Introduction to Lattices and Order

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University
LSSU Math 400

(1) Lattices and Complete Lattices

- Lattices as Ordered Sets
- Lattices as Algebraic Structures
- Sublattices, Products and Homomorphisms
- Ideals and Filters
- Complete Lattices and \cap-Structures
- Chain Conditions and Completeness
- Join-Irreducible Elements

Subsection 1

Lattices as Ordered Sets

Upper and Lower Bounds

- Let P be an ordered set and let $S \subseteq P$.

An element $x \in P$ is an upper bound of S if $s \leq x$ for all $s \in S$.
An element $x \in P$ is a lower bound of S if $x \leq s$ for all $s \in S$.

- The set of all upper bounds of S is denoted by S^{u} (read " S upper"):

$$
S^{u}=\{x \in P:(\forall s \in S) s \leq x\}
$$

- The set of all lower bounds is denoted S^{ℓ} ("S lower"):

$$
S^{\ell}=\{x \in P:(\forall s \in S) s \geq x\}
$$

- Since \leq is transitive,
- S^{u} is always an up-set;
- S^{ℓ} is always a down-set.

Least Upper and Greatest Lower Bounds

- If S^{u} has a least element x, then x is the least upper bound of S. Equivalently, x is the least upper bound of S if
(i) x is an upper bound of S;
(ii) $x \leq y$, for all upper bounds y of S.
- If S^{ℓ} has a greatest element x, then x is called the greatest lower bound of S.
- Since least elements and greatest elements are unique, least upper bounds and greatest lower bounds are unique when they exist.
- The least upper bound of S is also called the supremum of S and is denoted by sup S.
- The greatest lower bound of S is also called the infimum of S and is denoted by inf S.

Top and Bottom

- We discuss P itself with respect to suprema and infima:
- If P has a top element, then $P^{u}=\{T\}$; thus, $\sup P=T$.
- When P has no top element, we have $P^{u}=\varnothing$. Hence, sup P does not exist.
- If P has a bottom element, then $\inf P=\perp$.
- We turn to $S=\varnothing$ with respect to suprema and infima:
- Every element $x \in P$ satisfies (vacuously) $s \leq x$, for all $s \in S$. Thus, $\varnothing^{u}=P$ and, hence, sup \varnothing exists if and only if P has a bottom element, and in that case sup $\varnothing=1$.
- If P has a top element, then $\inf \varnothing=T$.

Joins and Meets

- We write:
- $x \vee y($ read as " x join y ") in place of $\sup \{x, y\}$ when it exists;
- $x \wedge y$ (read as " x meet y ") in place of $\inf \{x, y\}$ when it exists.
- Similarly we write:
- $V S$ (the "join of S ") instead of $\sup S$ and
- $\wedge S$ (the "meet of $S^{\prime \prime}$) instead of inf S
when these exist.
- It is sometimes necessary to indicate that the join or meet is being found in a particular ordered set P, in which case we write

$$
\bigvee_{P} S \text { or } \bigwedge_{P} S
$$

- If S is of the form $S=\left\{A_{i}\right\}_{i \in I}$, where I is some indexing set, we write $\vee_{i \in I} A_{i}$ for $\bigvee\left\{A_{i}: i \in I\right\}$ and $\bigwedge_{i \in I} A_{i}$ for $\bigwedge\left\{A_{i}: i \in I\right\}$.

Lattices and Complete Lattices

Definitions

Let P be a non-empty ordered set.
(i) If $x \vee y$ and $x \wedge y$ exist for all $x, y \in P$, then P is called a lattice.
(ii) If $\vee S$ and $\wedge S$ exist for all $S \subseteq P$, then P is called a complete lattice.
(1) Let P be any ordered set. Suppose $x, y \in P$ and $x \leq y$. Then

$$
\begin{array}{c|c}
\{x, y\}^{u}=\uparrow y & \{x, y\}^{\ell}=\downarrow x \\
x \vee y=y & x \wedge y=x
\end{array}
$$

In particular, since \leq is reflexive, we have $x \vee x=x$ and $x \wedge x=x$.

Remarks on Lattices and Complete Lattices

(2) In an ordered set P, the least upper bound $x \vee y$ of $\{x, y\}$ may fail to exist for two different reasons:
(a) because x and y have no common upper bound;
(b) because they have no least upper bound.

(3) Consider the ordered set drawn below.

Since $\{b, c\}^{u}=\{T, h, i\}$ has distinct minimal elements, h and i, it cannot have a least element. Hence $b \vee c$ does not exist.

Since $\{a, b\}^{u}=\{T, h, i, f\}$ has a least element, $f, a \vee b=f$.

Further Remarks on Lattices and Complete Lattices

(4) Let P be a lattice. Then, for all $a, b, c, d \in P$,
(i) $a \leq b$ implies $a \vee c \leq b \vee c$ and $a \wedge c \leq b \wedge c$;
(ii) $a \leq b$ and $c \leq d$ imply $a \vee c \leq b \vee d$ and $a \wedge c \leq b \wedge d$.
(i) Using the definitions of join and meet, we get:

$$
\left.\begin{array}{r}
a \leq b \leq b \vee c \\
c \leq b \vee c \\
a \wedge c \leq a \leq b \\
a \wedge c \leq c
\end{array}\right\} \Rightarrow a \vee c \leq b \vee c
$$

(ii) Using Part (i), we get

$$
\begin{aligned}
& a \vee c \leq b \vee c \leq b \vee d \\
& a \wedge c \leq b \wedge c \leq b \wedge d .
\end{aligned}
$$

Further Remarks on Lattices and Complete Lattices

(5) Let P be a lattice. Let $a, b, c \in P$ and assume that $b \leq a \leq b \vee c$. Since $c \leq b \vee c$, we have $(b \vee c) \vee c=b \vee c$, by (1). Thus, by (4)(i),

$$
b \vee c \leq a \vee c \leq(b \vee c) \vee c=b \vee c,
$$

whence $a \vee c=b \vee c$.
Thus, when calculating joins and meets on a diagram, once we know the join of b and c, the join of c with the intermediate element a is forced.

Example I: Some Linear Orders

- Let P be a non-empty ordered set.

If $x \leq y$, then $x \vee y=y$ and $x \wedge y=x$.
Hence, to show that P is a lattice, it suffices to prove that $x \vee y$ and $x \wedge y$ exist in P for all noncomparable pairs $x, y \in P$.

- In particular, every chain is a lattice in which

$$
x \vee y=\max \{x, y\} \quad \text { and } \quad x \wedge y=\min \{x, y\} .
$$

- Thus, each of $\mathbb{R}, \mathbb{Q}, \mathbb{Z}$ and \mathbb{N} is a lattice under its usual order. None of them is complete; every one lacks a top element, and a complete lattice must have top and bottom elements.
- If $x<y$ in \mathbb{R}, then the closed interval $[x, y]$ is a complete lattice (by the completeness axiom for \mathbb{R}).
- Failure of completeness in \mathbb{Q} is more fundamental than in \mathbb{R}. In \mathbb{Q}, it is not only the lack of top and bottom elements which causes problems; for example, the set $\left\{s \in \mathbb{Q}: s^{2}<2\right\}$ has upper bounds but no least upper bound in \mathbb{Q}.

Example II: Powersets

- For any set X, the ordered set $\langle\mathcal{P}(X) ; \subseteq\rangle$ is a complete lattice in which

$$
\bigvee\left\{A_{i}: i \in I\right\}=\bigcup\left\{A_{i}: i \in I\right\} \quad \text { and } \quad \bigwedge\left\{A_{i}: i \in I\right\}=\bigcap\left\{A_{i}: i \in I\right\} .
$$

- We indicate the index set by subscripting, e.g., instead of $\bigcup\left\{A_{i}: i \in I\right\}$ we shall write $\bigcup_{i \in I} A_{i}$ or simply $\cup A_{i}$.
- We verify the assertion about meets (a dual proof works for joins); Let $\left\{A_{i}\right\}_{i \in I}$ be a family of elements of $\mathcal{P}(X)$. Since $\bigcap_{i \in I} A_{i} \subseteq A_{j}$, for all $j \in I$, it follows that $\bigcap_{i \in I} A_{i}$ is a lower bound for $\left\{A_{i}\right\}_{i \in I}$. Also, if $B \in \mathcal{P}(X)$ is a lower bound of $\left\{A_{i}\right\}_{i \in I}$, then $B \subseteq A_{i}$, for all $i \in I$ and, hence, $B \subseteq \bigcap_{i \in I} A_{i}$. Thus, $\bigcap_{i \in I} A_{i}$ is indeed the greatest lower bound of $\left\{A_{i}\right\}_{i \in l}$ in $\mathcal{P}(X)$.

Example III: Lattices of Sets

- Let $\varnothing \neq \mathcal{L} \subseteq \mathcal{P}(X)$. Then \mathcal{L} is called
- a lattice of sets if it is closed under finite unions and intersections;
- a complete lattice of sets if it is closed under arbitrary unions and intersections.
- If \mathcal{L} is a lattice of sets, then $\langle\mathcal{L} ; \subseteq\rangle$ is a lattice in which $A \vee B=A \cup B$ and $A \wedge B=A \cap B$.
- Similarly, if \mathcal{L} is a complete lattice of sets, then $\langle\mathcal{L} ; \subseteq\rangle$ is a complete lattice with join given by set union and meet given by set intersection.
- Let P be an ordered set and consider the ordered set $\mathcal{O}(P)$ of all down-sets of P.
If $\left\{A_{i}\right\}_{i \in I} \subseteq \mathcal{O}(P)$, then $\bigcup_{i \in I} A_{i}$ and $\bigcap_{i \in I} A_{i}$ both belong to $\mathcal{O}(P)$. Hence $\mathcal{O}(P)$ is a complete lattice of sets, called the down-set lattice of P.

Example IV: The Ordered Sets M_{n}

- The ordered set \boldsymbol{M}_{n} (for $n \geq 1$) is easily seen to be a lattice:

Let $x, y \in \boldsymbol{M}_{n}$, with $x \| y$. Then x and y are in the central antichain of \boldsymbol{M}_{n} and, hence, $x \vee y=T$ and $x \wedge y=\perp$.

Example V: The Ordered Set $\left\langle\mathbb{N}_{0} ; \leqslant\right\rangle$

- Consider the ordered set $\left\langle\mathbb{N}_{0} ; \leqslant\right\rangle$ of non-negative integers ordered by division.
- Recall that k is the greatest common divisor (or highest common factor) of m and n if
(a) k divides both m and n (that is, $k \leqslant m$ and $k \leqslant n$);
(b) if j divides both m and n, then j divides k (that is, $j \leqslant k$, for all lower bounds j of $\{m, n\}$).
Thus, the greatest common divisor of m and n is precisely the meet of m and n in $\left\langle\mathbb{N}_{0} ; \lessgtr\right\rangle$.
- Dually, the join of m and n in $\left\langle\mathbb{N}_{0} ; \lessgtr\right\rangle$ is given by their least common multiple.
- These statements remain valid when m or n equals 0 .
- Thus, $\left\langle\mathbb{N}_{0} ; \leqslant\right\rangle$ is a lattice in which

$$
m \vee n=\operatorname{lcm}\{m, n\} \quad \text { and } \quad m \wedge n=\operatorname{gcd}\{m, n\}
$$

- $\left\langle\mathbb{N}_{0} ; \lessgtr\right\rangle$ is actually a complete lattice.

Lattices of Subgroups

- Assume that G is a group and $\langle\operatorname{Sub} G ; \subseteq\rangle$ is its ordered set of subgroups.
- Let $H, K \in \operatorname{Sub} G$.
- It is always the case that $H \cap K \in \operatorname{Sub} G$, whence $H \wedge K$ exists and equals $H \cap K$.
- $H \cup K$ is is not a subgroup in general. Nevertheless, $H \vee K$ does exist in Sub G, as (rather tautologically) the subgroup $\langle H \cup K\rangle$ generated by $H \cup K$. Unfortunately, there is no convenient general formula for $H \vee K$.
- Normal subgroups are more amenable.
- Meet is again given by \cap;
- Join in \mathcal{N}-Sub G has a particularly compact description:

If H, K are normal subgroups of G, then $H K:=\{h k: h \in H, k \in K\}$ is also a normal subgroup of G. It follows easily that the join in \mathcal{N}-Sub G is given by $H \vee K=H K$.

Examples of Lattices of Subgroups

- The lattices Sub G and \mathcal{N}-Sub G for the group, D_{4}, of symmetries of a square and for the group $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.

The elements of \mathcal{N}-Sub G are shaded.

Subsection 2

Lattices as Algebraic Structures

Lattices as Algebraic Structures

- Given a lattice L, we may define binary operations join and meet on the non-empty set L by

$$
a \vee b:=\sup \{a, b\} \quad \text { and } \quad a \wedge b:=\inf \{a, b\}, \quad a, b \in L
$$

- The operations $\vee: L^{2} \rightarrow L$ and $\wedge: L^{2} \rightarrow L$ are order-preserving.

The Connecting Lemma

Let L be a lattice and let $a, b \in L$. Then the following are equivalent:
(i) $a \leq b$;
(ii) $a \vee b=b$;
(iii) $a \wedge b=a$.

- We have shown that (i) implies both (ii) and (iii).

Assume (ii). Then b is an upper bound for $\{a, b\}$, whence $b \geq a$. Thus (i) holds. Similarly, (iii) implies (i).

Properties of \vee and \wedge

Theorem

Let L be a lattice. Then \vee and \wedge satisfy, for all $a, b, c \in L$,
(L1) $\quad(a \vee b) \vee c=a \vee(b \vee c) \quad$ (associative laws)
$(\mathrm{L} 1)^{\partial} \quad(a \wedge b) \wedge c=a \wedge(b \wedge c)$
(L2) $a \vee b=b \vee a \quad$ (commutative laws)
$(\mathrm{L} 2)^{\partial} \quad a \wedge b=b \wedge a$
(L3) $a \vee a=a \quad$ (idempotency laws)
$(\mathrm{L} 3)^{\partial} \quad a \wedge a=a$
(L4) $a \vee(a \wedge b)=a \quad$ (absorption laws)
$(\mathrm{L} 4)^{\partial} \quad a \wedge(a \vee b)=a$.

- By the Duality Principle for lattices it is enough to consider (L1)-(L4).

Proof of the Properties

- We have already proven (L3).
- (L2) is immediate because, for any set S, sup S is independent of the order in which the elements of S are listed.
- (L4) follows easily from the Connecting Lemma: Since $a \wedge b \leq a$, we get $a \vee(a \wedge b)=a$.
- We prove (L1).

It is enough, by (L2), to show that $(a \vee b) \vee c=\sup \{a, b, c\}$. This is the case if $\{a \vee b, c\}^{u}=\{a, b, c\}^{u}$. But

$$
\begin{aligned}
d \in\{a, b, c\}^{u} & \Longleftrightarrow d \in\{a, b\}^{u} \text { and } d \geq c \\
& \Longleftrightarrow d \geq a \vee b \text { and } d \geq c \\
& \Longleftrightarrow d \in\{a \vee b, c\}^{u} .
\end{aligned}
$$

From Algebraic Structures to Ordered Structures

Theorem

Let $\langle L ; \vee, \wedge\rangle$ be a non-empty set equipped with two binary operations which satisfy (L1)-(L4) and (L1) $)^{\partial}-(\mathrm{L} 4)^{\partial}$.
(i) For all $a, b \in L$, we have $a \vee b=b$ if and only if $a \wedge b=a$.
(ii) Define \leq on L by $a \leq b$ if $a \vee b=b$. Then \leq is an order relation.
(iii) With \leq as in (ii), $\langle L ; \leq\rangle$ is a lattice in which the original operations agree with the induced operations, that is, for all $a, b \in L$,

$$
a \vee b=\sup \{a, b\} \quad \text { and } \quad a \wedge b=\inf \{a, b\} .
$$

- Assume $a \vee b=b$. Then $a=a \wedge(a \vee b)\left(\right.$ by $\left.(L 4)^{\partial}\right)=a \wedge b$ (by assumption).
Conversely, assume $a \wedge b=a$. Then $b=b \vee(b \wedge a)(b y(L 4))$ $=b \vee(a \wedge b)\left(\right.$ by $\left.(\mathrm{L} 2)^{\partial}\right)=b \vee a($ by assumption $)=a \vee b($ by (L2) $)$.

From Algebraic Structures to Ordered Structures (Cont'd)

- Now define \leq as in (ii). Then \leq is
- reflexive by (L3): $a \vee a \stackrel{(L 3)}{=} a \Rightarrow a \leq a$;
- antisymmetric by (L2): $a \leq b \& b \leq a \Rightarrow a \vee b=b \& b \vee a=a \stackrel{(\mathrm{L2})}{\Rightarrow} a=b$;
- transitive by (L1): $a \leq b \& b \leq c \Rightarrow a \vee b=b \& b \vee c=c \Rightarrow a \vee c=$

$$
a \vee(b \vee c) \stackrel{(L 11)}{=}(a \vee b) \vee c=b \vee c=c \Rightarrow a \leq c \text {; }
$$

- To show that $\sup \{a, b\}=a \vee b$ in the ordered set $\langle L ; \leq\rangle$, we must check:
- $a \vee b \in\{a, b\}^{u}: a \vee(a \vee b)=(a \vee a) \vee b=a \vee b \Rightarrow a \leq a \vee b$ and $b \vee(a \vee b)=b \vee(b \vee a)=(b \vee b) \vee a=b \vee a=a \vee b \Rightarrow b \leq a \vee b ;$
- $d \in\{a, b\}^{u}$ implies $d \geq a \vee b$:

$$
\begin{aligned}
& (a \vee b) \vee d=(a \vee b) \vee(d \vee d)=((a \vee b) \vee d) \vee d=(a \vee(b \vee d)) \vee d= \\
& (a \vee(d \vee b)) \vee d=((a \vee d) \vee b) \vee d=(a \vee d) \vee(b \vee d)=d \vee d=d \Rightarrow a \vee b \leq d ;
\end{aligned}
$$

The characterization of inf is obtained by duality.

Stocktaking: Algebra and Order

- We have shown that lattices can be completely characterized in terms of the join and meet operations.
- We may henceforth say "let L be a lattice", replacing L by $\langle L ; \leq\rangle$ or by $\langle L ; \vee, \wedge\rangle$ if we want to emphasize that we are thinking of it as a special kind of ordered set or as an algebraic structure.
- In a lattice L, associativity of \vee and \wedge allows us to write iterated joins and meets unambiguously without brackets.
- An easy induction shows that these correspond to sups and infs in the expected way:

$$
\bigvee\left\{a_{1}, \ldots, a_{n}\right\}=a_{1} \vee \cdots \vee a_{n} \quad \text { and } \quad \bigwedge\left\{a_{1}, \ldots, a_{n}\right\}=a_{1} \wedge \cdots \wedge a_{n},
$$

for $a_{1}, \ldots, a_{n} \in L, n \geq 1$;

- Consequently, $\vee F$ and $\wedge F$ exist for any finite, non-empty subset F of a lattice.

Bounded Lattices

- Let L be a lattice.
- It may happen that $\langle L ; \leq\rangle$ has top and bottom elements T and \perp;
- When thinking of L as $\langle L ; \vee, \wedge\rangle$, we say:
- L has a one if there exists $1 \in L$, such that $a=a \wedge 1$, for all $a \in L$;
- L has a zero if there exists $0 \in L$, such that $a=a \vee 0$, for all $a \in L$.
- The lattice $\langle L ; \vee, \wedge\rangle$ has a:
- one if and only if $\langle L ; \leq\rangle$ has a top element T and, in that case, $1=T$;
- zero if and only if $\langle L ; \leq\rangle$ has a bottom element \perp and, in that case, $0=1$.
- A lattice $\langle L ; \vee, \wedge\rangle$ possessing 0 and 1 is called bounded.
- A finite lattice is automatically bounded, with $1=\bigvee L$ and $0=\wedge L$.

Example: $\left\langle\mathrm{N}_{0} ; \mathrm{lcm}, \mathrm{gcd}\right\rangle$ is bounded, with $1=0$ and $0=1$.

Subsection 3

Sublattices, Products and Homomorphisms

Sublattices

Definition (Sublattice)

Let L be a lattice and $\varnothing \neq M \subseteq L$. Then M is a sublattice of L if $a, b \in M$ implies $a \vee b \in M$ and $a \wedge b \in M$.

- We denote the collection of all sublattices of L by Sub L and let $\operatorname{Sub}_{0} L=\operatorname{Sub} L \cup\{\varnothing\}$; both are ordered by inclusion.
- Examples:
(1) Any one-element subset of a lattice is a sublattice. More generally, any non-empty chain in a lattice is a sublattice. (To test that a non-empty subset M is a sublattice, it suffices to consider non-comparable elements a, b.)
(2) In the diagrams the shaded elements form sublattices:

More Examples of Sublattices

(3) In the diagrams below the shaded elements do not form sublattices:

(3) A subset M of a lattice $\langle L ; \leq\rangle$ may be a lattice in its own right without being a sublattice of L, e.g., the right picture above.

Products

- Let L and K be lattices.
- Define \vee and \wedge coordinatewise on $L \times K$, as follows:

$$
\begin{aligned}
& \left(\ell_{1}, k_{1}\right) \vee\left(\ell_{2}, k_{2}\right)=\left(\ell_{1} \vee \ell_{2}, k_{1} \vee k_{2}\right), \\
& \left(\ell_{1}, k_{1}\right) \wedge\left(\ell_{2}, k_{2}\right)=\left(\ell_{1} \wedge \ell_{2}, k_{1} \wedge k_{2}\right) .
\end{aligned}
$$

- It is routine to check that $L \times K$ satisfies the identities (L1)-(L4) ${ }^{\partial}$ and therefore is a lattice.
- Also

$$
\begin{aligned}
\left(\ell_{1}, k_{1}\right) \vee\left(\ell_{2}, k_{2}\right)=\left(\ell_{2}, k_{2}\right) & \Longleftrightarrow \ell_{1} \vee \ell_{2}=\ell_{2} \text { and } k_{1} \vee k_{2}=k_{2} \\
& \Longleftrightarrow \ell_{1} \leq \ell_{2} \text { and } k_{1} \leq k_{2} \\
& \Longleftrightarrow\left(\ell_{1}, k_{1}\right) \leq\left(\ell_{2}, k_{2}\right),
\end{aligned}
$$

with respect to the order on $L \times K$.
Hence the lattice formed by taking the ordered set product of lattices L and K is the same as that obtained by defining \vee and \wedge coordinatewise on $L \times K$.

An Example

- The product of the lattices $L=\mathbf{3}$ and $K=\mathbf{1} \oplus \mathbf{2}^{2}$:

Notice how (isomorphic copies) of L and K sit inside $L \times K$ as the sublattices $L \times\{0\}$ and $\{0\} \times K$.

- The product of lattices L and K always contains sublattices isomorphic to L and K.
- Iterated products and powers are defined in the obvious way.
- It is also possible to define the product of an infinite family of lattices.

Homomorphisms

Definition

Let L and K be lattices. A map $f: L \rightarrow K$ is said to be a homomorphism (or, for emphasis, lattice homomorphism) if f is join-preserving and meet-preserving, i.e., for all $a, b \in L$,

$$
f(a \vee b)=f(a) \vee f(b) \quad \text { and } \quad f(a \wedge b)=f(a) \wedge f(b)
$$

A bijective homomorphism is a (lattice) isomorphism.
If $f: L \rightarrow K$ is a one-to-one homomorphism, then the sublattice $f(L)$ of K is isomorphic to L and we refer to f as an embedding (of L into K).

Remarks on Lattice Homomorphisms

(1) The inverse of an isomorphism is a homomorphism and hence is also an isomorphism:
Let $f: L \rightarrow K$ be an isomorphism, $a^{\prime}, b^{\prime} \in K$, such that $a^{\prime}=f(a), b^{\prime}=f(b)$. Then, for the join (and dually for the meet)

$$
\begin{aligned}
f^{-1}\left(a^{\prime} \vee b^{\prime}\right) & =f^{-1}(f(a) \vee f(b)) \\
& =f^{-1}(f(a \vee b)) \\
& =a \vee b \\
& =f^{-1}(f(a)) \vee f^{-1}(f(b)) \\
& =f^{-1}\left(a^{\prime}\right) \vee f^{-1}\left(b^{\prime}\right) ;
\end{aligned}
$$

(2) We write $L \gtrdot K$ to indicate that the lattice K has a sublattice isomorphic to the lattice L.
We will see, next, that $M \gtrdot L$ implies $M \hookrightarrow L$.
(3) For bounded lattices L and K it is often appropriate to consider homomorphisms $f: L \rightarrow K$, such that $f(0)=0$ and $f(1)=1$. Such maps are called $\{0,1\}$-homomorphisms.

Examples of Mappings

- The maps φ_{2} and φ_{3} are homomorphisms:

- The maps φ_{4} and φ_{5} are order preserving but not homomorphisms:

- In general an order-preserving map may not be a homomorphism.

Order and Lattice Isomorphisms

Proposition

Let L and K be lattices and $f: L \rightarrow K$ a map.
(i) The following are equivalent:
(a) f is order-preserving;
(b) $(\forall a, b \in L) f(a \vee b) \geq f(a) \vee f(b)$;
(c) $(\forall a, b \in L) f(a \wedge b) \leq f(a) \wedge f(b)$.

In particular, if f is a homomorphism, then f is order-preserving.
(ii) f is a lattice isomorphism if and only if it is an order-isomorphism.
(i) Since $a \leq a \vee b, b \leq a \vee b, a \wedge b \leq a$ and $a \wedge b \leq b$, we get

$$
\left.\begin{array}{l}
f(a) \leq f(a \vee b) \\
f(b) \leq f(a \vee b) \\
f(a \wedge b) \leq f(a) \\
f(a \wedge b) \leq f(b)
\end{array}\right\} \Rightarrow f(a) \vee f(b) \leq f(a \vee b)
$$

Order and Lattice Isomorphisms (Cont'd)

(ii) Assume that f is a lattice isomorphism. Then, by the Connecting Lemma, $a \leq b$ iff $a \vee b=b$ iff $f(a \vee b)=f(b)$ iff $f(a) \vee f(b)=f(b)$ iff $f(a) \leq f(b)$, whence, f is an order-embedding, and so is an order-isomorphism.

- Conversely, assume that f is an order-isomorphism. Then f is bijective. By (i) and duality, to show that f is a lattice isomorphism it suffices to show that

$$
f(a) \vee f(b) \geq f(a \vee b), \quad \text { for all } a, b \in L
$$

Since f is surjective, there exists $c \in L$, such that $f(a) \vee f(b)=f(c)$. Then $f(a) \leq f(c)$ and $f(b) \leq f(c)$. Since f is an order-embedding, it follows that $a \leq c$ and $b \leq c$, whence $a \vee b \leq c$. Because f is order-preserving, $f(a \vee b) \leq f(c)=f(a) \vee f(b)$, as required.

Subsection 4

Ideals and Filters

Ideals

Definition

Let L be a lattice. A non-empty subset J of L is called an ideal if
(i) $a, b \in J$ implies $a \vee b \in J$,
(ii) $a \in L, b \in J$ and $a \leq b$ imply $a \in J$.

- More compactly, an ideal is a non-empty down-set closed under join.

An ideal and two nonideals.

- Every ideal J of a lattice L is a sublattice, since $a \wedge b \leq a$ for any $a, b \in L$.

Filters

Definition

Let L be a lattice. A non-empty subset G of L is called a filter if
(i) $a, b \in G$ implies $a \wedge b \in G$,
(ii) $a \in L, b \in G$ and $a \geq b$ imply $a \in G$.

- The set of all ideals of L is denoted by $\mathcal{I}(L)$.
- The set of all filters of L is denoted by $\mathcal{F}(L)$.
- An ideal or filter is called proper if it does not coincide with L.
- An ideal J of a lattice with 1 is proper if and only if $1 \notin J$;
- Dually, a filter G of a lattice with 0 is proper if and only if $0 \notin G$.
- For each $a \in L$, the set $\downarrow a$ is an ideal, known as the principal ideal generated by a.
- Dually, \uparrow a is the principal filter generated by a.

Examples

(1) In a finite lattice, every ideal or filter is principal:

- The ideal J equals $\downarrow \vee J$.
- The filter G equals $\uparrow \wedge G$.
(2) Let L and K be bounded lattices and $f: L \rightarrow K$ a $\{0,1\}$-homomorphism. Then $f^{-1}(0)$ is an ideal and $f^{-1}(1)$ is a filter in L.
(3) The following are ideals in $\mathcal{P}(X)$:
(a) all subsets not containing a fixed element of X;
(b) all finite subsets (this ideal is non-principal if X is infinite).
(4) Let $(X ; \mathcal{T})$ be a topological space and let $x \in X$. Then the set $\{V \subseteq X:(\exists U \in \mathcal{T}) x \in U \subseteq V\}$ is a filter in $\mathcal{P}(X)$. It is called the filter of neighborhoods of x.

Subsection 5

Complete Lattices and \cap-Structures

Complete Lattices: Basic Properties

- Recall that a complete lattice is defined to be a non-empty, ordered set P, such that the join (supremum), $\vee S$, and the meet (infimum), $\wedge S$, exist for every subset S of P.
- The following are immediate consequences of the definitions of least upper bound and greatest lower bound:

Lemma

Let P be an ordered set, let $S, T \subseteq P$ and assume that $\vee S, \vee T, \wedge S$ and $\wedge T$ exist in P.
(i) $s \leq \bigvee S$ and $s \geq \wedge S$, for all $s \in S$.
(ii) Let $x \in P$; then $x \leq \wedge S$ if and only if $x \leq s$, for all $s \in S$.
(iii) Let $x \in P$; then $x \geq \vee S$ if and only if $x \geq s$, for all $s \in S$.
(iv) $\vee S \leq \Lambda T$ if and only if $s \leq t$, for all $s \in S$ and all $t \in T$.
(v) If $S \subseteq T$, then $\vee S \leq \vee T$ and $\wedge S \geq \wedge T$.

Proof of the Basic Properties

(i) $\vee S$ is an upper bound of S and $s \in S$. Hence, $s \leq \bigvee S$.
$\wedge S$ is a lower bound of S and $s \in S$. Hence, $\wedge S \leq s$.
(ii) Suppose $x \leq \wedge S$. Since $\wedge S \leq s$, for all $s \in S$, we get, by transitivity, $x \leq s$, for all $s \in S$.
Suppose $x \leq s$, for all $s \in S$. This means that x is a lower bound of S. Since $\wedge S$ is a greatest lower bound of $S, x \leq \wedge S$.
(iii) Dual to Part (ii).
(iv) Suppose $\bigvee S \leq \wedge T$. Let $s \in S$ and $t \in T$. Then $s \leq \bigvee S \leq \wedge T \leq t$. Assume, conversely, that, for all $s \in S$ and all $t \in T, s \leq t$. By Part (ii), $s \leq \wedge T$. By Part (iii), $\vee S \leq \wedge T$.
(v) Suppose $S \subseteq T$.

- $\vee T$ is an upper bound of T. Since $S \subseteq T, \bigvee T$ is an upper bound of $S . \bigvee S$ is the least upper bound of S. Hence, $\vee S \leq \bigvee T$.
- $\wedge T$ is a lower bound of T. Since $S \subseteq T, \vee T$ is also a lower bound of $S . \wedge S$ is the greatest lower bound of S. Hence, $\wedge T \leq \wedge S$.

Join and Meet and Set Unions

Lemma

Let P be a lattice, let $S, T \subseteq P$ and assume that $\vee S, \vee T, \wedge S$ and $\wedge T$ exist in P. Then

$$
\bigvee(S \cup T)=(\bigvee S) \vee(\bigvee T) \text { and } \quad \bigwedge(S \cup T)=(\bigwedge S) \wedge(\bigwedge T)
$$

- $\bigvee(S \cup T)$ is an upper bound of $S \cup T$. Thus, $\vee(S \cup T)$ is an upper bound of S and of T. Since $\vee S$ is the least upper bound of S, $\vee S \leq \bigvee(S \cup T)$. Since $\vee T$ is the least upper bound of T, $\vee T \leq \bigvee(S \cup T)$. Since $(\vee S) \vee(\vee T)$ is the least upper bound of $\{\vee S, \vee T\},(\vee S) \vee(\vee T) \leq \vee(S \cup T)$.
$(\vee S) \vee(\vee T)$ is an upper bound of $\{\vee S, \vee T\}$. By transitivity, $(\vee S) \vee(\vee T)$ is an upper bound of $S \cup T$. Since $\vee(S \cup T)$ is the least upper bound of $S \cup T, \vee(S \cup T) \leq(\vee S) \vee(\vee T)$. By antisymmetry, $\vee(S \cup T)=(\vee S) \vee(\vee T)$.
The second equality can be shown similarly.

On Finite Joins and Meets

- Using the preceding lemma, we get, using induction,

Lemma

Let P be a lattice. Then $\bigvee F$ and $\wedge F$ exist for every finite, non-empty subset F of P.

- Let $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, n \geq 1$. Then:
- $\bigvee\left\{x_{1}\right\}=x_{1}$;
- $\bigvee\left\{x_{1}, x_{2}\right\}=x_{1} \vee x_{2}$;
- $\bigvee\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=\bigvee\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\} \vee x_{n}$.

Similarly, we may show that the finite meet $\wedge F$ also exists.

Corollary

Every finite lattice is complete.

Joins and Meets and Order-Preserving Maps

Definition

Let P and Q be ordered sets and $\varphi: P \rightarrow Q$ a map. Then we say that

- φ preserves existing joins if whenever $\bigvee S$ exists in P then $\bigvee \varphi(S)$ exists in Q and $\varphi(\mathrm{V} S)=\bigvee \varphi(S)$;
- φ preserves existing meets if whenever $\wedge S$ exists in P then $\wedge \varphi(S)$ exists in Q and $\varphi(\wedge S)=\wedge \varphi(S)$

Lemma

Let P and Q be ordered sets and $\varphi: P \rightarrow Q$ be an order-preserving map.
(i) Assume that $S \subseteq P$ is such that $\vee S$ exists in P and $\vee \varphi(S)$ exists in Q. Then $\varphi(\vee S) \geq \bigvee \varphi(S)$. Dually, $\varphi(\wedge S) \leq \wedge \varphi(S)$ if both meets exist.
(ii) Assume now that $\varphi: P \rightarrow Q$ is an order-isomorphism. Then φ preserves all existing joins and meets.

Proof of the Lemma

(i) $\vee S$ is an upper bound of $S: S \leq \bigvee S . \varphi$ is order preserving: $\varphi(S) \leq \varphi(\vee S) . \vee \varphi(S)$ is the least upper bound of $\varphi(S)$. Hence, $\vee \varphi(S) \leq \varphi(\vee S)$.
$\wedge S$ is a lower bound of $S: \wedge S \leq S . \varphi$ is order-preserving: $\varphi(\wedge S) \leq \varphi(S) . \wedge \varphi(S)$ is the greatest lower bound of $\varphi(S)$. Hence, $\varphi(\wedge S) \leq \wedge \varphi(S)$.
(ii) Assume φ is an order isomorphism. In particular, it is surjective. Thus, there exists $x \in P$, such that $\bigvee \varphi(S)=\varphi(x)$. Thus, for all $s \in S, \varphi(s) \leq \varphi(x)$. Since φ is order reflecting, $S \leq x$. Since $\vee S$ is the least upper bound of $S, \bigvee S \leq x$. Since φ is order preserving, $\varphi(\vee S) \leq \varphi(x)$. Thus, $\varphi(\bigvee S) \leq \bigvee \varphi(S)$. Equality follows by Part (i) and antisymmetry.
Preservation of meets can be shown similarly.

Subsets of Complete Lattices

- The next lemma is useful for showing that certain subsets of complete lattices are themselves complete lattices.

Lemma

Let Q be a subset, with the induced order, of some ordered set P and let $S \subseteq Q$. If $\bigvee_{P} S$ exists and belongs to Q, then $\bigvee_{Q} S$ exists and equals $\bigvee_{P} S$ (and dually for $\wedge_{Q} S$).

- For any $x \in S$, we have $x \leq \bigvee_{P} S$. since $\bigvee_{P} S \in Q$, by hypothesis, it acts as an upper bound for S in Q. Further, if y is any upper bound for S in Q, it is also an upper bound for S in P and so $y \geq \bigvee_{P} S$.

Corollary

Let \mathcal{L} be a family of subsets of a set X and let $\left\{A_{i}\right\}_{i \in I}$ be a subset of \mathcal{L}.
(i) If $\cup_{i \in I} A_{i} \in \mathcal{L}$, then $\bigvee_{\mathcal{L}}\left\{A_{i}: i \in I\right\}$ exists and equals $\cup_{i \in I} A_{i}$.
(ii) If $\bigcap_{i \in I} A_{i} \in \mathcal{L}$, then $\wedge_{\mathcal{L}}\left\{A_{i}: i \in I\right\}$ exists and equals $\bigcap_{i \in I} A_{i}$.

Consequently, any (complete) lattice of sets is a (complete) lattice with joins and meets given by union and intersection.

Synthesizing Joins Using Meets

- To show that an ordered set is a complete lattice requires only half as much work as the definition would have us believe.

Lemma

Let P be an ordered set such that ΛS exists in P, for every non-empty subset S of P. Then $\vee S$ exists in P, for every subset S of P which has an upper bound in P; indeed, $\vee S=\wedge S^{u}$.

- Let $S \subseteq P$ and assume that S has an upper bound in P. Thus, $S^{u} \neq \varnothing$. Hence, by assumption, $a=\wedge S^{u}$ exists in P. We claim that $\bigvee S=a$.
For all $s \in S$ and all $u \in S^{u}, s \leq u$. Consequently, for all $s \in S$, $s \leq \wedge S^{u}=a$. Thus, a is an upper bound of S.
Suppose b is also an upper bound of S. By definition, $b \in S^{u}$. Hence, $a=\wedge S^{u} \leq b$. Therefore, a is the least upper bound of S, i.e., $a=\bigvee S$.

Complete Lattices in Terms of Arbitrary Meets

Theorem

Let P be a non-empty ordered set. Then the following are equivalent:
(i) P is a complete lattice;
(ii) $\wedge S$ exists in P, for every subset S of P;
(iii) P has a top element, T, and $\wedge S$ exists in P for every non-empty subset S of P.

- It is trivial that (i) implies (ii).
(ii) implies (iii) since the meet of the empty subset of P exists only if P has a top element.
It follows easily from the previous lemma that (iii) implies (i).

Complete Lattices of Sets

Corollary

Let X be a set and let \mathcal{L} be a family of subsets of X, ordered by inclusion, such that:
(a) $\bigcap_{i \in I} A_{i} \in \mathcal{L}$, for every non-empty family $\left\{A_{i}\right\}_{i \in I} \subseteq \mathcal{L}$, and
(b) $X \in \mathcal{L}$.

Then \mathcal{L} is a complete lattice in which

$$
\bigwedge_{i \in I} A_{i}=\bigcap_{i \in I} A_{i}, \quad \bigvee_{i \in I} A_{i}=\bigcap\left\{B \in \mathcal{L}: \bigcup_{i \in I} A_{i} \subseteq B\right\} .
$$

- To show that $\langle\mathcal{L} ; \subseteq\rangle$ is a complete lattice, it suffices to show that \mathcal{L} has a top element and that the meet of every nonempty subset of \mathcal{L} exists in \mathcal{L}. By (b), \mathcal{L} has a top element, namely X. Let $\left\{A_{i}\right\}_{i \in I}$ be a non-empty subset of \mathcal{L}. Then (a) gives $\bigcap_{i \in I} A_{i} \in \mathcal{L}$. Therefore $\bigwedge_{i \in I} A_{i}$ exists and is given by $\bigcap_{i \in I} A_{i}$. Thus, $\langle\mathcal{L} ; \subseteq\rangle$ is a complete lattice. Since X is an upper bound of $\left\{A_{i}\right\}_{i \in I}$ in $\mathcal{L}, \bigvee_{i \in I} A_{i}=\bigwedge\left\{A_{i}: i \in I\right\}^{u}=$ $\bigcap\left\{B \in \mathcal{L}:(\forall i \in I) A_{i} \subseteq B\right\}=\bigcap\left\{B \in \mathcal{L}: \bigcup_{i \in I} A_{i} \subseteq B\right\}$.

Intersection Structures

Definitions

If \mathcal{L} is a non-empty family of subsets of X which satisfies

$$
\bigcap_{i \in I} A_{i} \in \mathcal{L}, \text { for every non-empty family }\left\{A_{i}\right\}_{i \in I} \subseteq \mathcal{L},
$$

then \mathcal{L} is called an intersection structure (or \cap-structure) on X. If \mathcal{L} also satisfies $X \in \mathcal{L}$, we refer to it as a topped intersection structure on X. An alternative term is closure system.

- In a complete lattice \mathcal{L} of this type:
- the meet is just set intersection, but
- in general the join is not set union.

Algebraic \cap-Intersection Structures

- Each of the following is a topped \cap-structure and so forms a complete lattice under inclusion:
- the subgroups, Sub G, of a group G;
- the normal subgroups, $\mathcal{N}-\operatorname{Sub} G$, of a group G;
- the equivalence relations on a set X;
- the subspaces, Sub V of a vector space V;
- the convex subsets of a real vector space;
- the subrings of a ring;
- the ideals of a ring;
- Sub $0_{0} L$, the sublattices of a lattice L, with the empty set adjoined (note that Sub L is not closed under intersections, except when $|L|=1$);
- the ideals of a lattice L with 0 (or, if L has no zero element, the ideals of L with the empty set added), and dually for filters.

These families all belong to a class of \cap-structures, called algebraic \cap-structures because of their provenance.

Topological \cap-Intersection Structures

- The closed subsets of a topological space are closed under finite unions and finite intersections and hence form a lattice of sets in which $A \vee B=A \cup B$ and $A \wedge B=A \cap B$.
In fact, the closed sets form a topped \cap-structure and, consequently, the lattice of closed sets is complete.
- Meet is given by intersection;
- The join of a family of closed sets is not their union but is obtained by forming the closure of their union.
- Since the open subsets of a topological space are closed under arbitrary union and include the empty set, they form a complete lattice under inclusion.
By the dual version of the preceding corollary, join and meet are given by

$$
\bigvee_{i \in I} A_{i}=\bigcup_{i \in I} A_{i} \quad \text { and } \quad \bigwedge_{i \in I} A_{i}=\operatorname{lnt}\left(\bigcap_{i \in I} A_{i}\right),
$$

where $\operatorname{Int}(A)$ denotes the interior of A.

The Knaster-Tarski Fixpoint Theorem

- Given an ordered set P and a map $F: P \rightarrow P$, an element $x \in P$ is called a fixpoint of F if $F(x)=x$.

The Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and $F: L \rightarrow L$ an order-preserving map. Then

$$
\alpha:=\bigvee\{x \in L: x \leq F(x)\}
$$

is a fixpoint of F. Further, α is the greatest fixpoint of F.
Dually, F has a least fixpoint, given by $\bigwedge\{x \in L: F(x) \leq x\}$.

- Let $H=\{x \in L: x \leq F(x)\}$. For all $x \in H, x \leq \alpha$, so $x \leq F(x) \leq F(\alpha)$. Thus, $F(\alpha) \in H^{u}$, whence $\alpha \leq F(\alpha)$. Since F is order-preserving, $F(\alpha) \leq F(F(\alpha))$. This says $F(\alpha) \in H$, so $F(\alpha) \leq \alpha$. If β is any fixpoint of F, then $\beta \in H$, so $\beta \leq \alpha$.

Subsection 6

Chain Conditions and Completeness

Finiteness Conditions

- We know that every finite lattice is complete.
- There are various finiteness conditions, of which " P is finite" is the strongest, which will guarantee that a lattice P is complete.

Definition

Let P be an ordered set.
(i) If $C=\left\{c_{0}, c_{1}, \ldots, c_{n}\right\}$ is a finite chain in P with $|C|=n+1$, then we say that the length of C is n.
(ii) P is said to have length n, written $\ell(P)=n$, if the length of the longest chain in P is n.
(iii) P is of finite length if it has length n for some $n \in \mathbb{N}_{0}$.
(iv) P has no infinite chains if every chain in P is finite.
(v) P satisfies the ascending chain condition, (ACC), if given any sequence $x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq \cdots$ of elements of P, there exists $k \in \mathbb{N}$, such that $x_{k}=x_{k+1}=\cdots$.
The dual of the ACC is the descending chain condition, (DCC).

Examples

(1) The lattices M_{n} are of length 2. A lattice of finite length has no infinite chains and so satisfies both (ACC) and (DCC).
(2) The lattice $\left\langle\mathbb{N}_{0} ; \leqslant\right\rangle$ satisfies (DCC) but not (ACC).
(3)

The chain \mathbb{N} satisfies (DCC) but not (ACC). Dually, \mathbb{N}^{2} satisfies (ACC) but not $(D C C)$. The lattice $\mathbf{1} \oplus\left(\cup_{n \in \mathbb{N}} \boldsymbol{n}\right) \oplus$ $\mathbf{1}$ is the simplest example of a lattice which has no infinite chains but is not of finite length.
(4) It can be shown that a vector space V is finite dimensional if and only if Sub V is of finite length, in which case $\operatorname{dim} V=\ell(\operatorname{Sub} V)$.

ACC and Maximal Elements

Lemma

An ordered set P satisfies (ACC) if and only if every non-empty subset A of P has a maximal element.

Informal Proof: We shall prove the contrapositive in both directions, i.e., we prove that P has an infinite ascending chain if and only if there is a non-empty subset A of P which has no maximal element.

- Assume that $x_{1}<x_{2}<\cdots<x_{n}<\cdots$ is an infinite ascending chain in P. Then, clearly, $A=\left\{x_{n}: n \in \mathbb{N}\right\}$ has no maximal element.
- Conversely, assume that A is a non-empty subset of P which has no maximal element. Let $x_{1} \in A$. Since x_{1} is not maximal in A, there exists $x_{2} \in A$, with $x_{1}<x_{2}$. Similarly, there exists $x_{3} \in A$, with $x_{2}<x_{3}$. Continuing in this way (the Axiom of Choice is needed) we obtain an infinite ascending chain in P.

ACC, DCC and Infinite Chains

Theorem

An ordered set P has no infinite chains if and only if it satisfies both (ACC) and (DCC).

- If P has no infinite chains, then it satisfies both (ACC) and (DCC). Suppose that P satisfies both (ACC) and (DCC) and contains an infinite chain C. Note that if A is a non-empty subset of C, then A has a maximal element m, by the preceding lemma. If $a \in A$, then, since C is a chain, we have $a \leq m$ or $m \leq a$.
- But $m \leq a$ implies $m=a$, by the maximality of m.
- Hence, $a \leq m$, for all $a \in A$. So every non-empty subset of C has a greatest element.
Let x_{1} be the greatest element of C; let x_{2} be the greatest element of $C \backslash\left\{x_{1}\right\}$; in general let x_{n+1} be the greatest element of $C \backslash\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then $x_{1} \gtrdot x_{2} \gtrdot \cdots>x_{n}>\cdots$ is an infinite, descending, covering chain in P, contradicting the (DCC).

Chain Conditions and Completeness

- Lattices with no infinite chains are complete:

Theorem

Let P be a lattice.
(i) If P satisfies (ACC), then for every non-empty subset A of P, there exists a finite subset F of A, such that $\bigvee A=\bigvee F$ (which exists in P).
(ii) If P has a bottom element and satisfies (ACC), then P is complete.
(iii) If P has no infinite chains, then P is complete.

- Assume that P satisfies (ACC) and let A be a non-empty subset of P. Then, $B:=\{\bigvee F: F$ is a finite non-empty subset of $A\}$ is a well-defined subset of P. Since B is non-empty, B has a maximal element $m=\bigvee F$, for some finite subset F of A. Let $a \in A$. Then $\bigvee(F \cup\{a\}) \in B$ and $m=\bigvee F \leq \bigvee(F \cup\{a\})$. Since m is maximal in B, $m=\bigvee F=\bigvee(F \cup\{a\})$. As $m=\bigvee(F \cup\{a\})$, we have $a \leq m$, whence m is an upper bound of A.

Chain Conditions and Completeness (Cont'd)

- Let $x \in P$ be an upper bound of A. Then x is an upper bound of F, since $F \subseteq A$. Hence $m=\bigvee F \leq x$. Thus, m is the least upper bound of A, i.e., $\vee A=m=\bigvee F$.
(ii) follows from (i) and a preceding result.

A lattice with no infinite chains has a bottom element and satisfies (ACC), whence (iii) follows from (ii).

Subsection 7

Join-Irreducible Elements

Join- and Meet-Irreducible Elements

Definition

Let L be a lattice. An element $x \in L$ is join-irreducible if:
(i) $x \neq 0$ (in case L has a zero);
(ii) $x=a \vee b$ implies $x=a$ or $x=b$, for all $a, b \in L$.

Condition (ii) is equivalent to the more pictorial:
(ii) $a<x$ and $b<x$ imply $a \vee b<x$, for all $a, b \in L$.

Definition

Let L be a lattice. An element $x \in L$ is meet-irreducible if:
(i) $x \neq 1$ (in case L has a one);
(ii) $x=a \wedge b$ implies $x=a$ or $x=b$, for all $a, b \in L$.

Condition (ii) is equivalent to the more pictorial:
(ii) $x<a$ and $x<b$ imply $x<a \wedge b$, for all $a, b \in L$.

Join-Dense and Meet-Dense Subsets

- We denote:
- the set of join-irreducible elements of L by $\mathcal{J}(L)$;
- the set of meet-irreducible elements by $\mathcal{M}(L)$.

Each of these sets inherits L's order relation, and will be regarded as an ordered set.

- Let P be an ordered set and let $Q \subseteq P$.
- Q is called join-dense in P if for every element $a \in P$, there is a subset A of Q such that $a=V_{P} A$;
- Q is called meet-dense in P if for every element $a \in P$, there exists a subset A of Q such that $a=\wedge_{p} A$.

Examples I

(1) In a chain, every non-zero element is join-irreducible. Thus, if L is an n-element chain, then $\mathcal{J}(L)$ is an $(n-1)$-element chain.
(2) In a finite lattice L, an element is join-irreducible if and only if it has exactly one lower cover. This makes $\mathcal{J}(L)$ extremely easy to identify from a diagram of L.

Examples II

(3) Consider the lattice $\left\langle\mathbb{N}_{0} ; \mathrm{lcm}, \mathrm{gcd}\right\rangle$. A non-zero element $m \in \mathbb{N}_{0}$ is join-irreducible if and only if m is of the form p^{r}, where p is a prime and $r \in \mathbb{N}$.
(4) In a lattice $\mathcal{P}(X)$ the join-irreducible elements are exactly the singleton sets, $\{x\}$, for $x \in X$.
(5) It is easily seen that the lattice of open subsets of \mathbb{R} (that is, subsets which are unions of open intervals) has no join-irreducible elements.

Some Remarks

- We have excluded 0 from being regarded as join-irreducible.
- Note that we can never write 0 as a non-empty join, $\bigvee_{P} A$, unless $0 \in A$.
- To compensate for this restriction, we have not excluded $A=\varnothing$ in the definition of join-density, noting that $\mathrm{V}_{p} \varnothing=0$ in a lattice P with zero.
Insisting that 0 is not join-irreducible is the lattice-theoretic equivalent of declaring that 1 is not a prime number.
- Our examples have shown that join-irreducible elements do not necessarily exist in infinite lattices.
On the other hand, it is easy to see that in a finite lattice every element is a join of join-irreducible elements.

DCC and Join-Irreducibles

Proposition

Let L be a lattice satisfying (DCC).
(i) Suppose $a, b \in L$ and $a \not \geqq b$. Then, there exists $x \in \mathcal{J}(L)$, such that $x \leq a$ and $x \not \leq b$.
(ii) $a=\bigvee\{x \in \mathcal{J}(L): x \leq a\}$, for all $a \in L$.

These conclusions hold in particular if L is finite.
(i) Let $a \not \leq b$ and let $S:=\{x \in L: x \leq a$ and $x \not \leq b\}$. The set S is non-empty since it contains a. Hence, since L satisfies (DCC), there exists a minimal element x of S. We claim that x is join-irreducible. Suppose that $x=c \vee d$, with $c<x$ and $d<x$. By the minimality of x, neither c nor d lies in S. We have $c<x \leq a$, so $c \leq a$, and, similarly, $d \leq a$. Therefore $c, d \notin S$ implies $c \leq b$ and $d \leq b$. But then $x=c \vee d \leq b$, a contradiction. Thus $x \in \mathcal{J}(L) \cap S$, proving (i).

DCC and Join-Irreducibles (Cont'd)

(ii) Let $a \in L$ and let $T:=\{x \in \mathcal{J}(L): x \leq a\}$. Clearly a is an upper bound of T. Let c be an upper bound of T. We claim that $a \leq c$. Suppose that $a \nless c$; then $a \nless a \wedge c$. By (i), there exists $x \in \mathcal{J}(L)$, with $x \leq a$ and $x \nleftarrow a \wedge c$. Hence $x \in T$ and, consequently, $x \leq c$, since c is an upper bound of T. Thus x is a lower bound of $\{a, c\}$ and consequently $x \leq a \wedge c$, a contradiction. Hence $a \leq c$, as claimed. This proves that $a=\bigvee T$ in L, whence (ii) holds.

Chain Conditions and Join Density

- Part (iii) below is an analogue of (the existence portion of) the Fundamental Theorem of Arithmetic.

Theorem

Let L be a lattice.
(i) If L satisfies (DCC), then $\mathcal{J}(L)$ and, more generally, any subset Q which contains $\mathcal{J}(L)$ is join-dense in L.
(ii) If L satisfies (ACC) and Q is join-dense in L, then, for each $a \in L$, there exists a finite subset F of Q, such that $a=\bigvee F$.
(iii) If L has no infinite chains, then, for each $a \in L$, there exists a finite subset F of $\mathcal{J}(L)$, such that $a=\bigvee F$.
(iv) If L has no infinite chains, then Q is join-dense in L if and only if $\mathcal{J}(L) \subseteq Q$.

Chain Conditions and Join Density (Cont'd)

(i) This an immediate consequence of Part (ii) of the previous proposition.
(ii) This follows immediately from a previous result.
(iii) No infinite chains implies both (ACC) and (DCC), so (iii) is a consequence of (i) and (ii).
(iv) One direction follows from (i).

In the other direction, assume that Q is join-dense in L and let $x \in \mathcal{J}(L)$. By (ii), there is a finite subset F of Q such that $x=\bigvee F$. Since x is join-irreducible we have $x \in F$ and, hence, $x \in Q$. Thus, $\mathcal{J}(L) \subseteq Q$.

