Introduction to Lattices and Order

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

1

Lattices and Complete Lattices

- Lattices as Ordered Sets
- Lattices as Algebraic Structures
- Sublattices, Products and Homomorphisms
- Ideals and Filters
- Complete Lattices and ∩-Structures
- Chain Conditions and Completeness
- Join-Irreducible Elements

Subsection 1

Lattices as Ordered Sets

Upper and Lower Bounds

Let P be an ordered set and let S ⊆ P.
An element x ∈ P is an upper bound of S if s ≤ x for all s ∈ S.
An element x ∈ P is a lower bound of S if x ≤ s for all s ∈ S.

• The set of all upper bounds of S is denoted by S^u (read "S **upper**"):

$$S^{u} = \{x \in P : (\forall s \in S) \ s \leq x\}.$$

• The set of all lower bounds is denoted S^{ℓ} ("S lower"):

$$S^{\ell} = \{x \in P : (\forall s \in S) \ s \ge x\}.$$

Since ≤ is transitive,

- S^u is always an up-set;
- S^{ℓ} is always a down-set.

Least Upper and Greatest Lower Bounds

- If S^u has a least element x, then x is the **least upper bound** of S. Equivalently, x is the **least upper bound** of S if
 - (i) x is an upper bound of S;
 - (ii) $x \le y$, for all upper bounds y of S.
- If S^ℓ has a greatest element x, then x is called the greatest lower bound of S.
- Since least elements and greatest elements are unique, least upper bounds and greatest lower bounds are unique when they exist.
- The least upper bound of *S* is also called the **supremum** of S and is denoted by sup *S*.
- The greatest lower bound of S is also called the **infimum** of S and is denoted by inf S.

Top and Bottom

- We discuss *P* itself with respect to suprema and infima:
 - If P has a top element, then $P^u = \{\top\}$; thus, sup $P = \top$.
 - When P has no top element, we have P^u = Ø.
 Hence, sup P does not exist.
 - If P has a bottom element, then inf $P = \bot$.
- We turn to $S = \emptyset$ with respect to suprema and infima:
 - Every element x ∈ P satisfies (vacuously) s ≤ x, for all s ∈ S. Thus,
 Ø^u = P and, hence, sup Ø exists if and only if P has a bottom element, and in that case sup Ø = ⊥.
 - If *P* has a top element, then $\inf \emptyset = \top$.

Joins and Meets

- We write:
 - $x \lor y$ (read as "x join y") in place of sup $\{x, y\}$ when it exists;
 - $x \wedge y$ (read as "x meet y") in place of inf $\{x, y\}$ when it exists.
- Similarly we write:
 - $\lor S$ (the "join of S") instead of sup S and
 - $\land S$ (the "meet of S") instead of inf S

when these exist.

• It is sometimes necessary to indicate that the join or meet is being found in a particular ordered set *P*, in which case we write

$$\bigvee_P S$$
 or $\bigwedge_P S$.

• If S is of the form $S = \{A_i\}_{i \in I}$, where I is some indexing set, we write $\bigvee_{i \in I} A_i$ for $\bigvee \{A_i : i \in I\}$ and $\bigwedge_{i \in I} A_i$ for $\bigwedge \{A_i : i \in I\}$.

Lattices and Complete Lattices

Definitions

Let P be a non-empty ordered set.

- (i) If $x \lor y$ and $x \land y$ exist for all $x, y \in P$, then P is called a **lattice**.
- (ii) If $\bigvee S$ and $\bigwedge S$ exist for all $S \subseteq P$, then P is called a **complete** lattice.
- (1) Let P be any ordered set. Suppose $x, y \in P$ and $x \leq y$. Then

$$\begin{cases} x, y \}^{u} = \uparrow y \\ x \lor y = y \end{cases} \begin{cases} x, y \}^{\ell} = \downarrow x \\ x \land y = x \end{cases}$$

In particular, since \leq is reflexive, we have $x \lor x = x$ and $x \land x = x$.

Remarks on Lattices and Complete Lattices

- (2) In an ordered set P, the least upper bound x ∨ y of {x, y} may fail to exist for two different reasons:
 - (a) because x and y have no common upper bound;
 - (b) because they have no least upper bound.

Since $\{b, c\}^u = \{T, h, i\}$ has distinct minimal elements, hand i, it cannot have a least element. Hence $b \lor c$ does not exist.

Since $\{a, b\}^u = \{\top, h, i, f\}$ has a least element, $f, a \lor b = f$.

Further Remarks on Lattices and Complete Lattices

(4) Let P be a lattice. Then, for all
$$a, b, c, d \in P$$
,

- i) $a \le b$ implies $a \lor c \le b \lor c$ and $a \land c \le b \land c$;
- (ii) $a \le b$ and $c \le d$ imply $a \lor c \le b \lor d$ and $a \land c \le b \land d$.
- (i) Using the definitions of join and meet, we get:

$$\left.\begin{array}{l} a \leq b \leq b \lor c \\ c \leq b \lor c \end{array}\right\} \Rightarrow a \lor c \leq b \lor c;$$
$$a \land c \leq a \leq b \\ a \land c \leq c \end{array}\right\} \Rightarrow a \land c \leq b \land c.$$

(ii) Using Part (i), we get

$$a \lor c \le b \lor c \le b \lor d$$
$$a \land c \le b \land c \le b \land d.$$

Further Remarks on Lattices and Complete Lattices

(5) Let P be a lattice. Let $a, b, c \in P$ and assume that $b \le a \le b \lor c$. Since $c \le b \lor c$, we have $(b \lor c) \lor c = b \lor c$, by (1). Thus, by (4)(i),

$$b \lor c \le a \lor c \le (b \lor c) \lor c = b \lor c$$

whence $a \lor c = b \lor c$.

Thus, when calculating joins and meets on a diagram, once we know the join of b and c, the join of c with the intermediate element a is forced.

Example I: Some Linear Orders

• Let P be a non-empty ordered set.

If $x \leq y$, then $x \vee y = y$ and $x \wedge y = x$.

Hence, to show that P is a lattice, it suffices to prove that $x \lor y$ and $x \land y$ exist in P for all noncomparable pairs $x, y \in P$.

• In particular, every chain is a lattice in which

 $x \lor y = \max\{x, y\}$ and $x \land y = \min\{x, y\}$.

- Thus, each of ℝ, ℚ, ℤ and ℕ is a lattice under its usual order. None of them is complete; every one lacks a top element, and a complete lattice must have top and bottom elements.
- If x < y in ℝ, then the closed interval [x, y] is a complete lattice (by the completeness axiom for ℝ).
- Failure of completeness in Q is more fundamental than in R.
 In Q, it is not only the lack of top and bottom elements which causes problems; for example, the set {s ∈ Q : s² < 2} has upper bounds but no least upper bound in Q.

George Voutsadakis (LSSU)

Example II: Powersets

For any set X, the ordered set (P(X);⊆) is a complete lattice in which

$$\bigvee \{A_i : i \in I\} = \bigcup \{A_i : i \in I\} \text{ and } \bigwedge \{A_i : i \in I\} = \bigcap \{A_i : i \in I\}.$$

- We indicate the index set by subscripting, e.g., instead of ∪{A_i : i ∈ I} we shall write ∪_{i∈I} A_i or simply ∪ A_i.
- We verify the assertion about meets (a dual proof works for joins); Let {A_i}_{i∈I} be a family of elements of P(X). Since ∩_{i∈I} A_i ⊆ A_j, for all j ∈ I, it follows that ∩_{i∈I} A_i is a lower bound for {A_i}_{i∈I}. Also, if B ∈ P(X) is a lower bound of {A_i}_{i∈I}, then B ⊆ A_i, for all i ∈ I and, hence, B ⊆ ∩_{i∈I} A_i. Thus, ∩_{i∈I} A_i is indeed the greatest lower bound of {A_i}_{i∈I} in P(X).

Example III: Lattices of Sets

- Let $\emptyset \neq \mathcal{L} \subseteq \mathcal{P}(X)$. Then \mathcal{L} is called
 - a lattice of sets if it is closed under finite unions and intersections;
 - a complete lattice of sets if it is closed under arbitrary unions and intersections.
- If L is a lattice of sets, then (L; ⊆) is a lattice in which A ∨ B = A ∪ B and A ∧ B = A ∩ B.
- Similarly, if L is a complete lattice of sets, then (L; ⊆) is a complete lattice with join given by set union and meet given by set intersection.
- Let P be an ordered set and consider the ordered set O(P) of all down-sets of P.

If $\{A_i\}_{i \in I} \subseteq \mathcal{O}(P)$, then $\bigcup_{i \in I} A_i$ and $\bigcap_{i \in I} A_i$ both belong to $\mathcal{O}(P)$. Hence $\mathcal{O}(P)$ is a complete lattice of sets, called the **down-set lattice** of *P*.

Example IV: The Ordered Sets M_n

• The ordered set M_n (for $n \ge 1$) is easily seen to be a lattice:

Let $x, y \in M_n$, with $x \parallel y$. Then x and y are in the central antichain of M_n and, hence, $x \lor y = \top$ and $x \land y = \bot$.

Example V: The Ordered Set $\langle \mathbb{N}_0; \preccurlyeq \rangle$

- Consider the ordered set $\langle \mathbb{N}_0; \preccurlyeq \rangle$ of non-negative integers ordered by division.
- Recall that k is the greatest common divisor (or highest common factor) of m and n if
 - (a) k divides both m and n (that is, $k \leq m$ and $k \leq n$);
 - (b) if j divides both m and n, then j divides k (that is, $j \le k$, for all lower bounds j of $\{m, n\}$).

Thus, the greatest common divisor of *m* and *n* is precisely the meet of *m* and *n* in $\langle \mathbb{N}_0; \leq \rangle$.

- Dually, the join of *m* and *n* in (ℕ₀; ≤) is given by their least common multiple.
- These statements remain valid when *m* or *n* equals 0.
- Thus, $\langle \mathbb{N}_0; \preccurlyeq \rangle$ is a lattice in which

$$m \lor n = \operatorname{lcm}\{m, n\}$$
 and $m \land n = \operatorname{gcd}\{m, n\}$.

• $\langle \mathbb{N}_0; \preccurlyeq \rangle$ is actually a complete lattice.

Lattices of Subgroups

- Assume that G is a group and (SubG;⊆) is its ordered set of subgroups.
- Let $H, K \in \text{Sub}G$.
 - It is always the case that H ∩ K ∈ SubG, whence H ∧ K exists and equals H ∩ K.
 - H∪K is is not a subgroup in general. Nevertheless, H∨K does exist in SubG, as (rather tautologically) the subgroup (H∪K) generated by H∪K. Unfortunately, there is no convenient general formula for H∨K.
- Normal subgroups are more amenable.
 - Meet is again given by \cap ;
 - Join in *N*-Sub*G* has a particularly compact description:
 If *H*, *K* are normal subgroups of *G*, then *HK* := {*hk* : *h* ∈ *H*, *k* ∈ *K*} is

also a normal subgroup of G.

It follows easily that the join in \mathcal{N} -SubG is given by $H \lor K = HK$.

Examples of Lattices of Subgroups

 The lattices SubG and N-SubG for the group, D₄, of symmetries of a square and for the group Z₂ × Z₄.

The elements of \mathcal{N} -SubG are shaded.

Subsection 2

Lattices as Algebraic Structures

Lattices as Algebraic Structures

• Given a lattice *L*, we may define binary operations **join** and **meet** on the non-empty set *L* by

 $a \lor b \coloneqq \sup \{a, b\}$ and $a \land b \coloneqq \inf \{a, b\}$, $a, b \in L$.

• The operations $\lor : L^2 \to L$ and $\land : L^2 \to L$ are order-preserving.

The Connecting Lemma

Let L be a lattice and let $a, b \in L$. Then the following are equivalent:

(i)
$$a \leq b$$
;

- (ii) $a \lor b = b$;
- (iii) $a \wedge b = a$.
 - We have shown that (i) implies both (ii) and (iii).
 Assume (ii). Then b is an upper bound for {a, b}, whence b ≥ a.
 Thus (i) holds. Similarly, (iii) implies (i).

George Voutsadakis (LSSU)

Properties of \lor and \land

Theorem

Let *L* be a lattice. Then \lor and \land satisfy, for all $a, b, c \in L$,

(L1)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
 (associative laws)
(L1) ^{∂} $(a \land b) \land c = a \land (b \land c)$
(L2) $a \lor b = b \lor a$ (commutative laws)
(L2) ^{∂} $a \land b = b \land a$
(L3) $a \lor a = a$ (idempotency laws)
(L3) ^{∂} $a \land a = a$
(L4) $a \lor (a \land b) = a$ (absorption laws)
(L4) ^{∂} $a \land (a \lor b) = a$.

• By the **Duality Principle for lattices** it is enough to consider (L1)-(L4).

Proof of the Properties

- We have already proven (L3).
- (L2) is immediate because, for any set *S*, sup *S* is independent of the order in which the elements of *S* are listed.
- (L4) follows easily from the Connecting Lemma: Since a ∧ b ≤ a, we get a ∨ (a ∧ b) = a.
- We prove (L1).

It is enough, by (L2), to show that $(a \lor b) \lor c = \sup \{a, b, c\}$. This is the case if $\{a \lor b, c\}^u = \{a, b, c\}^u$. But

$$d \in \{a, b, c\}^u \iff d \in \{a, b\}^u \text{ and } d \ge c$$
$$\iff d \ge a \lor b \text{ and } d \ge c$$
$$\iff d \in \{a \lor b, c\}^u.$$

From Algebraic Structures to Ordered Structures

Theorem

Let $(L; \lor, \land)$ be a non-empty set equipped with two binary operations which satisfy (L1)-(L4) and (L1)^{∂}-(L4)^{∂}.

- (i) For all $a, b \in L$, we have $a \lor b = b$ if and only if $a \land b = a$.
- (ii) Define \leq on L by $a \leq b$ if $a \lor b = b$. Then \leq is an order relation.
- (iii) With \leq as in (ii), $\langle L; \leq \rangle$ is a lattice in which the original operations agree with the induced operations, that is, for all $a, b \in L$,

$$a \lor b = \sup \{a, b\}$$
 and $a \land b = \inf \{a, b\}$.

• Assume $a \lor b = b$. Then $a = a \land (a \lor b)$ (by $(L4)^{\partial}$) = $a \land b$ (by assumption).

Conversely, assume $a \wedge b = a$. Then $b = b \vee (b \wedge a)$ (by (L4)) = $b \vee (a \wedge b)$ (by (L2)^{∂}) = $b \vee a$ (by assumption) = $a \vee b$ (by (L2)).

From Algebraic Structures to Ordered Structures (Cont'd)

- Now define \leq as in (ii). Then \leq is
 - reflexive by (L3): $a \lor a \stackrel{(L3)}{=} a \Rightarrow a \le a$;
 - antisymmetric by (L2): $a \le b \& b \le a \Rightarrow a \lor b = b \& b \lor a = a \stackrel{(L2)}{\Rightarrow} a = b;$
 - transitive by (L1): $a \le b \& b \le c \Rightarrow a \lor b = b \& b \lor c = c \Rightarrow a \lor c = a \lor (b \lor c) \stackrel{(L1)}{=} (a \lor b) \lor c = b \lor c = c \Rightarrow a \le c;$
- To show that sup {a, b} = a ∨ b in the ordered set (L; ≤), we must check:
 - a ∨ b ∈ {a, b}^u: a ∨ (a ∨ b) = (a ∨ a) ∨ b = a ∨ b ⇒ a ≤ a ∨ b and b ∨ (a ∨ b) = b ∨ (b ∨ a) = (b ∨ b) ∨ a = b ∨ a = a ∨ b ⇒ b ≤ a ∨ b;
 d ∈ {a, b}^u implies d ≥ a ∨ b: (a ∨ b) ∨ d = (a ∨ b) ∨ (d ∨ d) = ((a ∨ b) ∨ d) ∨ d = (a ∨ (b ∨ d)) ∨ d = (a ∨ (d ∨ b)) ∨ d = ((a ∨ d) ∨ b) ∨ d = (a ∨ d) ∨ (b ∨ d) = d ∨ d = d ⇒ a ∨ b ≤ d;

The characterization of inf is obtained by duality.

Stocktaking: Algebra and Order

- We have shown that lattices can be completely characterized in terms of the join and meet operations.
- We may henceforth say "let L be a lattice", replacing L by (L; ≤) or by (L; ∨, ∧) if we want to emphasize that we are thinking of it as a special kind of ordered set or as an algebraic structure.
- In a lattice L, associativity of v and A allows us to write iterated joins and meets unambiguously without brackets.
- An easy induction shows that these correspond to sups and infs in the expected way:

$$\bigvee \{a_1, \ldots, a_n\} = a_1 \lor \cdots \lor a_n \quad \text{and} \quad \bigwedge \{a_1, \ldots, a_n\} = a_1 \land \cdots \land a_n,$$

for $a_1, ..., a_n \in L, n \ge 1$;

Consequently, ∨ F and ∧ F exist for any finite, non-empty subset F of a lattice.

Bounded Lattices

- Let L be a lattice.
- It may happen that $\langle L; \leq \rangle$ has top and bottom elements \top and \bot ;
- When thinking of *L* as $(L; \lor, \land)$, we say:
 - L has a **one** if there exists $1 \in L$, such that $a = a \land 1$, for all $a \in L$;
 - L has a zero if there exists $0 \in L$, such that $a = a \lor 0$, for all $a \in L$.
- The lattice $\langle L; \vee, \wedge \rangle$ has a:
 - one if and only if $(L; \leq)$ has a top element \top and, in that case, $1 = \top$;
 - zero if and only if $(L; \leq)$ has a bottom element \perp and, in that case, $0 = \perp$.
- A lattice $\langle L; \vee, \wedge \rangle$ possessing 0 and 1 is called **bounded**.
- A finite lattice is automatically bounded, with 1 = ∨ L and 0 = ∧ L.
 Example: (№₀; lcm, gcd) is bounded, with 1 = 0 and 0 = 1.

Subsection 3

Sublattices, Products and Homomorphisms

Sublattices

Definition (Sublattice)

Let L be a lattice and $\emptyset \neq M \subseteq L$. Then M is a **sublattice** of L if

 $a, b \in M$ implies $a \lor b \in M$ and $a \land b \in M$.

- We denote the collection of all sublattices of L by SubL and let Sub₀L = SubL ∪ {Ø}; both are ordered by inclusion.
- Examples:
 - Any one-element subset of a lattice is a sublattice. More generally, any non-empty chain in a lattice is a sublattice. (To test that a non-empty subset *M* is a sublattice, it suffices to consider non-comparable elements *a*, *b*.)
 - (2) In the diagrams the shaded elements form sublattices:

More Examples of Sublattices

(3) In the diagrams below the shaded elements do not form sublattices:

(3) A subset M of a lattice (L; ≤) may be a lattice in its own right without being a sublattice of L, e.g., the right picture above.

Products

- Let L and K be lattices.
- Define \lor and \land coordinatewise on $L \times K$, as follows:

$$\begin{array}{lll} (\ell_1, k_1) \lor (\ell_2, k_2) &=& (\ell_1 \lor \ell_2, k_1 \lor k_2), \\ (\ell_1, k_1) \land (\ell_2, k_2) &=& (\ell_1 \land \ell_2, k_1 \land k_2). \end{array}$$

- It is routine to check that L × K satisfies the identities (L1)-(L4)[∂] and therefore is a lattice.
- Also

$$(\ell_1, k_1) \lor (\ell_2, k_2) = (\ell_2, k_2) \iff \ell_1 \lor \ell_2 = \ell_2 \text{ and } k_1 \lor k_2 = k_2 \\ \iff \ell_1 \le \ell_2 \text{ and } k_1 \le k_2 \\ \iff (\ell_1, k_1) \le (\ell_2, k_2),$$

with respect to the order on $L \times K$.

Hence the lattice formed by taking the ordered set product of lattices L and K is the same as that obtained by defining \vee and \wedge coordinatewise on $L \times K$.

George Voutsadakis (LSSU)

An Example

• The product of the lattices L = 3 and $K = 1 \oplus 2^2$:

Notice how (isomorphic copies) of L and K sit inside $L \times K$ as the sublattices $L \times \{0\}$ and $\{0\} \times K$.

- The product of lattices *L* and *K* always contains sublattices isomorphic to *L* and *K*.
- Iterated products and powers are defined in the obvious way.
- It is also possible to define the product of an infinite family of lattices.

Homomorphisms

Definition

Let L and K be lattices. A map $f: L \to K$ is said to be a **homomorphism** (or, for emphasis, **lattice homomorphism**) if f is **join-preserving** and **meet-preserving**, i.e., for all $a, b \in L$,

$$f(a \lor b) = f(a) \lor f(b)$$
 and $f(a \land b) = f(a) \land f(b)$.

A bijective homomorphism is a (lattice) isomorphism. If $f: L \to K$ is a one-to-one homomorphism, then the sublattice f(L) of K is isomorphic to L and we refer to f as an **embedding** (of L into K).

Remarks on Lattice Homomorphisms

(1) The inverse of an isomorphism is a homomorphism and hence is also an isomorphism:

Let $f: L \to K$ be an isomorphism, $a', b' \in K$, such that a' = f(a), b' = f(b). Then, for the join (and dually for the meet)

$$f^{-1}(a' \lor b') = f^{-1}(f(a) \lor f(b))$$

= $f^{-1}(f(a \lor b))$
= $a \lor b$
= $f^{-1}(f(a)) \lor f^{-1}(f(b))$
= $f^{-1}(a') \lor f^{-1}(b');$

(2) We write L → K to indicate that the lattice K has a sublattice isomorphic to the lattice L.

We will see, next, that $M \rightarrow L$ implies $M \rightarrow L$.

(3) For bounded lattices L and K it is often appropriate to consider homomorphisms f: L → K, such that f(0) = 0 and f(1) = 1. Such maps are called {0,1}-homomorphisms.

Examples of Mappings

• The maps φ_2 and φ_3 are homomorphisms:

• The maps φ_4 and φ_5 are order preserving but not homomorphisms:

• In general an order-preserving map may not be a homomorphism.

Order and Lattice Isomorphisms

Proposition

- Let L and K be lattices and $f: L \to K$ a map.
 - (i) The following are equivalent:
 - (a) *f* is order-preserving;
 - (b) $(\forall a, b \in L) f(a \lor b) \ge f(a) \lor f(b);$
 - (c) $(\forall a, b \in L) f(a \land b) \leq f(a) \land f(b).$

In particular, if f is a homomorphism, then f is order-preserving.

(ii) f is a lattice isomorphism if and only if it is an order-isomorphism.

(i) Since $a \le a \lor b, b \le a \lor b, a \land b \le a$ and $a \land b \le b$, we get

$$\begin{cases} f(a) \le f(a \lor b) \\ f(b) \le f(a \lor b) \\ f(a \land b) \le f(a) \\ f(a \land b) \le f(b) \end{cases} \Rightarrow f(a) \land b) \le f(a) \land f(b).$$

Order and Lattice Isomorphisms (Cont'd)

- (ii) Assume that f is a lattice isomorphism. Then, by the Connecting Lemma, a ≤ b iff a ∨ b = b iff f(a ∨ b) = f(b) iff f(a) ∨ f(b) = f(b) iff f(a) ≤ f(b), whence, f is an order-embedding, and so is an order-isomorphism.
 - Conversely, assume that f is an order-isomorphism. Then f is bijective. By (i) and duality, to show that f is a lattice isomorphism it suffices to show that

$$f(a) \lor f(b) \ge f(a \lor b)$$
, for all $a, b \in L$.

Since f is surjective, there exists $c \in L$, such that $f(a) \lor f(b) = f(c)$. Then $f(a) \le f(c)$ and $f(b) \le f(c)$. Since f is an order-embedding, it follows that $a \le c$ and $b \le c$, whence $a \lor b \le c$. Because f is order-preserving, $f(a \lor b) \le f(c) = f(a) \lor f(b)$, as required.

Subsection 4

Ideals and Filters

Ideals

Definition

Let L be a lattice. A non-empty subset J of L is called an **ideal** if

- (i) $a, b \in J$ implies $a \lor b \in J$,
- (ii) $a \in L$, $b \in J$ and $a \le b$ imply $a \in J$.

• More compactly, an ideal is a non-empty down-set closed under join.

An ideal and two non-ideals.

 Every ideal J of a lattice L is a sublattice, since a ∧ b ≤ a for any a, b ∈ L.

Filters

Definition

Let L be a lattice. A non-empty subset G of L is called a **filter** if

- (i) $a, b \in G$ implies $a \land b \in G$,
- (ii) $a \in L$, $b \in G$ and $a \ge b$ imply $a \in G$.
 - The set of all ideals of L is denoted by $\mathcal{I}(L)$.
 - The set of all filters of L is denoted by $\mathcal{F}(L)$.
 - An ideal or filter is called **proper** if it does not coincide with *L*.
 - An ideal J of a lattice with 1 is proper if and only if $1 \notin J$;
 - Dually, a filter G of a lattice with 0 is proper if and only if $0 \notin G$.
 - For each a ∈ L, the set ↓a is an ideal, known as the principal ideal generated by a.
 - Dually, $\uparrow a$ is the **principal filter** generated by a.

Examples

(1) In a finite lattice, every ideal or filter is principal:

- The ideal J equals $\downarrow \lor J$.
- The filter G equals $\uparrow \land G$.
- (2) Let L and K be bounded lattices and f: L → K a
 {0,1}-homomorphism. Then f⁻¹(0) is an ideal and f⁻¹(1) is a filter
 in L.
- (3) The following are ideals in $\mathcal{P}(X)$:
 - (a) all subsets not containing a fixed element of X;
 - (b) all finite subsets (this ideal is non-principal if X is infinite).

(4) Let (X; T) be a topological space and let x ∈ X. Then the set {V ⊆ X : (∃U ∈ T)x ∈ U ⊆ V} is a filter in P(X). It is called the filter of neighborhoods of x.

Subsection 5

Complete Lattices and \bigcap -Structures

Complete Lattices: Basic Properties

- Recall that a complete lattice is defined to be a non-empty, ordered set P, such that the join (supremum), ∨ S, and the meet (infimum), ∧ S, exist for every subset S of P.
- The following are immediate consequences of the definitions of least upper bound and greatest lower bound:

Lemma

Let P be an ordered set, let $S, T \subseteq P$ and assume that $\forall S, \forall T, \land S$ and $\land T$ exist in P.

- (i) $s \leq \bigvee S$ and $s \geq \bigwedge S$, for all $s \in S$.
- (ii) Let $x \in P$; then $x \le \bigwedge S$ if and only if $x \le s$, for all $s \in S$.
- (iii) Let $x \in P$; then $x \ge \bigvee S$ if and only if $x \ge s$, for all $s \in S$.
- (iv) $\forall S \leq \wedge T$ if and only if $s \leq t$, for all $s \in S$ and all $t \in T$.
- (v) If $S \subseteq T$, then $\bigvee S \leq \bigvee T$ and $\bigwedge S \geq \bigwedge T$.

Proof of the Basic Properties

- (i) $\lor S$ is an upper bound of S and $s \in S$. Hence, $s \leq \lor S$. $\land S$ is a lower bound of S and $s \in S$. Hence, $\land S \leq s$.
- (ii) Suppose x ≤ ∧ S. Since ∧ S ≤ s, for all s ∈ S, we get, by transitivity, x ≤ s, for all s ∈ S.
 Suppose x ≤ s, for all s ∈ S. This means that x is a lower bound of S.

Since $\bigwedge S$ is a greatest lower bound of $S, x \leq \bigwedge S$.

- (iii) Dual to Part (ii).
- (iv) Suppose $\forall S \leq \bigwedge T$. Let $s \in S$ and $t \in T$. Then $s \leq \bigvee S \leq \bigwedge T \leq t$. Assume, conversely, that, for all $s \in S$ and all $t \in T$, $s \leq t$. By Part (ii), $s \leq \bigwedge T$. By Part (iii), $\forall S \leq \bigwedge T$.

(v) Suppose $S \subseteq T$.

- ∨ T is an upper bound of T. Since S ⊆ T, ∨ T is an upper bound of S. ∨ S is the least upper bound of S. Hence, ∨ S ≤ ∨ T.
- ∧ T is a lower bound of T. Since S ⊆ T, ∨ T is also a lower bound of S. ∧ S is the greatest lower bound of S. Hence, ∧ T ≤ ∧ S.

Join and Meet and Set Unions

Lemma

Let P be a lattice, let $S, T \subseteq P$ and assume that $\lor S, \lor T, \land S$ and $\land T$ exist in P. Then

 $\bigvee (S \cup T) = (\bigvee S) \lor (\bigvee T)$ and $\bigwedge (S \cup T) = (\bigwedge S) \land (\bigwedge T)$.

∨(S ∪ T) is an upper bound of S ∪ T. Thus, ∨(S ∪ T) is an upper bound of S and of T. Since ∨ S is the least upper bound of S, ∨ S ≤ ∨(S ∪ T). Since ∨ T is the least upper bound of T, ∨ T ≤ ∨(S ∪ T). Since (∨ S) ∨ (∨ T) is the least upper bound of {∨ S, ∨ T}, (∨ S) ∨ (∨ T) ≤ ∨(S ∪ T).
(∨ S) ∨ (∨ T) is an upper bound of {∨ S, ∨ T}. By transitivity, (∨ S) ∨ (∨ T) is an upper bound of S ∪ T. Since ∨(S ∪ T) is the least upper bound of S ∪ T. Since ∨(S ∪ T) is the least upper bound of S ∪ T. Since ∨(S ∪ T) is the least upper bound of S ∪ T, ∨(S ∪ T) ≤ (∨ S) ∨ (∨ T). By antisymmetry, ∨(S ∪ T) = (∨ S) ∨ (∨ T). The second equality can be shown similarly.

George Voutsadakis (LSSU)

On Finite Joins and Meets

• Using the preceding lemma, we get, using induction,

Lemma

Let P be a lattice. Then $\lor F$ and $\land F$ exist for every finite, non-empty subset F of P.

• Let
$$F = \{x_1, x_2, \dots, x_n\}, n \ge 1$$
. Then:
• $\bigvee \{x_1\} = x_1;$
• $\bigvee \{x_1, x_2\} = x_1 \lor x_2;$
• $\bigvee \{x_1, x_2, \dots, x_n\} = \bigvee \{x_1, x_2, \dots, x_{n-1}\} \lor x_n$

Similarly, we may show that the finite meet $\wedge F$ also exists.

Corollary

Every finite lattice is complete.

Joins and Meets and Order-Preserving Maps

Definition

Let P and Q be ordered sets and $\varphi: P \rightarrow Q$ a map. Then we say that

- φ preserves existing joins if whenever ∨ S exists in P then ∨φ(S) exists in Q and φ(∨S) = ∨φ(S);
- φ preserves existing meets if whenever $\land S$ exists in P then $\land \varphi(S)$ exists in Q and $\varphi(\land S) = \land \varphi(S)$

Lemma

Let *P* and *Q* be ordered sets and $\varphi : P \rightarrow Q$ be an order-preserving map.

(i) Assume that S ⊆ P is such that ∨ S exists in P and ∨ φ(S) exists in Q. Then φ(∨ S) ≥ ∨ φ(S). Dually, φ(∧ S) ≤ ∧ φ(S) if both meets exist.

(ii) Assume now that $\varphi: P \to Q$ is an order-isomorphism. Then φ preserves all existing joins and meets.

Proof of the Lemma

(i) ∨ S is an upper bound of S: S ≤ ∨ S. φ is order preserving:
 φ(S) ≤ φ(∨ S). ∨ φ(S) is the least upper bound of φ(S). Hence,
 ∨ φ(S) ≤ φ(∨ S).

 $\land S$ is a lower bound of $S: \land S \leq S$. φ is order-preserving: $\varphi(\land S) \leq \varphi(S)$. $\land \varphi(S)$ is the greatest lower bound of $\varphi(S)$. Hence, $\varphi(\land S) \leq \land \varphi(S)$.

 (ii) Assume φ is an order isomorphism. In particular, it is surjective. Thus, there exists x ∈ P, such that ∨ φ(S) = φ(x). Thus, for all s ∈ S, φ(s) ≤ φ(x). Since φ is order reflecting, S ≤ x. Since ∨ S is the least upper bound of S, ∨ S ≤ x. Since φ is order preserving, φ(∨ S) ≤ φ(x). Thus, φ(∨ S) ≤ ∨ φ(S). Equality follows by Part (i) and antisymmetry.

Preservation of meets can be shown similarly.

Subsets of Complete Lattices

• The next lemma is useful for showing that certain subsets of complete lattices are themselves complete lattices.

Lemma

Let Q be a subset, with the induced order, of some ordered set P and let $S \subseteq Q$. If $\bigvee_P S$ exists and belongs to Q, then $\bigvee_Q S$ exists and equals $\bigvee_P S$ (and dually for $\bigwedge_Q S$).

• For any $x \in S$, we have $x \leq \bigvee_P S$. since $\bigvee_P S \in Q$, by hypothesis, it acts as an upper bound for S in Q. Further, if y is any upper bound for S in Q, it is also an upper bound for S in P and so $y \geq \bigvee_P S$.

Corollary

Let \mathcal{L} be a family of subsets of a set X and let $\{A_i\}_{i \in I}$ be a subset of \mathcal{L} . (i) If $\bigcup_{i \in I} A_i \in \mathcal{L}$, then $\bigvee_{\mathcal{L}} \{A_i : i \in I\}$ exists and equals $\bigcup_{i \in I} A_i$. (ii) If $\bigcap_{i \in I} A_i \in \mathcal{L}$, then $\bigwedge_{\mathcal{L}} \{A_i : i \in I\}$ exists and equals $\bigcap_{i \in I} A_i$.

Consequently, any (complete) lattice of sets is a (complete) lattice with joins and meets given by union and intersection.

Synthesizing Joins Using Meets

• To show that an ordered set is a complete lattice requires only half as much work as the definition would have us believe.

Lemma

Let *P* be an ordered set such that $\bigwedge S$ exists in *P*, for every non-empty subset *S* of *P*. Then $\bigvee S$ exists in *P*, for every subset *S* of *P* which has an upper bound in *P*; indeed, $\bigvee S = \bigwedge S^u$.

Let S ⊆ P and assume that S has an upper bound in P. Thus, S^u ≠ Ø. Hence, by assumption, a = ∧ S^u exists in P. We claim that ∨ S = a. For all s ∈ S and all u ∈ S^u, s ≤ u. Consequently, for all s ∈ S, s ≤ ∧ S^u = a. Thus, a is an upper bound of S.

Suppose *b* is also an upper bound of *S*. By definition, $b \in S^u$. Hence, $a = \bigwedge S^u \le b$. Therefore, *a* is the least upper bound of *S*, i.e., $a = \bigvee S$.

Complete Lattices in Terms of Arbitrary Meets

Theorem

Let P be a non-empty ordered set. Then the following are equivalent:

- (i) *P* is a complete lattice;
- (ii) $\wedge S$ exists in *P*, for every subset *S* of *P*;
- (iii) P has a top element, \top , and $\bigwedge S$ exists in P for every non-empty subset S of P.
 - It is trivial that (i) implies (ii).
 (ii) implies (iii) since the meet of the empty subset of P exists only if P has a top element.

It follows easily from the previous lemma that (iii) implies (i).

Complete Lattices of Sets

Corollary

Let X be a set and let \mathcal{L} be a family of subsets of X, ordered by inclusion, such that:

(a) $\bigcap_{i \in I} A_i \in \mathcal{L}$, for every non-empty family $\{A_i\}_{i \in I} \subseteq \mathcal{L}$, and (b) $X \in \mathcal{L}$.

Then \mathcal{L} is a complete lattice in which

$$\bigwedge_{i\in I} A_i = \bigcap_{i\in I} A_i, \quad \bigvee_{i\in I} A_i = \bigcap \{B \in \mathcal{L} : \bigcup_{i\in I} A_i \subseteq B\}.$$

To show that ⟨L; ⊆⟩ is a complete lattice, it suffices to show that L has a top element and that the meet of every nonempty subset of L exists in L. By (b), L has a top element, namely X. Let {A_i}_{i∈I} be a non-empty subset of L. Then (a) gives ∩_{i∈I} A_i ∈ L. Therefore ∧_{i∈I} A_i exists and is given by ∩_{i∈I} A_i. Thus, ⟨L; ⊆⟩ is a complete lattice. Since X is an upper bound of {A_i}_{i∈I} in L, ∨_{i∈I} A_i = ∧{A_i : i ∈ I}^u = ∩{B ∈ L : (∀i ∈ I)A_i ⊆ B} = ∩{B ∈ L : ∪_{i∈I} A_i ⊆ B}.

Intersection Structures

Definitions

If \mathcal{L} is a non-empty family of subsets of X which satisfies

$$\bigcap_{i \in I} A_i \in \mathcal{L}, \text{ for every non-empty family } \{A_i\}_{i \in I} \subseteq \mathcal{L},$$

then \mathcal{L} is called an **intersection structure** (or \cap -structure) on X. If \mathcal{L} also satisfies $X \in \mathcal{L}$, we refer to it as a **topped intersection** structure on X. An alternative term is **closure system**.

- In a complete lattice $\mathcal L$ of this type:
 - the meet is just set intersection, but
 - in general the join is not set union.

Algebraic ∩-Intersection Structures

- Each of the following is a topped ∩-structure and so forms a complete lattice under inclusion:
 - the subgroups, SubG, of a group G;
 - the normal subgroups, \mathcal{N} -SubG, of a group G;
 - the equivalence relations on a set X;
 - the subspaces, SubV of a vector space V;
 - the convex subsets of a real vector space;
 - the subrings of a ring;
 - the ideals of a ring;
 - Sub₀L, the sublattices of a lattice L, with the empty set adjoined (note that SubL is not closed under intersections, except when |L| = 1);
 - the ideals of a lattice *L* with 0 (or, if *L* has no zero element, the ideals of *L* with the empty set added), and dually for filters.

These families all belong to a class of \cap -structures, called **algebraic** \cap -structures because of their provenance.

Topological ∩-Intersection Structures

The closed subsets of a topological space are closed under finite unions and finite intersections and hence form a lattice of sets in which A ∨ B = A ∪ B and A ∧ B = A ∩ B.

In fact, the closed sets form a topped \cap -structure and, consequently, the lattice of closed sets is complete.

- Meet is given by intersection;
- The join of a family of closed sets is not their union but is obtained by forming the closure of their union.
- Since the open subsets of a topological space are closed under arbitrary union and include the empty set, they form a complete lattice under inclusion.

By the dual version of the preceding corollary, join and meet are given by

$$\bigvee_{i \in I} A_i = \bigcup_{i \in I} A_i \text{ and } \bigwedge_{i \in I} A_i = \operatorname{Int}(\bigcap_{i \in I} A_i),$$

where Int(A) denotes the interior of A.

The Knaster-Tarski Fixpoint Theorem

Given an ordered set P and a map F : P → P, an element x ∈ P is called a fixpoint of F if F(x) = x.

The Knaster-Tarski Fixpoint Theorem

Let *L* be a complete lattice and $F : L \rightarrow L$ an order-preserving map. Then

$$\alpha \coloneqq \bigvee \{ x \in L : x \le F(x) \}$$

is a fixpoint of *F*. Further, α is the greatest fixpoint of *F*. Dually, *F* has a least fixpoint, given by $\bigwedge \{x \in L : F(x) \le x\}$.

Let H = {x ∈ L : x ≤ F(x)}. For all x ∈ H, x ≤ α, so x ≤ F(x) ≤ F(α). Thus, F(α) ∈ H^u, whence α ≤ F(α). Since F is order-preserving, F(α) ≤ F(F(α)). This says F(α) ∈ H, so F(α) ≤ α. If β is any fixpoint of F, then β ∈ H, so β ≤ α.

Subsection 6

Chain Conditions and Completeness

Finiteness Conditions

- We know that every finite lattice is complete.
- There are various finiteness conditions, of which "*P* is finite" is the strongest, which will guarantee that a lattice *P* is complete.

Definition

- Let P be an ordered set.
 - (i) If $C = \{c_0, c_1, \dots, c_n\}$ is a finite chain in P with |C| = n + 1, then we say that the **length** of C is n.
- (ii) *P* is said to have **length** *n*, written $\ell(P) = n$, if the length of the longest chain in *P* is *n*.
- (iii) *P* is of **finite length** if it has length *n* for some $n \in \mathbb{N}_0$.
- (iv) *P* has **no infinite chains** if every chain in *P* is finite.
- (v) *P* satisfies the **ascending chain condition**, (**ACC**), if given any sequence $x_1 \le x_2 \le \cdots \le x_n \le \cdots$ of elements of *P*, there exists $k \in \mathbb{N}$, such that $x_k = x_{k+1} = \cdots$.

The dual of the ACC is the descending chain condition, (DCC).

Examples

- (1) The lattices M_n are of length 2. A lattice of finite length has no infinite chains and so satisfies both (ACC) and (DCC).
 - 2) The lattice $\langle \mathbb{N}_0; \preccurlyeq \rangle$ satisfies (DCC) but not (ACC).

The chain \mathbb{N} satisfies (DCC) but not (ACC). Dually, \mathbb{N}^{∂} satisfies (ACC) but not (DCC). The lattice $\mathbf{1} \oplus (\bigcup_{n \in \mathbb{N}} n) \oplus$ $\mathbf{1}$ is the simplest example of a lattice which has no infinite chains but is not of finite length.

(4) It can be shown that a vector space V is finite dimensional if and only if $\operatorname{Sub} V$ is of finite length, in which case $\dim V = \ell(\operatorname{Sub} V)$.

ACC and Maximal Elements

Lemma

An ordered set P satisfies (ACC) if and only if every non-empty subset A of P has a maximal element.

Informal Proof: We shall prove the contrapositive in both directions, i.e., we prove that P has an infinite ascending chain if and only if there is a non-empty subset A of P which has no maximal element.

- Assume that x₁ < x₂ < ··· < x_n < ··· is an infinite ascending chain in P. Then, clearly, A = {x_n : n ∈ N} has no maximal element.
- Conversely, assume that A is a non-empty subset of P which has no maximal element. Let x₁ ∈ A. Since x₁ is not maximal in A, there exists x₂ ∈ A, with x₁ < x₂. Similarly, there exists x₃ ∈ A, with x₂ < x₃. Continuing in this way (the Axiom of Choice is needed) we obtain an infinite ascending chain in P.

ACC, DCC and Infinite Chains

Theorem

An ordered set P has no infinite chains if and only if it satisfies both (ACC) and (DCC).

- If P has no infinite chains, then it satisfies both (ACC) and (DCC).
 Suppose that P satisfies both (ACC) and (DCC) and contains an infinite chain C. Note that if A is a non-empty subset of C, then A has a maximal element m, by the preceding lemma. If a ∈ A, then, since C is a chain, we have a ≤ m or m ≤ a.
 - But $m \le a$ implies m = a, by the maximality of m.
 - Hence, a ≤ m, for all a ∈ A. So every non-empty subset of C has a greatest element.

Let x_1 be the greatest element of C; let x_2 be the greatest element of $C \setminus \{x_1\}$; in general let x_{n+1} be the greatest element of $C \setminus \{x_1, x_2, \ldots, x_n\}$. Then $x_1 > x_2 > \cdots > x_n > \cdots$ is an infinite, descending, covering chain in P, contradicting the (DCC).

Chain Conditions and Completeness

• Lattices with no infinite chains are complete:

Theorem

- Let P be a lattice.
 - (i) If P satisfies (ACC), then for every non-empty subset A of P, there exists a finite subset F of A, such that ∨ A = ∨ F (which exists in P).
- (ii) If P has a bottom element and satisfies (ACC), then P is complete.
- (iii) If P has no infinite chains, then P is complete.
 - Assume that P satisfies (ACC) and let A be a non-empty subset of P. Then, B := {∨ F : F is a finite non-empty subset of A} is a well-defined subset of P. Since B is non-empty, B has a maximal element m = ∨ F, for some finite subset F of A. Let a ∈ A. Then ∨(F ∪ {a}) ∈ B and m = ∨ F ≤ ∨(F ∪ {a}). Since m is maximal in B, m = ∨ F = ∨(F ∪ {a}). As m = ∨(F ∪ {a}), we have a ≤ m, whence m is an upper bound of A.

Chain Conditions and Completeness (Cont'd)

- Let x ∈ P be an upper bound of A. Then x is an upper bound of F, since F ⊆ A. Hence m = ∨ F ≤ x. Thus, m is the least upper bound of A, i.e., ∨ A = m = ∨ F.
 - (ii) follows from (i) and a preceding result.
 - A lattice with no infinite chains has a bottom element and satisfies (ACC), whence (iii) follows from (ii).

Subsection 7

Join-Irreducible Elements

Join- and Meet-Irreducible Elements

Definition

Let *L* be a lattice. An element $x \in L$ is **join-irreducible** if:

(i)
$$x \neq 0$$
 (in case L has a zero);

(ii) $x = a \lor b$ implies x = a or x = b, for all $a, b \in L$.

Condition (ii) is equivalent to the more pictorial:

(ii)'
$$a < x$$
 and $b < x$ imply $a \lor b < x$, for all $a, b \in L$.

Definition

Let *L* be a lattice. An element $x \in L$ is **meet-irreducible** if:

- (i) $x \neq 1$ (in case L has a one);
- (ii) $x = a \land b$ implies x = a or x = b, for all $a, b \in L$.

Condition (ii) is equivalent to the more pictorial:

(ii)' x < a and x < b imply $x < a \land b$, for all $a, b \in L$.

Join-Dense and Meet-Dense Subsets

• We denote:

- the set of join-irreducible elements of L by $\mathcal{J}(L)$;
- the set of meet-irreducible elements by $\mathcal{M}(L)$.

Each of these sets inherits L's order relation, and will be regarded as an ordered set.

- Let P be an ordered set and let $Q \subseteq P$.
 - Q is called join-dense in P if for every element a ∈ P, there is a subset A of Q such that a = ∨_P A;
 - Q is called **meet-dense in** P if for every element $a \in P$, there exists a subset A of Q such that $a = \bigwedge_P A$.

Examples I

- (1) In a chain, every non-zero element is join-irreducible. Thus, if L is an *n*-element chain, then $\mathcal{J}(L)$ is an (n-1)-element chain.
- (2) In a finite lattice L, an element is join-irreducible if and only if it has exactly one lower cover. This makes $\mathcal{J}(L)$ extremely easy to identify from a diagram of L.

Examples II

- (3) Consider the lattice (N₀; lcm, gcd). A non-zero element m ∈ N₀ is join-irreducible if and only if m is of the form p^r, where p is a prime and r ∈ N.
- (4) In a lattice P(X) the join-irreducible elements are exactly the singleton sets, {x}, for x ∈ X.
- (5) It is easily seen that the lattice of open subsets of \mathbb{R} (that is, subsets which are unions of open intervals) has no join-irreducible elements.

Some Remarks

- We have excluded 0 from being regarded as join-irreducible.
 - Note that we can never write 0 as a non-empty join, $\bigvee_P A$, unless $0 \in A$.
 - To compensate for this restriction, we have not excluded A = Ø in the definition of join-density, noting that V_PØ = 0 in a lattice P with zero.

Insisting that 0 is not join-irreducible is the lattice-theoretic equivalent of declaring that 1 is not a prime number.

• Our examples have shown that join-irreducible elements do not necessarily exist in infinite lattices.

On the other hand, it is easy to see that in a finite lattice every element is a join of join-irreducible elements.

DCC and Join-Irreducibles

Proposition

Let L be a lattice satisfying (DCC).

(i) Suppose $a, b \in L$ and $a \notin b$. Then, there exists $x \in \mathcal{J}(L)$, such that $x \leq a$ and $x \notin b$.

(ii)
$$a = \bigvee \{x \in \mathcal{J}(L) : x \leq a\}$$
, for all $a \in L$.

These conclusions hold in particular if L is finite.

(i) Let a ≤ b and let S := {x ∈ L : x ≤ a and x ≤ b}. The set S is non-empty since it contains a. Hence, since L satisfies (DCC), there exists a minimal element x of S. We claim that x is join-irreducible. Suppose that x = c ∨ d, with c < x and d < x. By the minimality of x, neither c nor d lies in S. We have c < x ≤ a, so c ≤ a, and, similarly, d ≤ a. Therefore c, d ∉ S implies c ≤ b and d ≤ b. But then x = c ∨ d ≤ b, a contradiction. Thus x ∈ J(L) ∩ S, proving (i).

DCC and Join-Irreducibles (Cont'd)

(ii) Let a ∈ L and let T := {x ∈ J(L) : x ≤ a}. Clearly a is an upper bound of T. Let c be an upper bound of T. We claim that a ≤ c. Suppose that a ≰ c; then a ≰ a ∧ c. By (i), there exists x ∈ J(L), with x ≤ a and x ≰ a ∧ c. Hence x ∈ T and, consequently, x ≤ c, since c is an upper bound of T. Thus x is a lower bound of {a, c} and consequently x ≤ a ∧ c, a contradiction. Hence a ≤ c, as claimed. This proves that a = ∨ T in L, whence (ii) holds.

Chain Conditions and Join Density

• Part (iii) below is an analogue of (the existence portion of) the Fundamental Theorem of Arithmetic.

Theorem

Let L be a lattice.

- (i) If L satisfies (DCC), then $\mathcal{J}(L)$ and, more generally, any subset Q which contains $\mathcal{J}(L)$ is join-dense in L.
- (ii) If L satisfies (ACC) and Q is join-dense in L, then, for each $a \in L$, there exists a finite subset F of Q, such that $a = \bigvee F$.
- (iii) If L has no infinite chains, then, for each $a \in L$, there exists a finite subset F of $\mathcal{J}(L)$, such that $a = \bigvee F$.
- (iv) If L has no infinite chains, then Q is join-dense in L if and only if $\mathcal{J}(L) \subseteq Q$.

Chain Conditions and Join Density (Cont'd)

- (i) This an immediate consequence of Part (ii) of the previous proposition.
- (ii) This follows immediately from a previous result.
- (iii) No infinite chains implies both (ACC) and (DCC), so (iii) is a consequence of (i) and (ii).
- (iv) One direction follows from (i).

In the other direction, assume that Q is join-dense in L and let $x \in \mathcal{J}(L)$. By (ii), there is a finite subset F of Q such that $x = \bigvee F$. Since x is join-irreducible we have $x \in F$ and, hence, $x \in Q$. Thus, $\mathcal{J}(L) \subseteq Q$.