of
sets in B, i.e., Y = ⋃i∈I (Xbi ∩ (X /Xci )). Thus, {Xbi ∩ (X /Xci ) ∶ i ∈ I}
is an open cover of Y . But Y is also closed and, hence, compact.
Thus, there exists a finite subcover {Xbi ∩ (X /Xci ) ∶ i = 1, . . . ,n} of
Y . Thus, Y = ⋃n

i=1(Xbi ∩ (X /Xci )).
(ii) Suppose, first, that J ∈ Xa and I ⊆ J. Then, by definition, a ∉ J. Since

I ⊆ J, a ∉ I . Hence, again by definition, I ∈ Xa. Thus, Xa is a
down-set.

Suppose conversely, that Y is a clopen down-set in X . Since it is
clopen, by Part (i), it is of the form Y = ⋃n

i=1(Xbi ∩ (X /Xci )). Since,
for all i , Xbi ∩ (X /Xci ) ⊆ Y and Y is a down-set, ci = 0. Hence
Y = ⋃n

i=1Xbi Therefore, Y = Xb1∨⋯∨bn .
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Priestley’s Representation for Distributive Lattices

Priestley’s Representation Theorem for Distributive Lattices

Let L be a bounded distributive lattice. Then the map

η ∶ a ↦ Xa ∶= {I ∈ Ip(L) ∶ a ∉ I}
is an isomorphism of L onto the lattice of clopen down-sets of the dual
space ⟨Ip(L);⊆,T ⟩ of L.

Combine a preceding representation theorem with the preceding
characterization of the clopen down-sets of X .
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Priestley Spaces and Order-Homeomorphisms

Ordered spaces X and Y are “essentially the same” if there exists a
map ϕ from X onto Y which is simultaneously an order-isomorphism
and a homeomorphism. We call such a map an
order-homeomorphism and say X and Y are order-homeomorphic.

Theorem

(i) Let Y be a Priestley space, let L be the lattice OT (Y ) of clopen down-sets
of Y and let X be the dual space of L. Then Y and X are
order-homeomorphic.

(ii) Let L be a bounded distributive lattice and Y a Priestley space such thatOT (Y ) ≅ L. Then the dual space of L is (order-homeomorphic to) Y .

The second part follows from the first. The proof of (i) is similar to
the proof given for the Boolean case: We define ε ∶ Y → X by
ε(y) ∶= {a ∈ L ∶ y ∉ a}. Certainly ε(y) is a prime ideal in L.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Priestley Spaces and Order-Homeomorphisms (Cont’d)

We set ε(y) ∶= {a ∈ L ∶ y ∉ a}. We must show that:

(a) ε is an order-embedding;
(b) ε is continuous;
(c) ε maps Y onto X .

Combined with A.7 this will establish (i).

(a) Note that y ≤ z in Y iff (∀a ∈ L)(z ∈ a ⇒ y ∈ a) iff ε(y) ⊆ ε(z).
(b) We use A.4: (b) holds so long as ε−1(Xa) and ε

−1(X /Xa) are open, for
each a ∈ L. But ε−1(X /Xa) = {y ∈ Y ∶ ε(y) ∉ Xa} = Y /ε−1(Xa). Thus
(b) holds provided ε

−1(Xa) is clopen in Y , for each a ∈ L. By the
definitions of Xa and ε, ε−1(Xa) = {y ∈ Y ∶ ε(y) ∈ Xa} ={y ∈ Y ∶ a ∉ ε(y)} = a, and this is clopen, by the definition of L.

(c) By Lemma A.7, ε(Y ) is a closed subset of X . Suppose by way of
contradiction that there exists x ∈ X /ε(Y ). Then there is a clopen
subset V of X , such that ε(Y ) ∩V = ∅ and x ∈ V . By the last lemma,
we may assume that V = Xb ∩ (X /Xc), for some b, c ∈ L. We have∅ = ε−1(V ) = b ∩ (Y /c). Thus b ⊆ c , contradicting x ∈ Xb ∩ (X /Xc).
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Example I

A variety of Priestley spaces can be obtained by equipping the
Boolean space N∞ with an order.

For a very simple example, order N∞ as the chain N

with ∞ adjoined as top element:

Take x ≱ y . Then y > x and ↓x , which is clopen
because it is finite and does not contain ∞, contains
x but not y . Hence we have a Priestley space.

Its lattice of clopen down-sets is isomorphic to the
chain N⊕ 1.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Example II

Consider the ordered space Y obtained by equipping N∞ with the
order depicted below:

We have n ⋗ n − 1 and n ⋗ n + 1, for each even n.

For each n ∈N, the down-set ↓n is finite and does not contain ∞ and
so is clopen.

Let x ≱ y in Y .

Claim: There exists U ∈ OT (Y ), such that x ∈ U and y ∉ U.
If x ≠ ∞, y ∉ ↓x . Thus, we may take U = ↓x .
If x = ∞, we may take U = Y /{1,2, . . . ,2y}.

Hence Y is a Priestley space.

The lattice OT (Y ), a sublattice of FC(N), is easily described.
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Subsection 3

Duality: Distributive Lattices and Priestley Spaces
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Duality

Denote the class of bounded distributive lattices by D, and the class
of Priestley spaces (compact totally order-disconnected spaces) by P.

Define maps D ∶ D→ P and E ∶ P→ D by

D ∶ L ↦ Ip(L) (L ∈D) and E ∶ X ↦ OT (X ) (X ∈ P).
Preceding theorems assert that, for all L ∈ D and X ∈ P,

ED(L) ≅ L and DE(X ) ≅ X ,

the latter ≅ means “is order-homeomorphic to”.

We may use the isomorphism between L and ED(L) to represent the
members of D concretely as lattices of the form OT (X ) for X ∈ P.
As an immediate application we note that the representation allows
us to construct a “smallest” Boolean algebra B containing (an
isomorphic copy of) a given lattice L ∈ D:

Identify L with OT (X) and take B = PT (X).
We already saw how OT (X) and PT (X) are related.
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Pseudocomplements

There are many ways to weaken the condition that every element of a
bounded lattice L have a complement.

One possibility is to define the pseudocomplement of an element a
in a lattice L with 0 to be

a∗ = max{b ∈ L ∶ b ∧ a = 0},
if this exists.

Now consider L = OT (X ), where X is a Priestley space.

Claim: U ∈ L has a pseudocomplement if and only if ↑U is clopen,
and, in that case, U∗ = X /↑U.

Observe that a down-set W in X does not intersect U if and only if
W ⊆ X /↑U. Hence X /↑U is the largest down-set disjoint from U. If it
is also clopen, it must be U∗.
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Pseudocomplements (Cont’d)

Conversely, assume U∗ exists. Take x ∉ ↑U. We show x ∈ U∗, from
which it follows that U∗ = X /↑U.

U is clopen. Since, for all Y closed ↑Y is closed, ↑U is closed. By the
dual of a preceding lemma, we can find a clopen up-set V , such that
x ∉ V and ↑U ⊆ V .

Then (X /V ) ∩U = ∅, so X /V ⊆ U∗, by definition of U∗. This implies
that x ∈ U∗.
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Duality for ideals

Let L = OT (X ), where X is a Priestley space whose family of open
down-sets we denote by L.
An ideal J of L is determined by its members, which are clopen
down-sets of X .

Define
Φ(J) =⋃{U ∶ ∣U ∈ J} (for J ∈ I(L)).

As a union of clopen sets, Φ(J) is an open set (but not in general
clopen).

In the other direction, define

Ψ(W ) = {U ∈ OT (X ) ∶ U ⊆W } (for W ∈ L).
It is easily checked that Ψ(W ) is an ideal of L.
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Duality for ideals (Cont’d)

Claim:

Φ(Ψ(W )) =W , for all W ∈ L;
Ψ(Φ(J)) = J, for all J ∈ I(L).

The first equation, W = ⋃{U ∈ OT (X ) ∶ U ⊆W }, asserts that an
open down-set W is the union of the clopen down-sets contained in it.

Let x ∈W . Use the dual of a preceding lemma to find a clopen up-set
V containing the closed up-set X /W but with x ∉ V .

Then X /V is a clopen down-set, and x ∈ X /V ⊆W .
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Duality for ideals (Cont’d)

Claim:
Φ(Ψ(W )) =W , for all W ∈ L;
Ψ(Φ(J)) = J, for all J ∈ I(L).

For the second equation, J = {U ∈ OT (X ) ∶ U ⊆ ⋃{W ∶W ∈ J}},
J ⊆ Ψ(Φ(J)).

Let V ∈ Ψ(Φ(J)). This means that J, regarded as a family of open
subsets of X , is an open cover of the clopen set V . Since V is closed,
it is compact. Thus, only finitely many elements of J are needed to
cover V , say U1, . . . ,Un. But V ⊆ U1 ∪⋯∪Un implies V ⊆ J, since J

is an ideal. This establishes the second equation.

The bijective correspondence we have set up between I(L) and L is
in fact a lattice isomorphism.

In addition, special types of ideal correspond to special types of open
set.

Similarly, for filters F(L) ≅ F , the lattice of open up-sets of X .
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Extending D and P to Encompass Morphisms

There exists what is known as a (full) duality between D (bounded
distributive lattices +{0,1}-homomorphisms) and P (Priestley spaces
+ continuous order-preserving maps).

Here, the symbols D and P encompass structure-preserving maps as
well as objects.

For L,K ∈D, we denote the set of {0,1}-homomorphisms from L to
K by D(L,K).

For X ,Y ∈ P, we denote the set of continuous order-preserving maps
from Y to X by P(Y ,X ).
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Duality

The way the duality is required to work is given by:
(O) There exist maps D ∶ D → P and E ∶ P→ D, such that:

(i) for each L ∈ D, there exists ηL ∶ L→ ED(L), such that ηL is an
isomorphism;

(ii) for each X ∈ P, there exists εX ∶ X → DE(X), such that εX is an
order-homeomorphism.

(M) For any L,K ∈ D, there exists, for each f ∈ D(L,K), a map
D(f ) ∈ P(D(K),D(L)). For each X ,Y ∈ P, there exists, for each
ϕ ∈ P(Y ,X), a map E(ϕ) ∈ D(E(X),E(Y )). The maps
D ∶ D(L,K)→ P(D(K),D(L)) and E ∶ P(Y ,X) → D(E(X),E(Y ))
are bijections and the diagrams below commute:

L
f

✲ K Y
ϕ

✲ X

ED(L)
ηL

❄

ED(f )✲ ED(K)
ηK
❄

DE(Y )
εY

❄

DE(ϕ)✲ DE(X)
εX
❄
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