Introduction to Lattices and Order

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

Representation: The General Case

- Stone's Representation Theorem for Boolean Algebras
- Priestley's Representation Theorem for Distributive Lattices
- Duality: Distributive Lattices and Priestley Spaces

Subsection 1

Stone's Representation Theorem for Boolean Algebras

The Prime Ideal Space of a Boolean Algebra

- We showed every finite Boolean algebra is isomorphic to some powerset algebra.
- Finiteness is essential, since we saw that the finite-cofinite algebra $FC(\mathbb{N})$ is not isomorphic to a powerset algebra.
- However, it is true that any Boolean algebra *B* is isomorphic to a subalgebra of a powerset algebra.
- We refine this result by describing precisely which subalgebra this is.
- Let B be a Boolean algebra. The map η : a ↦ X_a := {I ∈ I_p(B) : a ∉ I} is a Boolean algebra embedding of B into P(I_p(B)).
- We seek a characterization of the image im η of the embedding η in terms of additional structure on the set of prime ideals.
- A topology on a set X is a family of subsets of X containing X and Ø and closed under arbitrary unions and finite intersections.
- We assume familiarity with topological concepts (see preceding set).

The Prime Ideal Space

- The family of clopen subsets of a topological space (X; T) forms a Boolean algebra.
- This suggests that we might try to impose a topology *T* on *I_p(B)* so that imη is characterized as the family of clopen subsets of the topological space (*I_p(B*); *T*).
- Of course, $X_a := \{I \in \mathcal{I}_p(B) : a \notin I\}$ must be in \mathcal{T} , for each $a \in B$.
- The family B := {X_a : a ∈ B} is not a topology because it is not closed under the formation of arbitrary unions.
- We have to define \mathcal{T} on $\mathcal{I}_p(B)$ as follows:

 $\mathcal{T} \coloneqq \{ U \subseteq \mathcal{I}_p(B) : U \text{ is a union of members of } B \}.$

- The family B is a basis for \mathcal{T} (which is indeed a topology).
- The topological space (\$\mathcal{I}_p(B)\$;\$\mathcal{T}\$) is called the prime ideal space or dual space of \$B\$.
- Let X := I_p(B). Each element of B is clopen in X, because X \X_a = X_a' and so X \X_a is open.

George Voutsadakis (LSSU)

Lattices and Order

Compactness of Prime Ideal Space

• To prove that every clopen subset of $\langle X; \mathcal{T} \rangle$ is of the form X_a , we need further information about the prime ideal space.

Proposition

For *B* a Boolean algebra, the prime ideal space $\langle \mathcal{I}_p(B); \mathcal{T} \rangle$ is compact.

- Let \mathcal{U} be an open cover of $X := \mathcal{I}_p(B)$. We have to show that there exist finitely many members of \mathcal{U} whose union is X. Every open set is a union of sets X_a and we may therefore assume without loss of generality that $\mathcal{U} \subseteq \mathcal{B}$. Write $\mathcal{U} = \{X_a : a \in A\}$, where $A \subseteq B$. Let J be the smallest ideal containing A, that is $J = \{b \in B : b \le a_1 \lor \cdots \lor a_n, for some a_1, \ldots, a_n \in A\}$.
 - If J is not proper, then $1 \in J$. So $a_1 \vee \cdots \vee a_n = 1$, for some finite subset $\{a_1, \ldots, a_n\}$ of A. Then $X = X_1 = X_{a_1 \vee \cdots \vee a_n} = X_{a_1} \cup \cdots \cup X_{a_n}$ and $\{X_{a_1}, \ldots, X_{a_n}\}$ provides the required finite subcover of \mathcal{U} .
 - If J is proper we can use (BPI) to obtain a prime ideal I containing J.
 But then I belongs to X but to no member of U, a contradiction.

Clopen Subsets in the Prime Ideal Space

Proposition

Let $X := \mathcal{I}_p(B)$ and let $\langle X; \mathcal{T} \rangle$ be the prime ideal space of the Boolean algebra B. Then the clopen subsets of X are exactly the sets X_a for $a \in B$. Further, given distinct points $x, y \in X$, there exists a clopen subset V of X, such that $x \in V$ and $y \notin V$.

As noted above, each set X_a is clopen. Also, given distinct I₁ and I₂ in *I*_p(*B*), there exists, without loss of generality, a ∈ I₁\I₂. Then X_a contains I₂ but not I₁. This proves the final assertion.

It remains to prove that an arbitrary clopen subset U of X is of the form X_a , for some $a \in B$. Because U is open, $U = \bigcup_{a \in A} X_a$, for some subset A of B. But U is also a closed subset of X and so compact. Hence, there exists a finite subset A_1 of A, such that $U = \bigcup_{a \in A_1} X_a$. Then $U = X_a$, where $a = \bigvee A_1$.

Stone's Representation Theorem for Boolean Algebras

Stone's Representation Theorem for Boolean Algebras

Let B be a Boolean algebra. Then the map

$$\eta: a \mapsto X_a \coloneqq \{I \in \mathcal{I}_p(B) : a \notin I\}$$

is a Boolean algebra isomorphism of *B* onto the Boolean algebra of clopen subsets of the dual space $\langle \mathcal{I}_p(B); \mathcal{T} \rangle$ of *B*.

- To exploit this representation to the full we need to know more about topological spaces with the properties possessed by *I_p(B)*.
- The last part of the preceding proposition asserts that the prime ideal space of a Boolean algebra satisfies a separation condition guaranteeing that the space has "plenty" of clopen subsets.
- This result has some topological ramifications.

Totally Disconnected Spaces and Boolean Spaces

- A topological space (X; T) is totally disconnected if, given distinct points x, y ∈ X, there exists a clopen subset V of X, such that x ∈ V and y ∉ V.
- If (X; T) is both compact and totally disconnected, it is said to be a Boolean space.
- We have shown that (\$\mathcal{I}_p(B)\$;\$\mathcal{T}\$) is a Boolean space for every Boolean algebra \$B\$.
- We denote by $\mathcal{P}^{\mathcal{T}}(X)$ the family of clopen subsets of a Boolean space $\langle X; \mathcal{T} \rangle$.
- Given distinct points x, y in a totally disconnected space X, there exist disjoint clopen sets V and W := X \V, such that x ∈ V and y ∈ W.
- This implies that a totally disconnected space is Hausdorff (exploited in the following slides).

Clopen Sets Satisfying Special Properties

Lemma

- Let $\langle X; \mathcal{T} \rangle$ be a Boolean space.
 - (i) Let Y be a closed subset of X and x ∉ Y. Then there exists a clopen set V, such that Y ⊆ V and x ∉ V.
- (ii) Let Y and Z be disjoint closed subsets of X. Then there exists a clopen set U, such that $Y \subseteq U$ and $Z \cap U = \emptyset$.
- (i) Since X is totally disconnected, for each y ∈ Y, there exists a clopen set V_y, with y ∈ V_y and x ∉ V_y. The open sets {V_y : y ∈ Y} form an open cover of Y. Since Y is compact, there exist y₁,..., y_n ∈ Y, such that Y ⊆ V := V_{y1} ∪ … ∪ V_{yn}. As a finite union of clopen sets, V is clopen. By construction it does not contain x.

Clopen Sets Satisfying Special Properties (Cont'd)

(ii) Let Y and Z be disjoint closed subsets of X.

By Part (i), for all $z \in Z$, there exists a clopen set U_z , such that $Y \subseteq U_z$ and $z \notin U_z$. Let $V_z = X \setminus U_z$. The collection of clopen sets $\{V_z : z \in Z\}$ forms an open cover of Z. Since Z is compact, there exist $z_1, z_2, \ldots, z_n \in Z$, such that $Z \subseteq \bigcup_{i=1}^n V_{z_i}$. As a finite intersection of clopen sets, $U := \bigcap_{i=1}^n U_{z_i}$ is clopen. Moreover, we have $Y \subseteq U$ and:

$$Z \cap U = Z \cap \bigcap_{i=1}^{n} U_{z_{i}}$$

$$= Z \cap \bigcap_{i=1}^{n} (X \setminus V_{z_{i}})$$

$$= Z \cap (X \setminus \bigcup_{i=1}^{n} V_{z_{i}})$$

$$\stackrel{Z \subseteq \bigcup_{i=1}^{n} V_{z_{i}}}{=} \varnothing.$$

Obtaining Dual Spaces Indirectly

Theorem

- (i) Let Y be a Boolean space, let B be the algebra $\mathcal{P}^{\mathcal{T}}(Y)$ of clopen subsets of Y and let X be the dual space of B. Then Y and X are homeomorphic.
- (ii) Let C be a Boolean algebra and Y a Boolean space such that $C \cong \mathcal{P}^{\mathcal{T}}(Y)$. Then the dual space of C is (homeomorphic to) Y.
 - We define ε : Y → X by ε(y) := {a ∈ B : y ∉ a}. Certainly ε(y) is a prime ideal in B. We shall show that ε is a continuous bijection from Y onto X. It then follows by a topological result that ε is a homeomorphism.
 - Because Y is totally disconnected, if y ≠ z in Y then there exists a clopen subset a of Y, such that y ∈ a and z ∉ a. Hence ε is injective.
 - To establish continuity of ε it suffices to show that ε⁻¹(X_a) is clopen for each a ∈ B: By the definition of X_a and the definition of ε we have ε⁻¹(X_a) = {y ∈ Y : ε(y) ∈ X_a} = {y ∈ Y : a ∉ ε(y)} = a.

Obtaining Dual Spaces Indirectly (Cont'd)

• It remains to prove the surjectivity of ε :

We prove that ε is surjective. ε(Y) is a closed subset of X. Suppose by way of contradiction that there exists x ∈ X \ε(Y). Then there is a subset X_a of X, such that ε(Y) ∩ X_a = Ø and x ∈ X_a. We have

$$\emptyset \stackrel{\varepsilon(Y) \cap X_a = \emptyset}{=} \{ x : \varepsilon(x) \in X_a \} = \varepsilon^{-1}(X_a) = a.$$

But this contradicts $x \in X_a$.

This proves (i), and (ii) follows from it.

Example: The Finite-Cofinite Algebra $FC(\mathbb{N})$

Denote by N_∞ the set of natural numbers with an additional point,
 ∞, adjoined. We define T as follows: A subset U of N_∞ belongs to
 T if:

either (a)
$$\infty \notin U$$

or (b) $\infty \in U$ and $\mathbb{N}_{\infty} \setminus U$ is finite.

- ${\mathcal T}$ is a topology.
- A subset V of \mathbb{N}_{∞} is clopen if and only if both V and $\mathbb{N}_{\infty} \setminus V$ are open. It follows that the clopen subsets of \mathbb{N}_{∞} are the finite sets not containing ∞ and their complements.

Claim: \mathbb{N}_{∞} is totally disconnected.

Given distinct points $x, y \in \mathbb{N}_{\infty}$, we may assume without loss of generality that $x \neq \infty$. Then $\{x\}$ is clopen and contains x but not y.

The Finite-Cofinite Algebra $FC(\mathbb{N})$ (Cont'd)

Claim: \mathbb{N}_{∞} is compact.

Take an open cover U of \mathbb{N}_{∞} . Some member of U must contain ∞ ; say U is such a set. Then $\mathbb{N}_{\infty} \setminus U$ is finite, by (b). Hence only finitely many members of U are needed to cover $\mathbb{N}_{\infty} \setminus U$. These, together with U, provide the required finite subcover of U.

• The algebra B of clopen sets of the Boolean space \mathbb{N}_{∞} consists of the finite sets not containing ∞ and their complements. Define

$$f: FC(\mathbb{N}) \to B$$
 by $f(a) = \begin{cases} a, & \text{if } a \text{ is finite} \\ a \cup \{\infty\}, & \text{if } a \text{ is cofinite} \end{cases}$

This map is easily seen to be an isomorphism. Therefore, the dual space of $FC(\mathbb{N})$ can be identified with \mathbb{N}_{∞} .

We can now recognize the elements of I_p(B).
 The points of N are in one-to-one correspondence with the principal prime ideals of FC(N), via the map n → ↓(N\{n}). There is a single non-principal prime ideal, associated with ∞: it consists of all finite subsets of N.

George Voutsadakis (LSSU)

Subsection 2

Priestley's Representation Theorem for Distributive Lattices

Order and Topology: Boolean and Finite Distributive Case

- Let L be a distributive lattice and let X = I_p(L) be its set of prime ideals ordered by inclusion.
- We already have representations for L in two special cases:
 - When L is Boolean and X is topologized in the way described above, L is isomorphic to the algebra P^T(X) of clopen subsets of X.
 Every prime ideal of a Boolean algebra is maximal. So the order on X is discrete (that is, x ≤ y in X if and only if x = y). Thus the order has no active role in this case.
 - When L is finite, L is isomorphic to the lattice O(X) of down-sets of X.
 Suppose X has a topology T making it a Boolean space. Then T is the discrete topology, in which every subset is clopen. In this case the topology contributes nothing.

Encompassing all Bounded Distributive Lattices

- To represent L in general we should equip X with
 - the inclusion order and
 - a suitable Boolean space topology.
- A prime candidate for a lattice isomorphic to *L* would then be the lattice of all clopen down-sets of *X*.
- This lattice coincides with:
 - $\mathcal{O}(X)$ when L is finite,
 - $\mathcal{P}^{\mathcal{T}}(X)$ when L is Boolean and
 - $\mathcal{P}(X)$ when L is both finite and Boolean.
- We prove that a bounded distributive lattice L is indeed isomorphic to the lattice of clopen down-sets of $\mathcal{I}_{p}(L)$, ordered by inclusion and appropriately topologized, and thereby obtain a natural common generalization of Birkhoff's and Stone's theorems.
 - The boundedness restriction is necessary because the lattice of clopen down-sets is bounded.
 - Extensions of the theorem to lattices lacking bounds do exist, but are not discussed here.

George Voutsadakis (LSSU)

The Prime Ideal Space of a Bounded Distributive Lattice

- Let L be a distributive lattice with 0 and 1 and, for each a ∈ L, let X_a := {I ∈ I_p(L) : a ∉ I}.
- Let $X \coloneqq \mathcal{I}_p(L)$.
- We want a topology T on X so that each X_a is clopen. Accordingly, we want all elements in S := {X_b : b ∈ L} ∪ {X \X_c : c ∈ L} to be in T.
- Compared with the Boolean case, there is a double complication:
 - The family ${\mathcal S}$ contains sets of two types;
 - It is also not closed under finite intersections.

We let

$$\mathcal{B} \coloneqq \{X_b \cap (X \setminus X_c) : b, c \in L\}.$$

- Since L has 0 and 1, the set \mathcal{B} contains \mathcal{S} .
- Also $\mathcal B$ is closed under finite intersections.
- Finally, we define \mathcal{T} by $U \in \mathcal{T}$ if U is a union of members of \mathcal{B} .
- Then \mathcal{T} is the smallest topology containing \mathcal{S} , i.e., \mathcal{S} is a subbasis for \mathcal{T} and \mathcal{B} a basis.

Compactness of Prime Ideal Space

Theorem

Let L be a bounded distributive lattice. Then the prime ideal space $\langle \mathcal{I}_p(L); \mathcal{T} \rangle$ is compact.

• By Alexander's Subbasis Lemma, it is sufficient to prove that any open cover \mathcal{U} of $X = \mathcal{I}_p(L)$ by sets in the subbasis S has a finite subcover. Let

$$\mathcal{U} = \{X_b : b \in A_0\} \cup \{X \setminus X_c : c \in A_1\}.$$

Let J be the ideal generated by A_0 (this is $\{0\}$ if A_0 is empty) and let G be the filter generated by A_1 (this is $\{1\}$ if A_1 is empty).

Assume first that J ∩ G = Ø. Invoke (DPI) to find a prime ideal I, such that J ⊆ I and G ∩ I = Ø. Then, for all b ∈ A₀, b ∈ J ⊆ I, whence I ∉ X_b. Moreover, for all c ∈ A₁, c ∈ G, whence, since G ∩ I = Ø, I ∉ X \X_c. This means that U does not cover X, a contradiction.

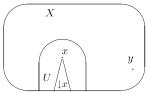
Compactness of Prime Ideal Space (Cont'd)

• Hence $J \cap G \neq \emptyset$. Take $a \in J \cap G$.

- If A_0 and A_1 are both non-empty, there exist $b_1, \ldots, b_j \in A_0$ and $c_1, \ldots, c_k \in A_1$, such that $c_1 \wedge \cdots \wedge c_k \leq a \leq b_1 \vee \cdots \vee b_j$, whence $X = X_1 = X_{b_1} \cup \cdots \cup X_{b_j} \cup (X \setminus X_{c_1}) \cup \cdots \cup (X \setminus X_{c_k})$. In this case, therefore, \mathcal{U} has a finite subcover.
- Suppose, now, that $A_1 = \emptyset$. Then $G = \{1\}$. Hence, since $J \cap G \neq \emptyset$, $1 \in J$ and J is improper. Thus, there exist $b_1, \ldots, b_j \in A_0$, such that $1 = b_1 \lor \cdots \lor b_j$. Hence, $X = X_1 = X_{b_1 \lor \cdots \lor b_j} = X_{b_1} \cup \cdots \cup X_{b_j}$. So \mathcal{U} has a finite subcover.
- Suppose, finally, that A₀ = Ø. Then J = {0}. Hence, since J ∩ G ≠ Ø, 0 ∈ G and G is improper. Thus, there exist c₁,..., c_k ∈ A₁, such that 0 = c₁ ∧ ··· ∧ c_k. Hence, X = X \ X₀ = X \ X_{c1} ∧····∧c_k = X \ (X_{c1} ∩ ··· ∩ X_{ck}) = (X \ X_{c1}) ∪··· ∪ (X \ X_{ck}). So U has a finite subcover.

Totally Order-Disconnected Spaces

- A set X carrying an order relation ≤ and a topology T is called an ordered (topological) space and denoted (X; ≤, T) (or by X when no ambiguity would result).
- It is said to be totally order-disconnected if, given x, y ∈ X, with x ≱ y, there exists a clopen down-set U, such that x ∈ U and y ∉ U.



- A compact totally order-disconnected space is called a Priestley space, also known as an ordered Stone space or a CTOD space.
- We shall denote by O^T(X) the family of clopen down-sets of a Priestley space X:
 - When the order on X is discrete, $\mathcal{O}^{\mathcal{T}}(X)$ coincides with $\mathcal{P}^{\mathcal{T}}(X)$;
 - When X is finite, $\mathcal{O}^{\mathcal{T}}(X)$ coincides with $\mathcal{O}(X)$.

Existence of Certain Clopen Down-Sets

 In many ways Priestley spaces behave like a cross between Boolean spaces and ordered sets.

Lemma

- Let $\langle X; \leq, \mathcal{T} \rangle$ be a Priestley space.
 - (i) $x \le y$ in X if and only if $y \in U$ implies $x \in U$, for every $U \in \mathcal{O}^{\mathcal{T}}(X)$.
 - (i) (a) Let Y be a closed down-set in X and let $x \notin Y$. Then there exists a clopen down-set U such that $Y \subseteq U$ and $x \notin U$.
 - (i) Let Y and Z be disjoint closed subsets of X such that Y is a down-set and Z is an up-set. Then there exists a clopen down-set U such that Y ⊆ U and Z ∩ U = Ø.
- (a) Suppose x ≤ y and U ∈ O^T(X), such that y ∈ U. Since U is a down-set, x ∈ U.
 Suppose, conversely, that x ≤ y. Since X is a Priestley space, there exists U ∈ O^T(X), such that y ∈ U and x ∉ U.

Existence of Certain Clopen Down-Sets (Part (ii))

- (a) Let Y be a closed down-set in X and let x ∉ Y. Since Y is a down-set and x ∉ Y, for all y ∈ Y, x ≰ y. Since X is a Priestley space, there exists a clopen down-set U_y, such that y ∈ U_y and x ∉ U_y. The collection {U_y : y ∈ Y} covers Y. Since Y is closed, it is compact. Thus, there exists a finite subcover {U_{y1},...,U_{yn}}. Set U = ∪_{i=1}ⁿ U_{yi}. Since, for all y ∈ Y, U_y is a clopen downset, the same holds for U. Moreover, Y ⊆ U and x ∉ U, since x ∉ U_y, for all y ∈ Y.
- (b) By Part (a), for all z ∈ Z, there exists a clopen down-set U_z, such that Y ⊆ U_z and z ∉ U_z. Then {X \ U_z : z ∈ Z} is a cover of the compact set Z. Thus, there exists a finite subcover {X \ U_{z1},..., X \ U_{zn}}. Set U = ∩ⁿ_{i=1} U_{zi}. Since each U_z is a clopen down-set, so is U. Moreover, since Y ⊆ U_z, for all z ∈ Z, Y ⊆ U. Finally, since Z ⊆ ∪ⁿ_{i=1}(X \ U_{zi}) = X \ ∩ⁿ_{i=1} U_{zi}, we get Z ∩ U = Ø.

Clopen Sets and Down-Sets in $\mathcal{I}p(L)$

• We characterize clopen sets and clopen down-sets in the dual space $\langle \mathcal{I}_{p}(L); \subseteq, \mathcal{T} \rangle$ of a bounded distributive lattice *L*.

Lemma

Let *L* be a bounded distributive lattice with dual space $(X; \subseteq, \mathcal{T})$, where $X = \mathcal{I}_p(L)$. Then:

- (i) the clopen subsets of X are the finite unions of sets of the form $X_b \cap (X \setminus X_c)$, for $b, c \in L$;
- (ii) the clopen down-sets of X are exactly the sets X_a , for $a \in L$.
- (i) Suppose Y = ∪_{i=1}ⁿ(X_{bi} ∩ (X\X_{ci})). Since, for all i, X_{bi} ∩ (X\X_{ci}) ∈ B, we get that Y is open. On the other hand,
 X\Y = X\∪_{i=1}ⁿ(X_{bi} ∩ (X\X_{ci})) = ∩_{i=1}ⁿ(X\(X_{bi} ∩ (X\X_{ci}))) = ∩_{i=1}ⁿ((X\X_{bi}) ∪ X_{ci}). Since X\X_{bi} and X_{ci} are open, we get that X\Y is open, whence Y is also closed. Thus, it is clopen.

Clopen Sets and Down-Sets in $\mathcal{I}p(L)$ (Cont'd)

Suppose, conversely, that Y is clopen. Since it is open it is a union of sets in \mathcal{B} , i.e., $Y = \bigcup_{i \in I} (X_{b_i} \cap (X \setminus X_{c_i}))$. Thus, $\{X_{b_i} \cap (X \setminus X_{c_i}) : i \in I\}$ is an open cover of Y. But Y is also closed and, hence, compact. Thus, there exists a finite subcover $\{X_{b_i} \cap (X \setminus X_{c_i}) : i = 1, ..., n\}$ of Y. Thus, $Y = \bigcup_{i=1}^n (X_{b_i} \cap (X \setminus X_{c_i}))$.

(ii) Suppose, first, that J ∈ X_a and I ⊆ J. Then, by definition, a ∉ J. Since I ⊆ J, a ∉ I. Hence, again by definition, I ∈ X_a. Thus, X_a is a down-set.

Suppose conversely, that Y is a clopen down-set in X. Since it is clopen, by Part (i), it is of the form $Y = \bigcup_{i=1}^{n} (X_{b_i} \cap (X \setminus X_{c_i}))$. Since, for all $i, X_{b_i} \cap (X \setminus X_{c_i}) \subseteq Y$ and Y is a down-set, $c_i = 0$. Hence $Y = \bigcup_{i=1}^{n} X_{b_i}$ Therefore, $Y = X_{b_1 \vee \cdots \vee b_n}$.

Priestley's Representation for Distributive Lattices

Priestley's Representation Theorem for Distributive Lattices

Let L be a bounded distributive lattice. Then the map

$$\eta: a \mapsto X_a \coloneqq \{I \in \mathcal{I}_p(L) : a \notin I\}$$

is an isomorphism of *L* onto the lattice of clopen down-sets of the dual space $\langle \mathcal{I}_p(L); \subseteq, \mathcal{T} \rangle$ of *L*.

• Combine a preceding representation theorem with the preceding characterization of the clopen down-sets of *X*.

Priestley Spaces and Order-Homeomorphisms

Ordered spaces X and Y are "essentially the same" if there exists a map φ from X onto Y which is simultaneously an order-isomorphism and a homeomorphism. We call such a map an order-homeomorphism and say X and Y are order-homeomorphic.

Theorem

- (i) Let Y be a Priestley space, let L be the lattice O^T(Y) of clopen down-sets of Y and let X be the dual space of L. Then Y and X are order-homeomorphic.
- (ii) Let *L* be a bounded distributive lattice and *Y* a Priestley space such that $\mathcal{O}^{\mathcal{T}}(Y) \cong L$. Then the dual space of *L* is (order-homeomorphic to) *Y*.
 - The second part follows from the first. The proof of (i) is similar to the proof given for the Boolean case: We define ε : Y → X by ε(y) := {a ∈ L : y ∉ a}. Certainly ε(y) is a prime ideal in L.

Priestley Spaces and Order-Homeomorphisms (Cont'd)

• We set $\varepsilon(y) := \{a \in L : y \notin a\}$. We must show that:

- (a) ε is an order-embedding;
- (b) ε is continuous;
- (c) ε maps Y onto X.

Combined with A.7 this will establish (i).

- (a) Note that $y \leq z$ in Y iff $(\forall a \in L)(z \in a \Rightarrow y \in a)$ iff $\varepsilon(y) \subseteq \varepsilon(z)$.
- (b) We use A.4: (b) holds so long as ε⁻¹(X_a) and ε⁻¹(X \X_a) are open, for each a ∈ L. But ε⁻¹(X \X_a) = {y ∈ Y : ε(y) ∉ X_a} = Y \ε⁻¹(X_a). Thus (b) holds provided ε⁻¹(X_a) is clopen in Y, for each a ∈ L. By the definitions of X_a and ε, ε⁻¹(X_a) = {y ∈ Y : ε(y) ∈ X_a} = {y ∈ Y : a ∉ ε(y)} = a, and this is clopen, by the definition of L.
 (c) By Lemma A.7, ε(Y) is a closed subset of X. Suppose by way of contradiction that there exists x ∈ X \ε(Y). Then there is a clopen subset V of X, such that ε(Y) ∩ V = Ø and x ∈ V. By the last lemma, we may assume that V = X_b ∩ (X \X_c), for some b, c ∈ L. We have Ø = ε⁻¹(V) = b ∩ (Y \c). Thus b ⊆ c, contradicting x ∈ X_b ∩ (X \X_c).

Example I

• A variety of Priestley spaces can be obtained by equipping the Boolean space \mathbb{N}_∞ with an order.

For a very simple example, order \mathbb{N}_∞ as the chain \mathbb{N} with ∞ adjoined as top element:

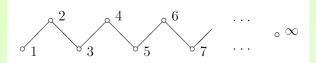
Take $x \nleq y$. Then y > x and $\downarrow x$, which is clopen because it is finite and does not contain ∞ , contains x but not y. Hence we have a Priestley space.

Its lattice of clopen down-sets is isomorphic to the chain ${\rm I\!N}\oplus 1.$

 $\begin{array}{c} & \infty \\ \vdots \\ & 3 \\ & 2 \\ & 1 \end{array}$

Example II

• Consider the ordered space Y obtained by equipping \mathbb{N}_∞ with the order depicted below:



We have $n \ge n-1$ and $n \ge n+1$, for each even n.

For each $n \in \mathbb{N}$, the down-set $\downarrow n$ is finite and does not contain ∞ and so is clopen.

Let $x \not\ge y$ in Y.

Claim: There exists $U \in \mathcal{O}^{\mathcal{T}}(Y)$, such that $x \in U$ and $y \notin U$.

• If $x \neq \infty$, $y \notin \downarrow x$. Thus, we may take $U = \downarrow x$.

• If $x = \infty$, we may take $U = Y \setminus \{1, 2, \dots, 2y\}$.

Hence Y is a Priestley space.

The lattice $\mathcal{O}^{\mathcal{T}}(Y)$, a sublattice of FC(\mathbb{N}), is easily described.

Subsection 3

Duality: Distributive Lattices and Priestley Spaces

Duality

- Denote the class of bounded distributive lattices by D, and the class of Priestley spaces (compact totally order-disconnected spaces) by P.
- Define maps $D : \mathbf{D} \to \mathbf{P}$ and $E : \mathbf{P} \to \mathbf{D}$ by

$$D: L \mapsto \mathcal{I}_p(L) \quad (L \in \mathbf{D}) \quad \text{and} \quad E: X \mapsto \mathcal{O}^T(X) \quad (X \in \mathbf{P}).$$

• Preceding theorems assert that, for all $L \in \mathbf{D}$ and $X \in \mathbf{P}$,

 $ED(L) \cong L$ and $DE(X) \cong X$,

the latter \cong means "is order-homeomorphic to".

- We may use the isomorphism between L and ED(L) to represent the members of D concretely as lattices of the form O^T(X) for X ∈ P.
- As an immediate application we note that the representation allows us to construct a "smallest" Boolean algebra B containing (an isomorphic copy of) a given lattice L ∈ D:
 - Identify *L* with $\mathcal{O}^{\mathcal{T}}(X)$ and take $B = \mathcal{P}^{\mathcal{T}}(X)$.
 - We already saw how $\mathcal{O}^{\mathcal{T}}(X)$ and $\mathcal{P}^{\mathcal{T}}(X)$ are related.

Pseudocomplements

- There are many ways to weaken the condition that every element of a bounded lattice *L* have a complement.
- One possibility is to define the **pseudocomplement** of an element *a* in a lattice *L* with 0 to be

$$a^* = \max\{b \in L : b \land a = 0\},\$$

if this exists.

• Now consider $L = \mathcal{O}^{\mathcal{T}}(X)$, where X is a Priestley space.

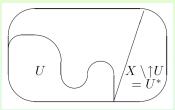
Claim: $U \in L$ has a pseudocomplement if and only if $\uparrow U$ is clopen, and, in that case, $U^* = X \setminus \uparrow U$.

Observe that a down-set W in X does not intersect U if and only if $W \subseteq X \setminus U$. Hence $X \setminus U$ is the largest down-set disjoint from U. If it is also clopen, it must be U^* .

Pseudocomplements (Cont'd)

Conversely, assume U^{*} exists. Take x ∉ ↑U. We show x ∈ U^{*}, from which it follows that U^{*} = X \↑U.

U is clopen. Since, for all *Y* closed $\uparrow Y$ is closed, $\uparrow U$ is closed. By the dual of a preceding lemma, we can find a clopen up-set *V*, such that $x \notin V$ and $\uparrow U \subseteq V$.



Then $(X \setminus V) \cap U = \emptyset$, so $X \setminus V \subseteq U^*$, by definition of U^* . This implies that $x \in U^*$.

Duality for ideals

- Let L = O^T(X), where X is a Priestley space whose family of open down-sets we denote by L.
- An ideal J of L is determined by its members, which are clopen down-sets of X.

Define

$$\Phi(J) = \bigcup \{ U : | U \in J \} \quad (\text{for } J \in \mathcal{I}(L)).$$

As a union of clopen sets, $\Phi(J)$ is an open set (but not in general clopen).

• In the other direction, define

$$\Psi(W) = \{ U \in \mathcal{O}^{\mathcal{T}}(X) : U \subseteq W \} \quad (\text{for } W \in \mathcal{L}).$$

It is easily checked that $\Psi(W)$ is an ideal of L.

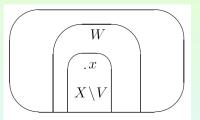
Duality for ideals (Cont'd)

Claim:

- $\Phi(\Psi(W)) = W$, for all $W \in \mathcal{L}$;
- $\Psi(\Phi(J)) = J$, for all $J \in \mathcal{I}(L)$.

The first equation, $W = \bigcup \{ U \in \mathcal{O}^T(X) : U \subseteq W \}$, asserts that an open down-set W is the union of the clopen down-sets contained in it. Let $x \in W$. Use the dual of a preceding lemma to find a clopen up-set

V containing the closed up-set $X \setminus W$ but with $x \notin V$.



Then $X \setminus V$ is a clopen down-set, and $x \in X \setminus V \subseteq W$.

Duality for ideals (Cont'd)

Claim:

- $\Phi(\Psi(W)) = W$, for all $W \in \mathcal{L}$;
- $\Psi(\Phi(J)) = J$, for all $J \in \mathcal{I}(L)$.

For the second equation, $J = \{U \in \mathcal{O}^{\mathcal{T}}(X) : U \subseteq \bigcup \{W : W \in J\}\},\ J \subseteq \Psi(\Phi(J)).$

Let $V \in \Psi(\Phi(J))$. This means that J, regarded as a family of open subsets of X, is an open cover of the clopen set V. Since V is closed, it is compact. Thus, only finitely many elements of J are needed to cover V, say U_1, \ldots, U_n . But $V \subseteq U_1 \cup \cdots \cup U_n$ implies $V \subseteq J$, since Jis an ideal. This establishes the second equation.

• The bijective correspondence we have set up between $\mathcal{I}(L)$ and \mathcal{L} is in fact a lattice isomorphism.

In addition, special types of ideal correspond to special types of open set.

• Similarly, for filters $\mathcal{F}(L) \cong \mathcal{F}$, the lattice of open up-sets of X.

Extending **D** and **P** to Encompass Morphisms

- There exists what is known as a (full) duality between D (bounded distributive lattices +{0,1}-homomorphisms) and P (Priestley spaces + continuous order-preserving maps).
- Here, the symbols **D** and **P** encompass structure-preserving maps as well as objects.
- For L, K ∈ D, we denote the set of {0,1}-homomorphisms from L to K by D(L, K).
- For X, Y ∈ P, we denote the set of continuous order-preserving maps from Y to X by P(Y, X).

Duality

- The way the duality is required to work is given by:
 -) There exist maps $D : \mathbf{D} \to \mathbf{P}$ and $E : \mathbf{P} \to \mathbf{D}$, such that:
 - (i) for each $L \in \mathbf{D}$, there exists $\eta_L : L \to ED(L)$, such that η_L is an isomorphism;
 - (ii) for each $X \in \mathbf{P}$, there exists $\varepsilon_X : X \to DE(X)$, such that ε_X is an order-homeomorphism.

(M) For any L, K ∈ D, there exists, for each f ∈ D(L, K), a map D(f) ∈ P(D(K), D(L)). For each X, Y ∈ P, there exists, for each φ ∈ P(Y, X), a map E(φ) ∈ D(E(X), E(Y)). The maps D: D(L, K) → P(D(K), D(L)) and E: P(Y, X) → D(E(X), E(Y)) are bijections and the diagrams below commute:

