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Lattices and Complete Lattices Lattices as Ordered Sets

Upper and Lower Bounds

Let P be an ordered set and let S ⊆ P .
An element x ∈ P is an upper bound of S if s ≤ x for all s ∈ S .
An element x ∈ P is a lower bound of S if x ≤ s for all s ∈ S .
The set of all upper bounds of S is denoted by Su (read “S upper”):

Su = {x ∈ P ∶ (∀s ∈ S) s ≤ x}.
The set of all lower bounds is denoted Sℓ (“S lower”):

Sℓ = {x ∈ P ∶ (∀s ∈ S) s ≥ x}.
Since ≤ is transitive,

Su is always an up-set;
Sℓ is always a down-set.
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Lattices and Complete Lattices Lattices as Ordered Sets

Least Upper and Greatest Lower Bounds

If Su has a least element x , then x is the least upper bound of S .

Equivalently, x is the least upper bound of S if

(i) x is an upper bound of S ;
(ii) x ≤ y , for all upper bounds y of S .

If Sℓ has a greatest element x , then x is called the greatest lower

bound of S .

Since least elements and greatest elements are unique, least upper
bounds and greatest lower bounds are unique when they exist.

The least upper bound of S is also called the supremum of S and is
denoted by supS .

The greatest lower bound of S is also called the infimum of S and is
denoted by inf S .
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Lattices and Complete Lattices Lattices as Ordered Sets

Top and Bottom

We discuss P itself with respect to suprema and infima:

If P has a top element, then Pu = {⊺}; thus, supP = ⊺.
When P has no top element, we have Pu = ∅.
Hence, supP does not exist.
If P has a bottom element, then inf P = �.

We turn to S = ∅ with respect to suprema and infima:

Every element x ∈ P satisfies (vacuously) s ≤ x , for all s ∈ S . Thus,∅u = P and, hence, sup∅ exists if and only if P has a bottom element,
and in that case sup∅ = �.
If P has a top element, then inf ∅ = ⊺.
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Lattices and Complete Lattices Lattices as Ordered Sets

Joins and Meets

We write:

x ∨ y (read as “x join y”) in place of sup{x , y} when it exists;
x ∧ y (read as “x meet y”) in place of inf {x , y} when it exists.

Similarly we write:

⋁S (the “join of S”) instead of supS and⋀S (the “meet of S”) instead of inf S

when these exist.

It is sometimes necessary to indicate that the join or meet is being
found in a particular ordered set P , in which case we write

⋁
P

S or ⋀
P

S .

If S is of the form S = {Ai}i∈I , where I is some indexing set, we write

⋁i∈I Ai for ⋁{Ai ∶ i ∈ I} and ⋀i∈I Ai for ⋀{Ai ∶ i ∈ I}.
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Lattices and Complete Lattices Lattices as Ordered Sets

Lattices and Complete Lattices

Definitions

Let P be a non-empty ordered set.

(i) If x ∨ y and x ∧ y exist for all x , y ∈ P , then P is called a lattice.

(ii) If ⋁S and ⋀S exist for all S ⊆ P , then P is called a complete

lattice.

(1) Let P be any ordered set. Suppose x , y ∈ P and x ≤ y . Then
{x , y}u = ↑y {x , y}ℓ = ↓x
x ∨ y = y x ∧ y = x

In particular, since ≤ is reflexive, we have x ∨ x = x and x ∧ x = x .
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Lattices and Complete Lattices Lattices as Ordered Sets

Remarks on Lattices and Complete Lattices

(2) In an ordered set P , the least upper bound x ∨ y of {x , y} may fail to
exist for two different reasons:
(a) because x and y have no common

upper bound;

(b) because they have no least upper
bound.

(3) Consider the ordered set drawn below.

Since {b, c}u = {⊺,h, i} has
distinct minimal elements, h
and i , it cannot have a least
element. Hence b ∨ c does
not exist.

Since {a,b}u = {⊺,h, i , f } has a least element, f , a ∨ b = f .
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Lattices and Complete Lattices Lattices as Ordered Sets

Further Remarks on Lattices and Complete Lattices

(4) Let P be a lattice. Then, for all a,b, c ,d ∈ P ,
(i) a ≤ b implies a ∨ c ≤ b ∨ c and a ∧ c ≤ b ∧ c ;
(ii) a ≤ b and c ≤ d imply a ∨ c ≤ b ∨ d and a ∧ c ≤ b ∧ d .

(i) Using the definitions of join and meet, we get:

a ≤ b ≤ b ∨ c
c ≤ b ∨ c } ⇒ a ∨ c ≤ b ∨ c ;

a ∧ c ≤ a ≤ b
a ∧ c ≤ c } ⇒ a ∧ c ≤ b ∧ c .

(ii) Using Part (i), we get

a ∨ c ≤ b ∨ c ≤ b ∨ d
a ∧ c ≤ b ∧ c ≤ b ∧ d .
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Lattices and Complete Lattices Lattices as Ordered Sets

Further Remarks on Lattices and Complete Lattices

(5) Let P be a lattice. Let a,b, c ∈ P and assume that b ≤ a ≤ b ∨ c .
Since c ≤ b ∨ c , we have (b ∨ c) ∨ c = b ∨ c , by (1). Thus, by (4)(i),

b ∨ c ≤ a ∨ c ≤ (b ∨ c) ∨ c = b ∨ c ,
whence a ∨ c = b ∨ c .
Thus, when calculating joins and meets on
a diagram, once we know the join of b and
c , the join of c with the intermediate ele-
ment a is forced.
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Lattices and Complete Lattices Lattices as Ordered Sets

Example I: Some Linear Orders

Let P be a non-empty ordered set.

If x ≤ y , then x ∨ y = y and x ∧ y = x .
Hence, to show that P is a lattice, it suffices to prove that x ∨ y and
x ∧ y exist in P for all noncomparable pairs x , y ∈ P .
In particular, every chain is a lattice in which

x ∨ y = max{x , y} and x ∧ y = min {x , y}.
Thus, each of R,Q,Z and N is a lattice under its usual order.
None of them is complete; every one lacks a top element, and a
complete lattice must have top and bottom elements.
If x < y in R, then the closed interval [x , y] is a complete lattice (by
the completeness axiom for R).
Failure of completeness in Q is more fundamental than in R.
In Q, it is not only the lack of top and bottom elements which causes
problems; for example, the set {s ∈ Q ∶ s2 < 2} has upper bounds but
no least upper bound in Q.
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Lattices and Complete Lattices Lattices as Ordered Sets

Example II: Powersets

For any set X , the ordered set ⟨P(X );⊆⟩ is a complete lattice in
which

⋁{Ai ∶ i ∈ I} = ⋃{Ai ∶ i ∈ I} and ⋀{Ai ∶ i ∈ I} = ⋂{Ai ∶ i ∈ I}.
We indicate the index set by subscripting, e.g., instead of ⋃{Ai ∶ i ∈ I}
we shall write ⋃i∈I Ai or simply ⋃Ai .

We verify the assertion about meets (a dual proof works for joins);

Let {Ai}i∈I be a family of elements of P(X ). Since ⋂i∈I Ai ⊆ Aj , for
all j ∈ I , it follows that ⋂i∈I Ai is a lower bound for {Ai}i∈I .
Also, if B ∈ P(X ) is a lower bound of {Ai}i∈I , then B ⊆ Ai , for all
i ∈ I and, hence, B ⊆ ⋂i∈I Ai . Thus, ⋂i∈I Ai is indeed the greatest
lower bound of {Ai}i∈I in P(X ).
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Lattices and Complete Lattices Lattices as Ordered Sets

Example III: Lattices of Sets

Let ∅ ≠ L ⊆ P(X ). Then L is called

a lattice of sets if it is closed under finite unions and intersections;
a complete lattice of sets if it is closed under arbitrary unions and
intersections.

If L is a lattice of sets, then ⟨L;⊆⟩ is a lattice in which A ∨ B = A ∪B
and A ∧ B = A ∩B .

Similarly, if L is a complete lattice of sets, then ⟨L;⊆⟩ is a complete
lattice with join given by set union and meet given by set intersection.

Let P be an ordered set and consider the ordered set O(P) of all
down-sets of P .

If {Ai}i∈I ⊆ O(P), then ⋃i∈I Ai and ⋂i∈I Ai both belong to O(P).
Hence O(P) is a complete lattice of sets, called the down-set lattice

of P .
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Lattices and Complete Lattices Lattices as Ordered Sets

Example IV: The Ordered Sets Mn

The ordered set Mn (for n ≥ 1) is easily seen to be a lattice:

Let x , y ∈Mn, with x ∥ y . Then x and y are in the central antichain
of Mn and, hence, x ∨ y = ⊺ and x ∧ y = �.
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Lattices and Complete Lattices Lattices as Ordered Sets

Example V: The Ordered Set ⟨N0;≼⟩

Consider the ordered set ⟨N0;≼⟩ of non-negative integers ordered by
division.
Recall that k is the greatest common divisor (or highest common
factor) of m and n if
(a) k divides both m and n (that is, k ≼m and k ≼ n);
(b) if j divides both m and n, then j divides k (that is, j ≼ k , for all lower

bounds j of {m,n}).

Thus, the greatest common divisor of m and n is precisely the meet of
m and n in ⟨N0;≼⟩.
Dually, the join of m and n in ⟨N0;≼⟩ is given by their least common

multiple.

These statements remain valid when m or n equals 0.

Thus, ⟨N0;≼⟩ is a lattice in which

m ∨ n = lcm{m,n} and m ∧ n = gcd{m,n}.
⟨N0;≼⟩ is actually a complete lattice.
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Lattices and Complete Lattices Lattices as Ordered Sets

Lattices of Subgroups

Assume that G is a group and ⟨SubG ;⊆⟩ is its ordered set of
subgroups.

Let H,K ∈ SubG .

It is always the case that H ∩K ∈ SubG , whence H ∧K exists and
equals H ∩K .
H ∪K is is not a subgroup in general. Nevertheless, H ∨K does exist in
SubG , as (rather tautologically) the subgroup ⟨H ∪K ⟩ generated by
H ∪K . Unfortunately, there is no convenient general formula for H ∨K .

Normal subgroups are more amenable.

Meet is again given by ∩;
Join in N -SubG has a particularly compact description:
If H ,K are normal subgroups of G , then HK ∶= {hk ∶ h ∈ H ,k ∈ K} is
also a normal subgroup of G .
It follows easily that the join in N -SubG is given by H ∨K = HK .
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Lattices and Complete Lattices Lattices as Ordered Sets

Examples of Lattices of Subgroups

The lattices SubG and N -SubG for the group, D4, of symmetries of
a square and for the group Z2 ×Z4.

The elements of N -SubG are shaded.
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Subsection 2

Lattices as Algebraic Structures
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Lattices and Complete Lattices Lattices as Algebraic Structures

Lattices as Algebraic Structures

Given a lattice L, we may define binary operations join and meet on
the non-empty set L by

a ∨ b ∶= sup{a,b} and a ∧ b ∶= inf {a,b}, a,b ∈ L.
The operations ∨ ∶ L2 → L and ∧ ∶ L2 → L are order-preserving.

The Connecting Lemma

Let L be a lattice and let a,b ∈ L. Then the following are equivalent:

(i) a ≤ b;
(ii) a ∨ b = b;
(iii) a ∧ b = a.

We have shown that (i) implies both (ii) and (iii).

Assume (ii). Then b is an upper bound for {a,b}, whence b ≥ a.
Thus (i) holds. Similarly, (iii) implies (i).
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Lattices and Complete Lattices Lattices as Algebraic Structures

Properties of ∨ and ∧

Theorem

Let L be a lattice. Then ∨ and ∧ satisfy, for all a,b, c ∈ L,
(L1) (a ∨ b) ∨ c = a ∨ (b ∨ c) (associative laws)

(L1)∂ (a ∧ b) ∧ c = a ∧ (b ∧ c)
(L2) a ∨ b = b ∨ a (commutative laws)

(L2)∂ a ∧ b = b ∧ a
(L3) a ∨ a = a (idempotency laws)

(L3)∂ a ∧ a = a
(L4) a ∨ (a ∧ b) = a (absorption laws)

(L4)∂ a ∧ (a ∨ b) = a.
By the Duality Principle for lattices it is enough to consider
(L1)-(L4).
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Lattices and Complete Lattices Lattices as Algebraic Structures

Proof of the Properties

We have already proven (L3).

(L2) is immediate because, for any set S , supS is independent of the
order in which the elements of S are listed.

(L4) follows easily from the Connecting Lemma: Since a ∧ b ≤ a, we
get a ∨ (a ∧ b) = a.
We prove (L1).

It is enough, by (L2), to show that (a ∨ b) ∨ c = sup {a,b, c}. This is
the case if {a ∨ b, c}u = {a,b, c}u . But

d ∈ {a,b, c}u ⇐⇒ d ∈ {a,b}u and d ≥ c
⇐⇒ d ≥ a ∨ b and d ≥ c
⇐⇒ d ∈ {a ∨ b, c}u .
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Lattices and Complete Lattices Lattices as Algebraic Structures

From Algebraic Structures to Ordered Structures

Theorem

Let ⟨L;∨,∧⟩ be a non-empty set equipped with two binary operations
which satisfy (L1)-(L4) and (L1)∂-(L4)∂ .

(i) For all a,b ∈ L, we have a ∨ b = b if and only if a ∧ b = a.
(ii) Define ≤ on L by a ≤ b if a ∨ b = b. Then ≤ is an order relation.

(iii) With ≤ as in (ii), ⟨L;≤⟩ is a lattice in which the original operations
agree with the induced operations, that is, for all a,b ∈ L,

a ∨ b = sup{a,b} and a ∧ b = inf {a,b}.
Assume a ∨ b = b. Then a = a ∧ (a ∨ b) (by (L4)∂) = a ∧ b (by
assumption).

Conversely, assume a ∧ b = a. Then b = b ∨ (b ∧ a) (by (L4))= b ∨ (a ∧ b) (by (L2)∂) = b ∨ a (by assumption) = a ∨ b (by (L2)).
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Lattices and Complete Lattices Lattices as Algebraic Structures

From Algebraic Structures to Ordered Structures (Cont’d)

Now define ≤ as in (ii). Then ≤ is

reflexive by (L3): a ∨ a (L3)= a⇒ a ≤ a;
antisymmetric by (L2): a ≤ b & b ≤ a⇒ a ∨ b = b & b ∨ a = a (L2)

⇒ a = b;
transitive by (L1): a ≤ b & b ≤ c ⇒ a ∨ b = b & b ∨ c = c ⇒ a ∨ c =
a ∨ (b ∨ c) (L1)= (a ∨ b) ∨ c = b ∨ c = c ⇒ a ≤ c ;

To show that sup{a,b} = a ∨ b in the ordered set ⟨L;≤⟩, we must
check:

a ∨ b ∈ {a,b}u: a ∨ (a ∨ b) = (a ∨ a) ∨ b = a ∨ b⇒ a ≤ a ∨ b and
b ∨ (a ∨ b) = b ∨ (b ∨ a) = (b ∨ b) ∨ a = b ∨ a = a ∨ b⇒ b ≤ a ∨ b;
d ∈ {a,b}u implies d ≥ a ∨ b:
(a ∨ b) ∨ d = (a ∨ b) ∨ (d ∨ d) = ((a ∨ b) ∨ d) ∨ d = (a ∨ (b ∨ d)) ∨ d =
(a∨(d∨b))∨d = ((a∨d)∨b)∨d = (a∨d)∨(b∨d) = d∨d = d ⇒ a∨b ≤ d ;

The characterization of inf is obtained by duality.
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Lattices and Complete Lattices Lattices as Algebraic Structures

Stocktaking: Algebra and Order

We have shown that lattices can be completely characterized in terms
of the join and meet operations.

We may henceforth say “let L be a lattice”, replacing L by ⟨L;≤⟩ or
by ⟨L;∨,∧⟩ if we want to emphasize that we are thinking of it as a
special kind of ordered set or as an algebraic structure.

In a lattice L, associativity of ∨ and ∧ allows us to write iterated joins
and meets unambiguously without brackets.

An easy induction shows that these correspond to sups and infs in the
expected way:

⋁{a1, . . . ,an} = a1 ∨⋯∨ an and ⋀{a1, . . . ,an} = a1 ∧⋯∧ an,
for a1, . . . ,an ∈ L,n ≥ 1;
Consequently, ⋁F and ⋀F exist for any finite, non-empty subset F
of a lattice.
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Lattices and Complete Lattices Lattices as Algebraic Structures

Bounded Lattices

Let L be a lattice.

It may happen that ⟨L;≤⟩ has top and bottom elements ⊺ and �;

When thinking of L as ⟨L;∨,∧⟩, we say:

L has a one if there exists 1 ∈ L, such that a = a ∧ 1, for all a ∈ L;
L has a zero if there exists 0 ∈ L, such that a = a ∨ 0, for all a ∈ L.

The lattice ⟨L;∨,∧⟩ has a:
one if and only if ⟨L;≤⟩ has a top element ⊺ and, in that case, 1 = ⊺;
zero if and only if ⟨L;≤⟩ has a bottom element � and, in that case,
0 = �.

A lattice ⟨L;∨,∧⟩ possessing 0 and 1 is called bounded.

A finite lattice is automatically bounded, with 1 = ⋁L and 0 = ⋀L.

Example: ⟨N0; lcm,gcd⟩ is bounded, with 1 = 0 and 0 = 1.
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Subsection 3

Sublattices, Products and Homomorphisms
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

Sublattices

Definition (Sublattice)

Let L be a lattice and ∅ ≠M ⊆ L. Then M is a sublattice of L if

a,b ∈M implies a ∨ b ∈M and a ∧ b ∈M.

We denote the collection of all sublattices of L by SubL and let
Sub0L = SubL ∪ {∅}; both are ordered by inclusion.

Examples:
(1) Any one-element subset of a lattice is a sublattice. More generally, any

non-empty chain in a lattice is a sublattice. (To test that a non-empty
subset M is a sublattice, it suffices to consider non-comparable
elements a,b.)

(2) In the diagrams the shaded
elements form sublattices:
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More Examples of Sublattices

(3) In the diagrams below the shaded elements do not form sublattices:

(3) A subset M of a lattice ⟨L;≤⟩ may be a lattice in its own right
without being a sublattice of L, e.g., the right picture above.
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

Products

Let L and K be lattices.

Define ∨ and ∧ coordinatewise on L ×K , as follows:

(ℓ1,k1) ∨ (ℓ2,k2) = (ℓ1 ∨ ℓ2,k1 ∨ k2),(ℓ1,k1) ∧ (ℓ2,k2) = (ℓ1 ∧ ℓ2,k1 ∧ k2).
It is routine to check that L ×K satisfies the identities (L1)-(L4)∂ and
therefore is a lattice.

Also

(ℓ1,k1) ∨ (ℓ2,k2) = (ℓ2,k2) ⇐⇒ ℓ1 ∨ ℓ2 = ℓ2 and k1 ∨ k2 = k2
⇐⇒ ℓ1 ≤ ℓ2 and k1 ≤ k2
⇐⇒ (ℓ1,k1) ≤ (ℓ2,k2),

with respect to the order on L ×K .

Hence the lattice formed by taking the ordered set product of lattices
L and K is the same as that obtained by defining ∨ and ∧
coordinatewise on L ×K .
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An Example

The product of the lattices L = 3 and K = 1⊕ 22:

Notice how (isomorphic copies) of L and K sit inside L ×K as the
sublattices L × {0} and {0} ×K .

The product of lattices L and K always contains sublattices
isomorphic to L and K .

Iterated products and powers are defined in the obvious way.

It is also possible to define the product of an infinite family of lattices.
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Homomorphisms

Definition

Let L and K be lattices. A map f ∶ L → K is said to be a homomorphism

(or, for emphasis, lattice homomorphism) if f is join-preserving and
meet-preserving, i.e., for all a,b ∈ L,

f (a ∨ b) = f (a) ∨ f (b) and f (a ∧ b) = f (a) ∧ f (b).
A bijective homomorphism is a (lattice) isomorphism.
If f ∶ L→ K is a one-to-one homomorphism, then the sublattice f (L) of K
is isomorphic to L and we refer to f as an embedding (of L into K ).
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

Remarks on Lattice Homomorphisms

(1) The inverse of an isomorphism is a homomorphism and hence is also
an isomorphism:

Let f ∶ L → K be an isomorphism, a′,b′ ∈ K , such that
a′ = f (a),b′ = f (b). Then, for the join (and dually for the meet)

f −1(a′ ∨ b′) = f −1(f (a) ∨ f (b))= f −1(f (a ∨ b))= a ∨ b= f −1(f (a)) ∨ f −1(f (b))= f −1(a′) ∨ f −1(b′);
(2) We write L ↣ K to indicate that the lattice K has a sublattice

isomorphic to the lattice L.

We will see, next, that M ↣ L implies M ↪ L.

(3) For bounded lattices L and K it is often appropriate to consider
homomorphisms f ∶ L → K , such that f (0) = 0 and f (1) = 1.
Such maps are called {0,1}-homomorphisms.
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Examples of Mappings

The maps ϕ2 and ϕ3 are homomorphisms:

The maps ϕ4 and ϕ5 are order preserving but not homomorphisms:

In general an order-preserving map may not be a homomorphism.
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Order and Lattice Isomorphisms

Proposition

Let L and K be lattices and f ∶ L→ K a map.

(i) The following are equivalent:

(a) f is order-preserving;
(b) (∀a,b ∈ L)f (a ∨ b) ≥ f (a) ∨ f (b);
(c) (∀a,b ∈ L)f (a ∧ b) ≤ f (a) ∧ f (b).
In particular, if f is a homomorphism, then f is order-preserving.

(ii) f is a lattice isomorphism if and only if it is an order-isomorphism.

(i) Since a ≤ a ∨ b,b ≤ a ∨ b,a ∧ b ≤ a and a ∧ b ≤ b, we get

f (a) ≤ f (a ∨ b)
f (b) ≤ f (a ∨ b) } ⇒ f (a) ∨ f (b) ≤ f (a ∨ b);
f (a ∧ b) ≤ f (a)
f (a ∧ b) ≤ f (b) } ⇒ f (a ∧ b) ≤ f (a) ∧ f (b).
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Order and Lattice Isomorphisms (Cont’d)

(ii) Assume that f is a lattice isomorphism. Then, by the Connecting
Lemma, a ≤ b iff a ∨ b = b iff f (a ∨ b) = f (b) iff f (a) ∨ f (b) = f (b) iff
f (a) ≤ f (b), whence, f is an order-embedding, and so is an
order-isomorphism.

Conversely, assume that f is an order-isomorphism. Then f is
bijective. By (i) and duality, to show that f is a lattice isomorphism it
suffices to show that

f (a) ∨ f (b) ≥ f (a ∨ b), for all a,b ∈ L.
Since f is surjective, there exists c ∈ L, such that f (a) ∨ f (b) = f (c).
Then f (a) ≤ f (c) and f (b) ≤ f (c). Since f is an order-embedding, it
follows that a ≤ c and b ≤ c , whence a ∨ b ≤ c . Because f is
order-preserving, f (a ∨ b) ≤ f (c) = f (a) ∨ f (b), as required.
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Subsection 4

Ideals and Filters
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Ideals

Definition

Let L be a lattice. A non-empty subset J of L is called an ideal if

(i) a,b ∈ J implies a ∨ b ∈ J,
(ii) a ∈ L, b ∈ J and a ≤ b imply a ∈ J.

More compactly, an ideal is a non-empty down-set closed under join.

An ideal and two non-
ideals.

Every ideal J of a lattice L is a sublattice, since a ∧ b ≤ a for any
a,b ∈ L.
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Filters

Definition

Let L be a lattice. A non-empty subset G of L is called a filter if

(i) a,b ∈ G implies a ∧ b ∈ G ,

(ii) a ∈ L, b ∈ G and a ≥ b imply a ∈ G .

The set of all ideals of L is denoted by I(L).
The set of all filters of L is denoted by F(L).
An ideal or filter is called proper if it does not coincide with L.

An ideal J of a lattice with 1 is proper if and only if 1 ∉ J;
Dually, a filter G of a lattice with 0 is proper if and only if 0 ∉ G .

For each a ∈ L, the set ↓a is an ideal, known as the principal ideal

generated by a.

Dually, ↑a is the principal filter generated by a.

George Voutsadakis (LSSU) Lattices and Order April 2020 39 / 72



Lattices and Complete Lattices Ideals and Filters

Examples

(1) In a finite lattice, every ideal or filter is principal:

The ideal J equals ↓⋁J.
The filter G equals ↑⋀G .

(2) Let L and K be bounded lattices and f ∶ L → K a{0,1}-homomorphism. Then f −1(0) is an ideal and f −1(1) is a filter
in L.

(3) The following are ideals in P(X ):
(a) all subsets not containing a fixed element of X ;
(b) all finite subsets (this ideal is non-principal if X is infinite).

(4) Let (X ;T ) be a topological space and let x ∈ X . Then the set{V ⊆ X ∶ (∃U ∈ T )x ∈ U ⊆ V } is a filter in P(X ). It is called the
filter of neighborhoods of x .
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Subsection 5

Complete Lattices and ⋂-Structures
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Complete Lattices: Basic Properties

Recall that a complete lattice is defined to be a non-empty, ordered
set P , such that the join (supremum), ⋁S , and the meet (infimum),

⋀S , exist for every subset S of P .

The following are immediate consequences of the definitions of least
upper bound and greatest lower bound:

Lemma

Let P be an ordered set, let S ,T ⊆ P and assume that ⋁S ,⋁T ,⋀S and⋀T exist in P .

(i) s ≤ ⋁S and s ≥ ⋀S , for all s ∈ S .
(ii) Let x ∈ P ; then x ≤ ⋀S if and only if x ≤ s, for all s ∈ S .
(iii) Let x ∈ P ; then x ≥ ⋁S if and only if x ≥ s, for all s ∈ S .
(iv) ⋁S ≤ ⋀T if and only if s ≤ t, for all s ∈ S and all t ∈ T .

(v) If S ⊆ T , then ⋁S ≤ ⋁T and ⋀S ≥ ⋀T .
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Proof of the Basic Properties

(i) ⋁S is an upper bound of S and s ∈ S . Hence, s ≤ ⋁S .

⋀S is a lower bound of S and s ∈ S . Hence, ⋀S ≤ s.
(ii) Suppose x ≤ ⋀S . Since ⋀S ≤ s, for all s ∈ S , we get, by transitivity,

x ≤ s, for all s ∈ S .
Suppose x ≤ s, for all s ∈ S . This means that x is a lower bound of S .
Since ⋀S is a greatest lower bound of S , x ≤ ⋀S .

(iii) Dual to Part (ii).

(iv) Suppose ⋁S ≤ ⋀T . Let s ∈ S and t ∈ T . Then s ≤ ⋁S ≤ ⋀T ≤ t.
Assume, conversely, that, for all s ∈ S and all t ∈ T , s ≤ t. By Part
(ii), s ≤ ⋀T . By Part (iii), ⋁S ≤ ⋀T .

(v) Suppose S ⊆ T .

⋁T is an upper bound of T . Since S ⊆ T , ⋁T is an upper bound of
S . ⋁S is the least upper bound of S . Hence, ⋁S ≤ ⋁T .

⋀T is a lower bound of T . Since S ⊆ T , ⋁T is also a lower bound of
S . ⋀S is the greatest lower bound of S . Hence, ⋀T ≤ ⋀S .
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Join and Meet and Set Unions

Lemma

Let P be a lattice, let S ,T ⊆ P and assume that ⋁S ,⋁T ,⋀S and ⋀T

exist in P . Then

⋁(S ∪T ) = (⋁S) ∨ (⋁T ) and ⋀(S ∪T ) = (⋀S) ∧ (⋀T ).
⋁(S ∪T ) is an upper bound of S ∪T . Thus, ⋁(S ∪T ) is an upper
bound of S and of T . Since ⋁S is the least upper bound of S ,

⋁S ≤ ⋁(S ∪T ). Since ⋁T is the least upper bound of T ,

⋁T ≤ ⋁(S ∪T ). Since (⋁S) ∨ (⋁T ) is the least upper bound of{⋁S ,⋁T}, (⋁S) ∨ (⋁T ) ≤ ⋁(S ∪T ).(⋁S) ∨ (⋁T ) is an upper bound of {⋁S ,⋁T}. By transitivity,(⋁S) ∨ (⋁T ) is an upper bound of S ∪T . Since ⋁(S ∪T ) is the
least upper bound of S ∪T , ⋁(S ∪T ) ≤ (⋁S) ∨ (⋁T ).
By antisymmetry, ⋁(S ∪T ) = (⋁S) ∨ (⋁T ).
The second equality can be shown similarly.
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On Finite Joins and Meets

Using the preceding lemma, we get, using induction,

Lemma

Let P be a lattice. Then ⋁F and ⋀F exist for every finite, non-empty
subset F of P .

Let F = {x1, x2, . . . , xn}, n ≥ 1. Then:
⋁{x1} = x1;⋁{x1, x2} = x1 ∨ x2;⋁{x1, x2, . . . , xn} = ⋁{x1, x2, . . . , xn−1} ∨ xn.

Similarly, we may show that the finite meet ⋀F also exists.

Corollary

Every finite lattice is complete.
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Joins and Meets and Order-Preserving Maps

Definition

Let P and Q be ordered sets and ϕ ∶ P → Q a map. Then we say that

ϕ preserves existing joins if whenever ⋁S exists in P then ⋁ϕ(S)
exists in Q and ϕ(⋁S) = ⋁ϕ(S);
ϕ preserves existing meets if whenever ⋀S exists in P then ⋀ϕ(S)
exists in Q and ϕ(⋀S) = ⋀ϕ(S)

Lemma

Let P and Q be ordered sets and ϕ ∶ P → Q be an order-preserving map.

(i) Assume that S ⊆ P is such that ⋁S exists in P and ⋁ϕ(S) exists in
Q. Then ϕ(⋁S) ≥ ⋁ϕ(S). Dually, ϕ(⋀S) ≤ ⋀ϕ(S) if both meets
exist.

(ii) Assume now that ϕ ∶ P → Q is an order-isomorphism. Then ϕ

preserves all existing joins and meets.
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Proof of the Lemma

(i) ⋁S is an upper bound of S : S ≤ ⋁S . ϕ is order preserving:
ϕ(S) ≤ ϕ(⋁S). ⋁ϕ(S) is the least upper bound of ϕ(S). Hence,
⋁ϕ(S) ≤ ϕ(⋁S).
⋀S is a lower bound of S : ⋀S ≤ S . ϕ is order-preserving:
ϕ(⋀S) ≤ ϕ(S). ⋀ϕ(S) is the greatest lower bound of ϕ(S). Hence,
ϕ(⋀S) ≤ ⋀ϕ(S).

(ii) Assume ϕ is an order isomorphism. In particular, it is surjective.
Thus, there exists x ∈ P , such that ⋁ϕ(S) = ϕ(x). Thus, for all
s ∈ S , ϕ(s) ≤ ϕ(x). Since ϕ is order reflecting, S ≤ x . Since ⋁S is
the least upper bound of S , ⋁S ≤ x . Since ϕ is order preserving,
ϕ(⋁S) ≤ ϕ(x). Thus, ϕ(⋁S) ≤ ⋁ϕ(S). Equality follows by Part (i)
and antisymmetry.

Preservation of meets can be shown similarly.
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Subsets of Complete Lattices

The next lemma is useful for showing that certain subsets of complete
lattices are themselves complete lattices.

Lemma

Let Q be a subset, with the induced order, of some ordered set P and let
S ⊆ Q. If ⋁P S exists and belongs to Q, then ⋁Q S exists and equals ⋁P S

(and dually for ⋀Q S).

For any x ∈ S , we have x ≤ ⋁P S . since ⋁P S ∈ Q, by hypothesis, it
acts as an upper bound for S in Q. Further, if y is any upper bound
for S in Q, it is also an upper bound for S in P and so y ≥ ⋁P S .

Corollary

Let L be a family of subsets of a set X and let {Ai}i∈I be a subset of L.
(i) If ⋃i∈I Ai ∈ L, then ⋁L{Ai ∶ i ∈ I} exists and equals ⋃i∈I Ai .

(ii) If ⋂i∈I Ai ∈ L, then ⋀L{Ai ∶ i ∈ I} exists and equals ⋂i∈I Ai .

Consequently, any (complete) lattice of sets is a (complete) lattice with
joins and meets given by union and intersection.
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Synthesizing Joins Using Meets

To show that an ordered set is a complete lattice requires only half as
much work as the definition would have us believe.

Lemma

Let P be an ordered set such that ⋀S exists in P , for every non-empty
subset S of P . Then ⋁S exists in P , for every subset S of P which has an
upper bound in P ; indeed, ⋁S = ⋀Su.

Let S ⊆ P and assume that S has an upper bound in P . Thus, Su ≠ ∅.
Hence, by assumption, a = ⋀Su exists in P . We claim that ⋁S = a.
For all s ∈ S and all u ∈ Su, s ≤ u. Consequently, for all s ∈ S ,
s ≤ ⋀Su = a. Thus, a is an upper bound of S .

Suppose b is also an upper bound of S . By definition, b ∈ Su. Hence,
a = ⋀Su ≤ b. Therefore, a is the least upper bound of S , i.e., a = ⋁S .

George Voutsadakis (LSSU) Lattices and Order April 2020 49 / 72



Lattices and Complete Lattices Complete Lattices and ⋂-Structures

Complete Lattices in Terms of Arbitrary Meets

Theorem

Let P be a non-empty ordered set. Then the following are equivalent:

(i) P is a complete lattice;

(ii) ⋀S exists in P , for every subset S of P ;

(iii) P has a top element, ⊺, and ⋀S exists in P for every non-empty
subset S of P .

It is trivial that (i) implies (ii).

(ii) implies (iii) since the meet of the empty subset of P exists only if
P has a top element.

It follows easily from the previous lemma that (iii) implies (i).
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Complete Lattices of Sets

Corollary

Let X be a set and let L be a family of subsets of X , ordered by inclusion,
such that:
(a) ⋂i∈I Ai ∈ L, for every non-empty family {Ai}i∈I ⊆ L, and
(b) X ∈ L.
Then L is a complete lattice in which

⋀
i∈I

Ai = ⋂
i∈I

Ai , ⋁
i∈I

Ai = ⋂{B ∈ L ∶⋃
i∈I

Ai ⊆ B}.
To show that ⟨L;⊆⟩ is a complete lattice, it suffices to show that L
has a top element and that the meet of every nonempty subset of L
exists in L. By (b), L has a top element, namely X . Let {Ai}i∈I be a
non-empty subset of L. Then (a) gives ⋂i∈I Ai ∈ L. Therefore ⋀i∈I Ai

exists and is given by ⋂i∈I Ai . Thus, ⟨L;⊆⟩ is a complete lattice.
Since X is an upper bound of {Ai}i∈I in L, ⋁i∈I Ai = ⋀{Ai ∶ i ∈ I}u =⋂{B ∈ L ∶ (∀i ∈ I)Ai ⊆ B} = ⋂{B ∈ L ∶ ⋃i∈I Ai ⊆ B}.
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Intersection Structures

Definitions

If L is a non-empty family of subsets of X which satisfies

⋂
i∈I

Ai ∈ L, for every non-empty family {Ai}i∈I ⊆ L,
then L is called an intersection structure (or ⋂-structure) on X .
If L also satisfies X ∈ L, we refer to it as a topped intersection

structure on X . An alternative term is closure system.

In a complete lattice L of this type:

the meet is just set intersection, but
in general the join is not set union.
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Algebraic ⋂-Intersection Structures

Each of the following is a topped ⋂-structure and so forms a
complete lattice under inclusion:

the subgroups, SubG , of a group G ;
the normal subgroups, N -SubG , of a group G ;
the equivalence relations on a set X ;
the subspaces, SubV of a vector space V ;
the convex subsets of a real vector space;
the subrings of a ring;
the ideals of a ring;
Sub0L, the sublattices of a lattice L, with the empty set adjoined (note
that SubL is not closed under intersections, except when ∣L∣ = 1);
the ideals of a lattice L with 0 (or, if L has no zero element, the ideals
of L with the empty set added), and dually for filters.

These families all belong to a class of ⋂-structures, called algebraic

⋂-structures because of their provenance.
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Topological ⋂-Intersection Structures

The closed subsets of a topological space are closed under finite
unions and finite intersections and hence form a lattice of sets in
which A ∨B = A ∪ B and A ∧ B = A ∩B .

In fact, the closed sets form a topped ⋂-structure and, consequently,
the lattice of closed sets is complete.

Meet is given by intersection;
The join of a family of closed sets is not their union but is obtained by
forming the closure of their union.

Since the open subsets of a topological space are closed under
arbitrary union and include the empty set, they form a complete
lattice under inclusion.

By the dual version of the preceding corollary, join and meet are given
by ⋁

i∈I

Ai = ⋃
i∈I

Ai and ⋀
i∈I

Ai = Int(⋂
i∈I

Ai),
where Int(A) denotes the interior of A.

George Voutsadakis (LSSU) Lattices and Order April 2020 54 / 72



Lattices and Complete Lattices Complete Lattices and ⋂-Structures

The Knaster-Tarski Fixpoint Theorem

Given an ordered set P and a map F ∶ P → P , an element x ∈ P is
called a fixpoint of F if F (x) = x .

The Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and F ∶ L→ L an order-preserving map. Then

α ∶= ⋁{x ∈ L ∶ x ≤ F (x)}
is a fixpoint of F . Further, α is the greatest fixpoint of F .
Dually, F has a least fixpoint, given by ⋀{x ∈ L ∶ F (x) ≤ x}.

Let H = {x ∈ L ∶ x ≤ F (x)}. For all x ∈ H, x ≤ α, so x ≤ F (x) ≤ F (α).
Thus, F (α) ∈ Hu , whence α ≤ F (α). Since F is order-preserving,
F (α) ≤ F (F (α)). This says F (α) ∈ H, so F (α) ≤ α.
If β is any fixpoint of F , then β ∈ H, so β ≤ α.
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Subsection 6

Chain Conditions and Completeness
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Finiteness Conditions

We know that every finite lattice is complete.

There are various finiteness conditions, of which “P is finite” is the
strongest, which will guarantee that a lattice P is complete.

Definition

Let P be an ordered set.

(i) If C = {c0, c1, . . . , cn} is a finite chain in P with ∣C ∣ = n + 1, then we say that
the length of C is n.

(ii) P is said to have length n, written ℓ(P) = n, if the length of the longest
chain in P is n.

(iii) P is of finite length if it has length n for some n ∈N0.

(iv) P has no infinite chains if every chain in P is finite.

(v) P satisfies the ascending chain condition, (ACC), if given any sequence
x1 ≤ x2 ≤ ⋯ ≤ xn ≤⋯ of elements of P , there exists k ∈N, such that
xk = xk+1 = ⋯.
The dual of the ACC is the descending chain condition, (DCC).
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Examples

(1) The lattices Mn are of length 2. A lattice of finite length has no
infinite chains and so satisfies both (ACC) and (DCC).

(2) The lattice ⟨N0;≼⟩ satisfies (DCC) but not (ACC).
(3)

The chain N satisfies (DCC) but not
(ACC). Dually, N∂ satisfies (ACC) but
not (DCC). The lattice 1⊕ (⊍n∈N n)⊕
1 is the simplest example of a lattice
which has no infinite chains but is not
of finite length.

(4) It can be shown that a vector space V is finite dimensional if and only
if SubV is of finite length, in which case dimV = ℓ(SubV ).
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ACC and Maximal Elements

Lemma

An ordered set P satisfies (ACC) if and only if every non-empty subset A
of P has a maximal element.

Informal Proof: We shall prove the contrapositive in both directions,
i.e., we prove that P has an infinite ascending chain if and only if
there is a non-empty subset A of P which has no maximal element.

Assume that x1 < x2 <⋯ < xn < ⋯ is an infinite ascending chain in P .
Then, clearly, A = {xn ∶ n ∈N} has no maximal element.
Conversely, assume that A is a non-empty subset of P which has no
maximal element. Let x1 ∈ A. Since x1 is not maximal in A, there exists
x2 ∈ A, with x1 < x2. Similarly, there exists x3 ∈ A, with x2 < x3.
Continuing in this way (the Axiom of Choice is needed) we obtain an
infinite ascending chain in P .
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ACC, DCC and Infinite Chains

Theorem

An ordered set P has no infinite chains if and only if it satisfies both
(ACC) and (DCC).

If P has no infinite chains, then it satisfies both (ACC) and (DCC).

Suppose that P satisfies both (ACC) and (DCC) and contains an
infinite chain C . Note that if A is a non-empty subset of C , then A
has a maximal element m, by the preceding lemma. If a ∈ A, then,
since C is a chain, we have a ≤ m or m ≤ a.

But m ≤ a implies m = a, by the maximality of m.
Hence, a ≤ m, for all a ∈ A. So every non-empty subset of C has a
greatest element.

Let x1 be the greatest element of C ; let x2 be the greatest element of
C/{x1}; in general let xn+1 be the greatest element of
C/{x1, x2, . . . , xn}. Then x1 ⋗ x2 ⋗ ⋯ ⋗ xn ⋗ ⋯ is an infinite,
descending, covering chain in P , contradicting the (DCC).
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Chain Conditions and Completeness

Lattices with no infinite chains are complete:

Theorem

Let P be a lattice.

(i) If P satisfies (ACC), then for every non-empty subset A of P , there exists a
finite subset F of A, such that ⋁A = ⋁F (which exists in P).

(ii) If P has a bottom element and satisfies (ACC), then P is complete.

(iii) If P has no infinite chains, then P is complete.

Assume that P satisfies (ACC) and let A be a non-empty subset of P .
Then, B ∶= {⋁F ∶ F is a finite non-empty subset of A} is a
well-defined subset of P . Since B is non-empty, B has a maximal
element m = ⋁F , for some finite subset F of A. Let a ∈ A. Then
⋁(F ∪ {a}) ∈ B and m = ⋁F ≤ ⋁(F ∪ {a}). Since m is maximal in B ,
m = ⋁F = ⋁(F ∪ {a}). As m = ⋁(F ∪ {a}), we have a ≤m, whence
m is an upper bound of A.
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Chain Conditions and Completeness (Cont’d)

Let x ∈ P be an upper bound of A. Then x is an upper bound of F ,
since F ⊆ A. Hence m = ⋁F ≤ x . Thus, m is the least upper bound of
A, i.e., ⋁A = m = ⋁F .

(ii) follows from (i) and a preceding result.

A lattice with no infinite chains has a bottom element and satisfies
(ACC), whence (iii) follows from (ii).
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Subsection 7

Join-Irreducible Elements
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Join- and Meet-Irreducible Elements

Definition

Let L be a lattice. An element x ∈ L is join-irreducible if:

(i) x ≠ 0 (in case L has a zero);

(ii) x = a ∨ b implies x = a or x = b, for all a,b ∈ L.
Condition (ii) is equivalent to the more pictorial:

(ii)′ a < x and b < x imply a ∨ b < x , for all a,b ∈ L.
Definition

Let L be a lattice. An element x ∈ L is meet-irreducible if:

(i) x ≠ 1 (in case L has a one);

(ii) x = a ∧ b implies x = a or x = b, for all a,b ∈ L.
Condition (ii) is equivalent to the more pictorial:

(ii)′ x < a and x < b imply x < a ∧ b, for all a,b ∈ L.
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Join-Dense and Meet-Dense Subsets

We denote:

the set of join-irreducible elements of L by J (L);
the set of meet-irreducible elements byM(L).

Each of these sets inherits L’s order relation, and will be regarded as
an ordered set.

Let P be an ordered set and let Q ⊆ P .
Q is called join-dense in P if for every element a ∈ P , there is a subset
A of Q such that a = ⋁P A;
Q is called meet-dense in P if for every element a ∈ P , there exists a
subset A of Q such that a = ⋀P A.
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Examples I

(1) In a chain, every non-zero element is join-irreducible. Thus, if L is an
n-element chain, then J (L) is an (n − 1)-element chain.

(2) In a finite lattice L, an element is join-irreducible if and only if it has
exactly one lower cover. This makes J (L) extremely easy to identify
from a diagram of L.
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Examples II

(3) Consider the lattice ⟨N0; lcm,gcd⟩. A non-zero element m ∈N0 is
join-irreducible if and only if m is of the form pr , where p is a prime
and r ∈N.

(4) In a lattice P(X ) the join-irreducible elements are exactly the
singleton sets, {x}, for x ∈ X .

(5) It is easily seen that the lattice of open subsets of R (that is, subsets
which are unions of open intervals) has no join-irreducible elements.
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Some Remarks

We have excluded 0 from being regarded as join-irreducible.

Note that we can never write 0 as a non-empty join, ⋁P A, unless 0 ∈ A.
To compensate for this restriction, we have not excluded A = ∅ in the
definition of join-density, noting that ⋁P ∅ = 0 in a lattice P with zero.

Insisting that 0 is not join-irreducible is the lattice-theoretic
equivalent of declaring that 1 is not a prime number.

Our examples have shown that join-irreducible elements do not
necessarily exist in infinite lattices.

On the other hand, it is easy to see that in a finite lattice every
element is a join of join-irreducible elements.
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DCC and Join-Irreducibles

Proposition

Let L be a lattice satisfying (DCC).

(i) Suppose a,b ∈ L and a ≰ b. Then, there exists x ∈ J (L), such that
x ≤ a and x ≰ b.

(ii) a = ⋁{x ∈ J (L) ∶ x ≤ a}, for all a ∈ L.
These conclusions hold in particular if L is finite.

(i) Let a ≰ b and let S ∶= {x ∈ L ∶ x ≤ a and x ≰ b}. The set S is
non-empty since it contains a. Hence, since L satisfies (DCC), there
exists a minimal element x of S . We claim that x is join-irreducible.
Suppose that x = c ∨ d , with c < x and d < x . By the minimality of x ,
neither c nor d lies in S . We have c < x ≤ a, so c ≤ a, and, similarly,
d ≤ a. Therefore c ,d ∉ S implies c ≤ b and d ≤ b. But then
x = c ∨ d ≤ b, a contradiction. Thus x ∈ J (L) ∩ S , proving (i).
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DCC and Join-Irreducibles (Cont’d)

(ii) Let a ∈ L and let T ∶= {x ∈ J (L) ∶ x ≤ a}. Clearly a is an upper bound
of T . Let c be an upper bound of T . We claim that a ≤ c . Suppose
that a ≰ c ; then a ≰ a ∧ c . By (i), there exists x ∈ J (L), with x ≤ a
and x ≰ a ∧ c . Hence x ∈ T and, consequently, x ≤ c , since c is an
upper bound of T . Thus x is a lower bound of {a, c} and
consequently x ≤ a ∧ c , a contradiction. Hence a ≤ c , as claimed. This
proves that a = ⋁T in L, whence (ii) holds.

George Voutsadakis (LSSU) Lattices and Order April 2020 70 / 72



Lattices and Complete Lattices Join-Irreducible Elements

Chain Conditions and Join Density

Part (iii) below is an analogue of (the existence portion of) the
Fundamental Theorem of Arithmetic.

Theorem

Let L be a lattice.

(i) If L satisfies (DCC), then J (L) and, more generally, any subset Q which
contains J (L) is join-dense in L.

(ii) If L satisfies (ACC) and Q is join-dense in L, then, for each a ∈ L, there
exists a finite subset F of Q, such that a = ⋁F .

(iii) If L has no infinite chains, then, for each a ∈ L, there exists a finite subset F
of J (L), such that a = ⋁F .

(iv) If L has no infinite chains, then Q is join-dense in L if and only if J (L) ⊆ Q.

George Voutsadakis (LSSU) Lattices and Order April 2020 71 / 72



Lattices and Complete Lattices Join-Irreducible Elements

Chain Conditions and Join Density (Cont’d)

(i) This an immediate consequence of Part (ii) of the previous
proposition.

(ii) This follows immediately from a previous result.

(iii) No infinite chains implies both (ACC) and (DCC), so (iii) is a
consequence of (i) and (ii).

(iv) One direction follows from (i).

In the other direction, assume that Q is join-dense in L and let
x ∈ J (L). By (ii), there is a finite subset F of Q such that x = ⋁F .
Since x is join-irreducible we have x ∈ F and, hence, x ∈ Q. Thus,J (L) ⊆ Q.
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