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@ Representation: The General Case
o Stone's Representation Theorem for Boolean Algebras
o Priestley’s Representation Theorem for Distributive Lattices
o Duality: Distributive Lattices and Priestley Spaces
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Representation: The General Case Stone's Representation Theorem for Boolean Algebras

Subsection 1

Stone's Representation Theorem for Boolean Algebras
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

The Prime ldeal Space of a Boolean Algebra

@ We showed every finite Boolean algebra is isomorphic to some
powerset algebra.

o Finiteness is essential, since we saw that the finite-cofinite algebra
FC(IN) is not isomorphic to a powerset algebra.

@ However, it is true that any Boolean algebra B is isomorphic to a
subalgebra of a powerset algebra.

o We refine this result by describing precisely which subalgebra this is.

o Let B be a Boolean algebra. The map n:a— X,:={le€Z,(B):a¢l}
is a Boolean algebra embedding of B into P(Z,(B)).

o We seek a characterization of the image imn of the embedding 7 in
terms of additional structure on the set of prime ideals.

o A topology on a set X is a family of subsets of X containing X and
@ and closed under arbitrary unions and finite intersections.

@ We assume familiarity with topological concepts (see preceding set).
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

The Prime Ideal Space

o The family of clopen subsets of a topological space (X;T) forms a
Boolean algebra.

o This suggests that we might try to impose a topology 7 on Z,(B) so
that im7 is characterized as the family of clopen subsets of the
topological space (Z,(B); T).

o Of course, X, :={l €Z,(B):a¢l} must bein T, for each ac B.

o The family B :={X,:a¢€ B} is not a topology because it is not closed
under the formation of arbitrary unions.

o We have to define 7 on Z,(B) as follows:

T :={UcZ,(B):Uis a union of members of B}.

o The family B is a basis for 7 (which is indeed a topology).

o The topological space (Z,(B);T) is called the prime ideal space or
dual space of B.

o Let X :=Z,(B). Each element of B is clopen in X, because
X\X; = Xy and so X\Xj is open.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Compactness of Prime ldeal Space

o To prove that every clopen subset of (X;T) is of the form X,, we
need further information about the prime ideal space.

For B a Boolean algebra, the prime ideal space (Z,(B);7T) is compact.

o Let U be an open cover of X :=Z,(B). We have to show that there
exist finitely many members of &/ whose union is X. Every open set is
a union of sets X; and we may therefore assume without loss of
generality that U ¢ B. Write U = {X,: a€ A}, where Ac B. Let J be
the smallest ideal containing A, thatis J={beB:b<ajV-Vap,,
for some ay,...,a, € A}.

o If Jis not proper, then 1€ J. So a; v---Vv a, = 1, for some finite subset
{a1,...,an} of A. Then X =Xi = X;,y...va, = X5, U--UX;, and
{Xa,...,Xs,} provides the required finite subcover of U.

o If J is proper we can use (BPI) to obtain a prime ideal / containing J.
But then / belongs to X but to no member of U, a contradiction.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Clopen Subsets in the Prime Ideal Space

Proposition

Let X :=Z,(B) and let (X;7) be the prime ideal space of the Boolean
algebra B. Then the clopen subsets of X are exactly the sets X, for a € B.
Further, given distinct points x, y € X, there exists a clopen subset V' of
X, such that xe V and y ¢ V.

@ As noted above, each set Xj is clopen. Also, given distinct /; and b,

in Z,(B), there exists, without loss of generality, a € l;\l. Then X,
contains /» but not /1. This proves the final assertion.
It remains to prove that an arbitrary clopen subset U of X is of the
form X,, for some a € B. Because U is open, U =zea X;, for some
subset A of B. But U is also a closed subset of X and so compact.
Hence, there exists a finite subset A; of A, such that U = U,ea, Xa-
Then U = X;, where a=\V A;.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Stone's Representation Theorem for Boolean Algebras

Stone's Representation Theorem for Boolean Algebras

Let B be a Boolean algebra. Then the map
n:arm X;:={leI,(B):a¢l}

is a Boolean algebra isomorphism of B onto the Boolean algebra of clopen
subsets of the dual space (Z,(B);T) of B.

@ To exploit this representation to the full we need to know more about
topological spaces with the properties possessed by Z,(B).

o The last part of the preceding proposition asserts that the prime ideal
space of a Boolean algebra satisfies a separation condition
guaranteeing that the space has “plenty” of clopen subsets.

o This result has some topological ramifications.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Totally Disconnected Spaces and Boolean Spaces

o A topological space (X;T) is totally disconnected if, given distinct
points x, y € X, there exists a clopen subset V of X, such that x e V
and y ¢ V.

o If (X;T) is both compact and totally disconnected, it is said to be a
Boolean space.

o We have shown that (Z,(B);7T') is a Boolean space for every Boolean
algebra B.

o We denote by P7(X) the family of clopen subsets of a Boolean space
(X;T).

o Given distinct points x, y in a totally disconnected space X, there

exist disjoint clopen sets V' and W := X\V/, such that x ¢ V and
yeW.

o This implies that a totally disconnected space is Hausdorff (exploited
in the following slides).
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Clopen Sets Satisfying Special Properties

Lemma

Let (X;T) be a Boolean space.

(1) Let Y be a closed subset of X and x ¢ Y. Then there exists a clopen
set V, such that Y€V and x¢ V.

(1) Let Y and Z be disjoint closed subsets of X. Then there exists a
clopen set U, such that Yc U and Zn U =g.

(1) Since X is totally disconnected, for each y € Y, there exists a clopen
set V), with y € V), and x ¢ V.. The open sets {V,, : y € Y} form an
open cover of Y. Since Y is compact, there exist y1,...,yn € Y, such
that Y c V=V, u--uV, . As a finite union of clopen sets, V is
clopen. By construction it does not contain x.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Clopen Sets Satisfying Special Properties (Cont'd)

(1) Let Y and Z be disjoint closed subsets of X.

By Part (i), for all z € Z, there exists a clopen set U,, such that

Y cU, and z ¢ U,. Let V, = X\U,. The collection of clopen sets
{V,:z e Z} forms an open cover of Z. Since Z is compact, there
exist z1,22,...,2, € Z, such that Z c U ; V. As a finite intersection
of clopen sets, U := 7, U, is clopen. Moreover, we have Y ¢ U and:

ZnU = ZnN, Uy

= ZnNL(X\Vz)
- Za(X\U", V2)

George Voutsadakis (LSSU) Lattices and Order April 2020 11/40



Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Obtaining Dual Spaces Indirectly

(1) Let Y be a Boolean space, let B be the algebra P7 (Y) of clopen
subsets of Y and let X be the dual space of B. Then Y and X are
homeomorphic.

(1) Let C be a Boolean algebra and Y a Boolean space such that
C =PT(Y). Then the dual space of C is (homeomorphic to) Y.

o We definec: Y - X by e(y):={aeB:y¢a}. Certainly e(y) is a
prime ideal in B. We shall show that ¢ is a continuous bijection from
Y onto X. It then follows by a topological result that ¢ is a
homeomorphism.

o Because Y is totally disconnected, if y # z in Y then there exists a
clopen subset a of Y, such that y € a and z ¢ a. Hence ¢ is injective.

o To establish continuity of ¢ it suffices to show that e71(X,) is clopen
for each a € B: By the definition of X, and the definition of £ we have
(X)) ={yeY:e(y)eXs}={yeY:ate(y)}=a.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Obtaining Dual Spaces Indirectly (Cont'd)

o It remains to prove the surjectivity of &:

o We prove that ¢ is surjective. e(Y) is a closed subset of X. Suppose
by way of contradiction that there exists x € X\e(Y'). Then there is a
subset X, of X, such that e(Y) n X, =@ and x € X,. We have

e(Y)nX; =

T xie(x) e Xy =7 H(Xa) = a.

But this contradicts x € X;.

This proves (i), and (ii) follows from it.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

Example: The Finite-Cofinite Algebra FC(IN)

@ Denote by IN,, the set of natural numbers with an additional point,
oo, adjoined. We define T as follows: A subset U of IN., belongs to
T if:

either (a) oo ¢ U
or (b) ocoe U and Ny \U is finite.

o 7T is a topology.

o A subset V of N is clopen if and only if both V' and N\ V are
open. It follows that the clopen subsets of IN,, are the finite sets not
containing oo and their complements.

Claim: INo, is totally disconnected.

Given distinct points x,y € IN,, we may assume without loss of
generality that x # co. Then {x} is clopen and contains x but not y.
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Representation: The General Case Stone’s Representation Theorem for Boolean Algebras

The Finite-Cofinite Algebra FC(IN) (Cont'd)

Claim: INo is compact.
Take an open cover U of IN,,. Some member of U must contain oo;
say U is such a set. Then N \U is finite, by (b). Hence only finitely
many members of U are needed to cover N, \U. These, together
with U, provide the required finite subcover of U.

o The algebra B of clopen sets of the Boolean space IN,, consists of the
finite sets not containing co and their complements. Define

a, if ais finite

f:FC(N) ~ B by f(a) = { au{oo}, if ais cofinite
This map is easily seen to be an isomorphism. Therefore, the dual
space of FC(IN) can be identified with IN.

o We can now recognize the elements of Z,(B).
The points of IN are in one-to-one correspondence with the principal
prime ideals of FC(IN), via the map n+~ |(IN\{n}). There is a single
non-principal prime ideal, associated with oo: it consists of all finite

subsets of IN.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Subsection 2

Priestley’'s Representation Theorem for Distributive Lattices
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Order and Topology: Boolean and Finite Distributive Case

o Let L be a distributive lattice and let X = Z,(L) be its set of prime
ideals ordered by inclusion.
o We already have representations for L in two special cases:

o When L is Boolean and X is topologized in the way described above, L
is isomorphic to the algebra P7 (X) of clopen subsets of X.

Every prime ideal of a Boolean algebra is maximal. So the order on X
is discrete (that is, x <y in X if and only if x = y). Thus the order has
no active role in this case.

o When L is finite, L is isomorphic to the lattice O(X) of down-sets of X.
Suppose X has a topology 7 making it a Boolean space. Then T is
the discrete topology, in which every subset is clopen. In this case the
topology contributes nothing.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Encompassing all Bounded Distributive Lattices

o To represent L in general we should equip X with
o the inclusion order and
o a suitable Boolean space topology.

o A prime candidate for a lattice isomorphic to L would then be the
lattice of all clopen down-sets of X.

o This lattice coincides with:

o O(X) when L is finite,
o PT(X) when L is Boolean and
o P(X) when L is both finite and Boolean.

@ We prove that a bounded distributive lattice L is indeed isomorphic to
the lattice of clopen down-sets of Z,(L), ordered by inclusion and
appropriately topologized, and thereby obtain a natural common
generalization of Birkhoff's and Stone's theorems.

o The boundedness restriction is necessary because the lattice of clopen
down-sets is bounded.

o Extensions of the theorem to lattices lacking bounds do exist, but are
not discussed here.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

The Prime ldeal Space of a Bounded Distributive Lattice

o Let L be a distributive lattice with 0 and 1 and, for each a€ L, let
Xa={leZp(L):a¢l}.
o Let X :=T,(L).
@ We want a topology 7 on X so that each Xj is clopen. Accordingly,
we want all elements in S:={Xp:be L} u{X\Xc:celL} tobeinT.
o Compared with the Boolean case, there is a double complication:
o The family S contains sets of two types;
o It is also not closed under finite intersections.
o We let
B:={Xpn (X\Xc):b,celL}.
o Since L has 0 and 1, the set B contains S.
o Also B is closed under finite intersections.
o Finally, we define 7 by U e T if U is a union of members of B.

@ Then T is the smallest topology containing S, i.e., § is a subbasis for
T and B a basis.
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Representation: The General Case

Priestley’s Representation Theorem for Distributive Lattices

Compactness of Prime ldeal Space

Theorem

Let L be a bounded distributive lattice. Then the prime ideal space
(Zp(L); T) is compact.

@ By Alexander's Subbasis Lemma, it is sufficient to prove that any

open cover U of X =Z,(L) by sets in the subbasis S has a finite
subcover. Let

U={Xp:beAg}U{X\Xc:ceAr).

Let J be the ideal generated by Ag (this is {0} if Ag is empty) and
let G be the filter generated by A; (this is {1} if A; is empty).

o Assume first that Jn G = @. Invoke (DPI) to find a prime ideal /, such
that Jc/ and Gn/=g. Then, forall be Ay, be Jc I, whence | ¢ Xp.
Moreover, for all c € A;, c € G, whence, since Gnl =g, | ¢ X\X.. This
means that I/ does not cover X, a contradiction.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Compactness of Prime Ideal Space (Cont'd)

o Hence JNn G +@. Take ae JnG.

o If Ap and A; are both non-empty, there exist by,...,bj € Ay and
Ci,...,Ck €Ay, such that cg A+~ Ack <a< by vV bj, whence
X =Xy = Xp, U uXp, U (X\ X)) U= U (X\X,, ). In this case, therefore,
U has a finite subcover.

o Suppose, now, that A; =@. Then G = {1}. Hence, since Jn G # 2,
1€ J and Jis improper. Thus, there exist by,. .., bj € Ag, such that
1=by V-V b;. Hence, X = X1 = Xpv.vh, = Xpy U+ U Xp,. So U has a
finite subcover.

o Suppose, finally, that Ay = @. Then J = {0}. Hence, since Jn G + 2,

0 € G and G is improper. Thus, there exist ¢y, ..., ck € A1, such that
0=c; A--- A ck. Hence,

X = X\XO = X\XCI/\"'/\Ck = X\(Xcl e ﬁ)<Ck) = (X\XC1) U u (X\Xck)
So U has a finite subcover.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Totally Order-Disconnected Spaces

@ A set X carrying an order relation < and a topology T is called an
ordered (topological) space and denoted (X;<,7) (or by X when
no ambiguity would result).

o It is said to be totally order-disconnected X

if, given x,y € X, with x % y, there exists
a clopen down-set U, such that x € U and v

; y
y¢U. UZ; '

@ A compact totally order-disconnected space is called a Priestley
space, also known as an ordered Stone space or a CTOD space.

o We shall denote by O7 (X) the family of clopen down-sets of a
Priestley space X:

o When the order on X is discrete, O7 (X) coincides with P7 (X);
o When X is finite, O7 (X) coincides with O(X).
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Existence of Certain Clopen Down-Sets

o In many ways Priestley spaces behave like a cross between Boolean
spaces and ordered sets.

Lemma

Let (X;<,T) be a Priestley space.

(i) x<yin X if and only if y € U implies x € U, for every U e O7 (X).

(1) (2) Let Y be a closed down-set in X and let x ¢ Y. Then there exists a clopen
down-set U such that Y ¢ U and x ¢ U.
(1) Let Y and Z be disjoint closed subsets of X such that Y is a down-set and
Z is an up-set. Then there exists a clopen down-set U such that Y ¢ U and
ZnU=g.

(2) Suppose x <y and U e OT(X), such that y € U. Since U is a
down-set, x € U.

Suppose, conversely, that x £ y. Since X is a Priestley space, there
exists U € OT (X)), such that y € U and x ¢ U.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Existence of Certain Clopen Down-Sets (Part (ii))

(2) Let Y be a closed down-set in X and let x ¢ Y. Since Y is a
down-set and x ¢ Y, for all ye Y, x £ y. Since X is a Priestley space,
there exists a clopen down-set Uy, such that y € U, and x ¢ U,. The
collection {U, : y € Y} covers Y. Since Y is closed, it is compact.
Thus, there exists a finite subcover {U,,,...,U,,}. Set U=U7; U,,.
Since, for all y € Y, U, is a clopen downset, the same holds for U.
Moreover, Y c U and x ¢ U, since x ¢ Uy, forall ye Y.

(b) By Part (a), for all z € Z, there exists a clopen down-set U, such
that Y c U, and z ¢ U,. Then {X\U,:z € Z} is a cover of the
compact set Z. Thus, there exists a finite subcover
{X\Uz,...,X\U,,}. Set U=N", U,. Since each U, is a clopen
down-set, so is U. Moreover, since Y € U,, forall ze Z, Y c U.
Finally, since Z c U, (X\U;) = X\N; U, we get Zn U =g.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Clopen Sets and Down-Sets in Zp(L)

o We characterize clopen sets and clopen down-sets in the dual space
(Zp(L); S, T) of a bounded distributive lattice L.

Lemma

Let L be a bounded distributive lattice with dual space (X;c,T), where
X =ZIp(L). Then:

(1) the clopen subsets of X are the finite unions of sets of the form
Xp 0 (X\Xc), for b,ceL;

(11) the clopen down-sets of X are exactly the sets X;, for a€ L.

(1) Suppose Y = UL (Xp, n (X\Xc,)). Since, for all i, Xp, n (X\X,) € B,
we get that Y is open. On the other hand,
X\Y = X\U;':l(Xbi n(X\Xq)) = ﬂ?:l(X\(Xbi N (X\Xg))) =
N7, ((X\Xp,) U X,). Since X\Xp, and X, are open, we get that
X\Y is open, whence Y is also closed. Thus, it is clopen.

George Voutsadakis (LSSU) Lattices and Order April 2020 25 /40



Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Clopen Sets and Down-Sets in Zp(L) (Cont'd)

(i)

Suppose, conversely, that Y is clopen. Since it is open it is a union of
sets in B, i.e., Y =Uje/(Xp, 0 (X\Xg)). Thus, {Xp, n(X\X;):iel}
is an open cover of Y. But Y is also closed and, hence, compact.
Thus, there exists a finite subcover {Xp, N (X\X;):i=1,...,n} of
Y. Thus, Y =UZ;(Xp, n (X\Xg)).

Suppose, first, that J € X, and I € J. Then, by definition, a ¢ J. Since
I cJ, a¢l. Hence, again by definition, / € X,. Thus, X, is a
down-set.

Suppose conversely, that Y is a clopen down-set in X. Since it is
clopen, by Part (i), it is of the form Y = U, (X}, n (X\X,)). Since,
for all i, Xp, n (X\X;,) € Y and Y is a down-set, ¢; =0. Hence

Y =UiL; Xp, Therefore, Y = Xp v...vp,-
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Priestley’'s Representation for Distributive Lattices

Priestley’s Representation Theorem for Distributive Lattices

Let L be a bounded distributive lattice. Then the map

nia~Xy:={leZ,(L):a¢l}

is an isomorphism of L onto the lattice of clopen down-sets of the dual
space (Z,(L);c,T) of L.

o Combine a preceding representation theorem with the preceding
characterization of the clopen down-sets of X.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Priestley Spaces and Order-Homeomorphisms

@ Ordered spaces X and Y are “essentially the same” if there exists a
map ¢ from X onto Y which is simultaneously an order-isomorphism
and a homeomorphism. We call such a map an
order-homeomorphism and say X and Y are order-homeomorphic.

(1) Let Y be a Priestley space, let L be the lattice O7 (Y) of clopen down-sets
of Y and let X be the dual space of L. Then Y and X are
order-homeomorphic.

(1) Let L be a bounded distributive lattice and Y a Priestley space such that
OT(Y) = L. Then the dual space of L is (order-homeomorphic to) Y.

o The second part follows from the first. The proof of (i) is similar to
the proof given for the Boolean case: We define e: Y - X by
e(y):={aelL:y¢a}. Certainly (y) is a prime ideal in L.
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Priestley Spaces and Order-Homeomorphisms (Cont'd)

o Wesete(y):={aelL:y¢a}. We must show that:

(a) e is an order-embedding;

(b) e is continuous;

(c) € maps Y onto X.

Combined with A.7 this will establish (i).

(2) Notethat y<zin Y iff (Vael)(zea = yea)iffe(y) ce(2).

(b) We use A.4: (b) holds so long as e71(X,) and e7*(X\X;) are open, for
each ae L. But e 1 (X\X;)={yeY:e(y) ¢ Xo} = Y\e }(X,). Thus
(b) holds provided e™1(X,) is clopen in Y, for each a€ L. By the
definitions of X, and ¢, e 1(X;) = {y e Y:e(y) e X;} =
{yeY:a¢e(y)}=a, and this is clopen, by the definition of L.

(c) By Lemma A.7, (YY) is a closed subset of X. Suppose by way of
contradiction that there exists x € X\e(Y). Then there is a clopen
subset V of X, such that e(Y)nV =@ and x € V. By the last lemma,
we may assume that V = X, n (X\X.), for some b,c € L. We have
@=c1(V)=bn(Y\c). Thus b c c, contradicting x € X, n (X\X.).

George Voutsadakis (LSSU) Lattices and Order April 2020 29 /40



Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Example |

o A variety of Priestley spaces can be obtained by equipping the
Boolean space IN,, with an order.

For a very simple example, order IN, as the chain IN 00
with oo adjoined as top element: T

Take x # y. Then y > x and |x, which is clopen
because it is finite and does not contain oo, contains
x but not y. Hence we have a Priestley space.

3
Its lattice of clopen down-sets is isomorphic to the
chain Ne 1. 2
1
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Representation: The General Case Priestley’s Representation Theorem for Distributive Lattices

Example Il

o Consider the ordered space Y obtained by equipping IN,, with the
order depicted below:

We have n>n—-1 and n> n+1, for each even n.

For each n € IN, the down-set |n is finite and does not contain oo and
so is clopen.

Let x2yinY.

Claim: There exists U € O7(Y), such that x e U and y ¢ U.
o If x# o0, y ¢ Ix. Thus, we may take U = |x.
o If x = 0o, we may take U = Y\{1,2,...,2y}.

Hence Y is a Priestley space.
The lattice O7 (Y), a sublattice of FC(IN), is easily described.
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Subsection 3

Duality: Distributive Lattices and Priestley Spaces
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Representation: The General Case Duality: Distributive Lattices and Priestley Spaces

Duality

o Denote the class of bounded distributive lattices by D, and the class
of Priestley spaces (compact totally order-disconnected spaces) by P.
o Define maps D: D — P and E: P - D by

D:L—Zy(L) (LeD) and E:Xw~0OT(X) (XeP).
o Preceding theorems assert that, for all Le D and X ¢ P,
ED(L)~L and DE(X)=zX,

the latter @ means “is order-homeomorphic to".
o We may use the isomorphism between L and ED(L) to represent the
members of D concretely as lattices of the form O7 (X) for X € P.
@ As an immediate application we note that the representation allows
us to construct a “smallest” Boolean algebra B containing (an
isomorphic copy of) a given lattice L € D:
o Identify L with O7 (X) and take B = P7 (X).
o We already saw how O7 (X) and P7 (X) are related.
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Pseudocomplements

o There are many ways to weaken the condition that every element of a
bounded lattice L have a complement.

o One possibility is to define the pseudocomplement of an element a
in a lattice L with 0 to be

a*=max{bel:bna=0},

if this exists.
o Now consider L =O7 (X), where X is a Priestley space.

Claim: U € L has a pseudocomplement if and only if 1U is clopen,
and, in that case, U* = X\1U.

Observe that a down-set W in X does not intersect U if and only if
W c X\1U. Hence X\1U is the largest down-set disjoint from U. If it
is also clopen, it must be U~.
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Pseudocomplements (Cont'd)

o Conversely, assume U* exists. Take x ¢ 1U. We show x € U*, from
which it follows that U* = X\tU.

U is clopen. Since, for all Y closed 1Y is closed, tU is closed. By the
dual of a preceding lemma, we can find a clopen up-set V/, such that

x¢VandtUc V.
- /\
=U*

Then (X\V)n U =g, so X\V c U*, by definition of U*. This implies
that x e U™.
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Duality for ideals

o Let L =07 (X), where X is a Priestley space whose family of open
down-sets we denote by L.

o An ideal J of L is determined by its members, which are clopen
down-sets of X.

Define
() = J{U:|UeJ} (for JeZ(L)).

As a union of clopen sets, ®(J) is an open set (but not in general
clopen).
o In the other direction, define

V(W) ={UeOT(X):Uc W} (for WeL).

It is easily checked that W(W) is an ideal of L.
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Duality for ideals (Cont'd)

Duality: Distributive Lattices and Priestley Spaces

Claim:

o d(W(W)) =W, forall WecL,

o W(P(J))=J, forall JeZ(L).
The first equation, W = U{U € O7 (X) : U € W}, asserts that an
open down-set W is the union of the clopen down-sets contained in it.

Let x € W. Use the dual of a preceding lemma to find a clopen up-set
V' containing the closed up-set X\W but with x ¢ V.

Then X\V is a clopen down-set, and x € X\V ¢ W.
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Duality for ideals (Cont'd)

Claim:
o O(VW(W)) =W, forall WeL;
o W(P(J))=J, forall JeZ(L).
For the second equation, J = {U e O7 (X): UcU{W: W e J}},
Jow(d(Y)).
Let V e W(®(J)). This means that J, regarded as a family of open
subsets of X, is an open cover of the clopen set V. Since V is closed,
it is compact. Thus, only finitely many elements of J are needed to
cover V,say Up,...,U,. But Vc Uju---uU, implies V c J, since J
is an ideal. This establishes the second equation.
o The bijective correspondence we have set up between Z(L) and L is
in fact a lattice isomorphism.
In addition, special types of ideal correspond to special types of open
set.
o Similarly, for filters F(L) = F, the lattice of open up-sets of X.
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Extending D and P to Encompass Morphisms

o There exists what is known as a (full) duality between D (bounded
distributive lattices +{0, 1}-homomorphisms) and P (Priestley spaces
+ continuous order-preserving maps).

o Here, the symbols D and P encompass structure-preserving maps as
well as objects.

o For L,K € D, we denote the set of {0,1}-homomorphisms from L to
K by D(L, K).

@ For X, Y € P, we denote the set of continuous order-preserving maps
from Y to X by P(Y,X).
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Duality

o The way the duality is required to work is given by:
(O) There exist maps D: D — P and E : P — D, such that:
(1) for each L € D, there exists n, : L - ED(L), such that 7, is an
isomorphism;
(i1) for each X € P, there exists ex : X — DE(X), such that ex is an
order-homeomorphism.
(M) For any L, K € D, there exists, for each f € D(L,K), a map
D(f) e P(D(K),D(L)). For each X, Y € P, there exists, for each
peP(Y,X), amap E(p) e D(E(X),E(Y)). The maps
D:D(L,K) > P(D(K),D(L)) and E: P(Y,X) > D(E(X),E(Y))
are bijections and the diagrams below commute:

L f K Y 2 X
ﬂLl an Svl lSX
ED(L) £575 ED(K) DE(Y) B3 PEX)
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