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Lattices and Complete Lattices Lattices as Ordered Sets

Upper and Lower Bounds

o Let P be an ordered set and let S c P.
An element x € P is an upper bound of S if s < x for all s€S.
An element x € P is a lower bound of S if x < s for all s€ S.
o The set of all upper bounds of S is denoted by SY (read “S upper”):

SY={xeP:(VseS)s<x}.

o The set of all lower bounds is denoted S* (“S lower"):
St={xeP:(VseS)s>x}.

o Since < is transitive,

o SYis always an up-set;
o S’ is always a down-set.
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Lattices and Complete Lattices Lattices as Ordered Sets

Least Upper and Greatest Lower Bounds

o If S has a least element x, then x is the least upper bound of S.
Equivalently, x is the least upper bound of S if

(1) x is an upper bound of S;
(i) x <y, for all upper bounds y of S.

o If S* has a greatest element x, then x is called the greatest lower
bound of S.

@ Since least elements and greatest elements are unique, least upper
bounds and greatest lower bounds are unique when they exist.

o The least upper bound of S is also called the supremum of S and is
denoted by sup S.

o The greatest lower bound of S is also called the infimum of S and is
denoted by inf S.
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Lattices and Complete Lattices Lattices as Ordered Sets

Top and Bottom

o We discuss P itself with respect to suprema and infima:
o If P has a top element, then PY = {T}; thus, supP =T.
o When P has no top element, we have PY = &.
Hence, sup P does not exist.
o If P has a bottom element, then inf P = 1.

o We turn to S = @ with respect to suprema and infima:

o Every element x € P satisfies (vacuously) s < x, for all s € S. Thus,
@" = P and, hence, sup @ exists if and only if P has a bottom element,
and in that case sup@ = 1.

o If P has a top element, then inf@ =T.

George Voutsadakis (LSSU) Lattices and Order April 2020 6/72



Lattices and Complete Lattices Lattices as Ordered Sets

Joins and Meets

o We write:

o xVy (read as “x join y") in place of sup {x,y} when it exists;
o xAy (read as “x meet y") in place of inf {x,y} when it exists.

o Similarly we write:

o VS (the “join of S") instead of sup S and
o AS (the “meet of S") instead of inf S

when these exist.

o It is sometimes necessary to indicate that the join or meet is being
found in a particular ordered set P, in which case we write

VS o AS.
P P

o If Sis of the form S = {A;};c;, where [ is some indexing set, we write
Vier Aj for V{A; i el} and Ajy Aj for A{A;i:iel}.
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Lattices and Complete Lattices Lattices as Ordered Sets

Lattices and Complete Lattices

Let P be a non-empty ordered set.

(1) If xvy and x Ay exist for all x,y € P, then P is called a lattice.

(1) If VS and AS exist for all S ¢ P, then P is called a complete
lattice.

(1) Let P be any ordered set. Suppose x,y € P and x < y. Then

oyt =ty | {x.y}f = Ix
XVy=y XAY=Xx

In particular, since < is reflexive, we have x v x = x and x A x = x.
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Lattices and Complete Lattices Lattices as Ordered Sets

Remarks on Lattices and Complete Lattices

(2) In an ordered set P, the least upper bound x vy of {x,y} may fail to
exist for two different reasons:
(2) because x and y have no common c d
upper bound;

(b) because they have no least upper o o
bound. ap a b
(3) Consider the ordered set drawn below.
Ta Since {b,c}" ={T,h,i} has

‘ﬁ j distinct minimal elements, h

N -
‘ T h and /, it cannot have a least
leyd h . element. Hence bV ¢ does
1 not exist.
ol /

Since {a,b}" ={T,h,i,f} has a least element, f, av b =f.
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Lattices and Complete Lattices Lattices as Ordered Sets

Further Remarks on Lattices and Complete Lattices

(4) Let P be a lattice. Then, for all a,b,c,d € P,

(i) a<bimpliesavc<bvcand anc<bac;
(i) a<band c<dimplyavc<bvdand anc<bad.

(1) Using the definitions of join and meet, we get:

a<b<bvc
=avc<bvg
c<bvc
anc<a<b
=anc<bac.
anc<c

(11) Using Part (i), we get

avec<bvc<bvd
anc<bac<bnad.

George Voutsadakis (LSSU) Lattices and Order April 2020 10/72



Lattices and Complete Lattices Lattices as Ordered Sets

Further Remarks on Lattices and Complete Lattices

(5) Let P be a lattice. Let a,b,c € P and assume that b<a<bvec.
Since c < bV ¢, we have (bvc)vec=bve, by (1). Thus, by (4)(i),

bvc<avec<(bvec)ve=bve,

whence avc=bvVve.

Thus, when calculating joins and meets on bV e
a diagram, once we know the join of b and
c, the join of c with the intermediate ele- a

ment a is forced.
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Lattices and Complete Lattices Lattices as Ordered Sets

Example I: Some Linear Orders

o Let P be a non-empty ordered set.
If x<y, then xvy=yand xAy=x.

Hence, to show that P is a lattice, it suffices to prove that x v y and
X Ay exist in P for all noncomparable pairs x,y € P.
@ In particular, every chain is a lattice in which

xVvy=max{x,y} and xAy=min{x,y}.

o Thus, each of R,Q,Z and N is a lattice under its usual order.
None of them is complete; every one lacks a top element, and a
complete lattice must have top and bottom elements.

o If x <y in R, then the closed interval [x,y] is a complete lattice (by
the completeness axiom for R).

o Failure of completeness in @ is more fundamental than in R.
In @, it is not only the lack of top and bottom elements which causes
problems; for example, the set {s € Q: s <2} has upper bounds but
no least upper bound in Q.
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Lattices and Complete Lattices Lattices as Ordered Sets

Example Il: Powersets

o For any set X, the ordered set (P(X);C) is a complete lattice in
which

\/{A;:iGI}=U{A;:iEI} and /\{A;:iEI}=ﬁ{Ai:i€/}.

o We indicate the index set by subscripting, e.g., instead of U{A;:i€ [}
we shall write U;¢s A; or simply U A;.

o We verify the assertion about meets (a dual proof works for joins);
Let {Aj}ie/ be a family of elements of P(X). Since N;e; Aj € A;, for
all j € 1, it follows that N;¢; A; is a lower bound for {A;};e;.

Also, if B € P(X) is a lower bound of {A;};c, then B c A;, for all
i €l and, hence, B €N Ai. Thus, Njes Ai is indeed the greatest
lower bound of {A;}ic; in P(X).
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Lattices and Complete Lattices Lattices as Ordered Sets

Example Ill: Lattices of Sets

o Let @+ LS P(X). Then L is called
o a lattice of sets if it is closed under finite unions and intersections;
o a complete lattice of sets if it is closed under arbitrary unions and
intersections.
o If L is a lattice of sets, then (£;C) is a lattice in which Av B=AuB
and AAB=AnB.
o Similarly, if £ is a complete lattice of sets, then (£;<) is a complete
lattice with join given by set union and meet given by set intersection.
o Let P be an ordered set and consider the ordered set O(P) of all
down-sets of P.
If {Ai}ics € O(P), then Uje; Ai and Nje A; both belong to O(P).
Hence O(P) is a complete lattice of sets, called the down-set lattice
of P.
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Lattices and Complete Lattices Lattices as Ordered Sets

Example IV: The Ordered Sets M,

o The ordered set M, (for n > 1) is easily seen to be a lattice:

€ <P

Let x,y € M, with x || y. Then x and y are in the central antichain
of M, and, hence, xVy=Tand xAy = 1.
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Lattices and Complete Lattices Lattices as Ordered Sets

Example V: The Ordered Set (INy; <)

o Consider the ordered set (INg; <) of non-negative integers ordered by
division.

o Recall that k is the greatest common divisor (or highest common
factor) of m and n if
(a) k divides both m and n (that is, k < m and k < n);
(b) if j divides both m and n, then j divides k (that is, j < k, for all lower

bounds j of {m, n}).

Thus, the greatest common divisor of m and n is precisely the meet of
m and n in (INg; <).

o Dually, the join of m and n in (INg; <) is given by their least common
multiple.

o These statements remain valid when m or n equals 0.

o Thus, (INg; <) is a lattice in which

mv n=lem{m,n} and mAn=ged{m,n}.

o (INg; <) is actually a complete lattice.
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Lattices and Complete Lattices Lattices as Ordered Sets

Lattices of Subgroups

o Assume that G is a group and (SubG;¢c) is its ordered set of
subgroups.
o Let H,K € SubG.
o It is always the case that Hn K € SubG, whence H A K exists and
equals Hn K.
o HuUK is is not a subgroup in general. Nevertheless, H v K does exist in

SubG, as (rather tautologically) the subgroup (H U K) generated by
Hu K. Unfortunately, there is no convenient general formula for Hv K.

o Normal subgroups are more amenable.
o Meet is again given by n;
o Join in N-SubG has a particularly compact description:
If H,K are normal subgroups of G, then HK := {hk:he H, ke K} is
also a normal subgroup of G.
It follows easily that the join in N-SubG is given by Hv K = HK.
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Lattices and Complete Lattices Lattices as Ordered Sets

Examples of Lattices of Subgroups

o The lattices SubG and N-SubG for the group, Dy, of symmetries of
a square and for the group Zy x Z4.

The elements of A/-SubG are shaded.
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Lattices and Complete Lattices Lattices as Algebraic Structures

Subsection 2

Lattices as Algebraic Structures
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Lattices and Complete Lattices Lattices as Algebraic Structures

Lattices as Algebraic Structures

o Given a lattice L, we may define binary operations join and meet on
the non-empty set L by

avb:=sup{a,b} and anb:=inf{a b}, a,bel.

o The operations v : L2 — L and A: L% — L are order-preserving.

The Connecting Lemma
Let L be a lattice and let a,b € L. Then the following are equivalent:
() a<h;
(1) avb=b;
(i) anb=a.
o We have shown that (i) implies both (ii) and (iii).
Assume (ii). Then b is an upper bound for {a, b}, whence b > a.
Thus (i) holds. Similarly, (iii) implies (i).
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Lattices and Complete Lattices | Lattices as Algebraic Structures

Properties of v and A

Theorem
Let L be a lattice. Then v and A satisfy, for all a,b,c € L,

(L1) (avb)vc=av(bvc) (associative laws)
(L1)? (anb)ac=an(bac)
(

L2) avb=bva (commutative laws)
(L3) ava=a (idempotency laws)
(L3)? ana=a

(L4) av(anb)=a (absorption laws)

1)
)
)
(L2)? anb=bnra
)
)
)
(L4)? an(avb)=a.

o By the Duality Principle for lattices it is enough to consider
(L1)-(L4).

George Voutsadakis (LSSU) Lattices and Order April 2020 21/72



Lattices and Complete Lattices Lattices as Algebraic Structures

Proof of the Properties

o We have already proven (L3).

o (L2) is immediate because, for any set S, sup S is independent of the
order in which the elements of S are listed.

o (L4) follows easily from the Connecting Lemma: Since an b< a, we
get av(anb)=a.

o We prove (L1).
It is enough, by (L2), to show that (av b) v c=sup{a,b,c}. Thisis
the case if {av b,c}" ={a,b,c}". But

de{a,b,c}'! <= de{ab}"andd>c

<~ d>avbandd>c
<~ de{avb,c}”
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Lattices and Complete Lattices | Lattices as Algebraic Structures

From Algebraic Structures to Ordered Structures

Theorem

Let (L;v,A) be a non-empty set equipped with two binary operations
which satisfy (L1)-(L4) and (L1)%-(L4)°.

(1) Forall a,belL, we have avb=>bifand only if an b= a.
(1) Define<on Lby a<bifavb=b. Then < is an order relation.

(1) With < as in (i), (L; <) is a lattice in which the original operations
agree with the induced operations, that is, for all a,b € L,

avb=sup{a,b} and aab=inf{a,b}.

o Assume av b=b. Then a=an (avb) (by (L4)?) =an b (by
assumption).

Conversely, assume anb=a. Then b=bv (baa) (by (L4))
=bv (anb) (by (L2)?) = bv a (by assumption) = av b (by (L2)).
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Lattices and Complete Lattices Lattices as Algebraic Structures

From Algebraic Structures to Ordered Structures (Cont'd)

o Now define < as in (ii). Then <is

(L3)

o reflexive by (L3): ava = a=a<a;

oantlsymmetr|cby(L2).asb&bs.a=>avb=b&bva=a(5>)a=b;
otransitiveby(Ll) a<b&b<c=avb=b& bvc=c=avc=
av(bvc) (avb)vc bvc=c=a<g;

o To show that sup{a, b} = aVv b in the ordered set (L;<), we must

check:
o avbe{ab}" av(avb)=(ava)vb=avb=a<avbhband
bv(avb)=bv(bva)=(bvb)va=bva=avb=b<avb;
o de{a, b} impliesd>avb:
(avb)vd=(avb)v(dvd)=((avb)vd)vd=(av(bvd))vd-=
(av(dvb))vd = ((avd)vb)vd = (avd)v(bvd) =dvd =d = avb < d,;

The characterization of inf is obtained by duality.
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Lattices and Complete Lattices | Lattices as Algebraic Structures

Stocktaking: Algebra and Order

@ We have shown that lattices can be completely characterized in terms
of the join and meet operations.

o We may henceforth say “let L be a lattice”, replacing L by (L;<) or
by (L;v,A) if we want to emphasize that we are thinking of it as a
special kind of ordered set or as an algebraic structure.

o In a lattice L, associativity of v and A allows us to write iterated joins
and meets unambiguously without brackets.

@ An easy induction shows that these correspond to sups and infs in the
expected way:

VAat,...,ant=a1v--va, and A{a1,....an} =a1 A Aap,

for ai,...,a,el,n>1,

o Consequently, \V F and A F exist for any finite, non-empty subset F
of a lattice.
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Lattices and Complete Lattices Lattices as Algebraic Structures

Bounded Lattices

o Let L be a lattice.
o It may happen that (L;<) has top and bottom elements T and 1;
o When thinking of L as (L;V,A), we say:

o L has a one if there exists 1 € L, such that a=aA1l, for all aeL;
o L has a zero if there exists 0 € L, such that a=av 0, for all a€ L.

o The lattice (L; Vv, A) has a:

o one if and only if (L;<) has a top element T and, in that case, 1 =T;
o zero if and only if (L; <) has a bottom element 1 and, in that case,
0=1.

o A lattice (L; v, ) possessing 0 and 1 is called bounded.
@ A finite lattice is automatically bounded, with 1=V L and 0= A L.
Example: (INg; lem, ged) is bounded, with 1 =0 and 0 = 1.
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Subsection 3

Sublattices, Products and Homomorphisms
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

Sublattices

Definition (Sublattice)
Let L be a lattice and @+ M c L. Then M is a sublattice of L if
a,be M implies avbeMand anbe M.

o We denote the collection of all sublattices of L by SubL and let
SubgL = SubL u {@&}; both are ordered by inclusion.
@ Examples:

(1) Any one-element subset of a lattice is a sublattice. More generally, any
non-empty chain in a lattice is a sublattice. (To test that a non-empty
subset M is a sublattice, it suffices to consider non-comparable
elements a, b.)

(2) In the diagrams the shaded
elements form sublattices:
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

More Examples of Sublattices

(2) In the diagrams below the shaded elements do not form sublattices:

(3) A subset M of a lattice (L; <) may be a lattice in its own right
without being a sublattice of L, e.g., the right picture above.
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

Products

o Let L and K be lattices.
o Define v and A coordinatewise on L x K, as follows:

(El,kl)V(KZJkZ) (KIVEZ;kIVkZ),
(ﬁl,kl)/\(£2,k2) (51 /\Ez,kl/\kg).

o It is routine to check that L x K satisfies the identities (L1)-(L4)? and
therefore is a lattice.
o Also

(fl,kl) \ (fz, k2) = (ﬂz,kz) <~ ﬂl Vﬂz = 62 and k1 \% k2 = k2
<~ /{1 <¥yand k1 < k
= (l1,ki) < (l2, k),

with respect to the order on L x K.
Hence the lattice formed by taking the ordered set product of lattices
L and K is the same as that obtained by defining v and A

coordinatewise on L x K.
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

An Example

o The product of the lattices L =3 and K = 1 & 2°:

L=3 K=1¢22 ; LxK

Notice how (isomorphic copies) of L and K sit inside L x K as the
sublattices L x {0} and {0} x K.

o The product of lattices L and K always contains sublattices
isomorphic to L and K.

o lterated products and powers are defined in the obvious way.

o It is also possible to define the product of an infinite family of lattices.
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

Homomorphisms

Let L and K be lattices. A map f: L —» K is said to be a homomorphism
(or, for emphasis, lattice homomorphism) if f is join-preserving and

meet-preserving, i.e., for all a,be L,

f(avb)=Ff(a)vrf(b) and f(anb)=r(a)nf(b).

A bijective homomorphism is a (lattice) isomorphism.
If f:L— K is a one-to-one homomorphism, then the sublattice f(L) of K
is isomorphic to L and we refer to f as an embedding (of L into K).
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

Remarks on Lattice Homomorphisms

(1) The inverse of an isomorphism is a homomorphism and hence is also
an isomorphism:
Let f: L - K be an isomorphism, a’, b’ € K, such that
a’ =f(a),b’ = f(b). Then, for the join (and dually for the meet)

f1(a vb) f1(f(a) v f(b))
= fI(f(avh))
= avb
= F(f(2) v FAF(B))
= L&) v ),
(2) We write L = K to indicate that the lattice K has a sublattice
isomorphic to the lattice L.
We will see, next, that M > L implies M — L.
(2) For bounded lattices L and K it is often appropriate to consider
homomorphisms f : L — K, such that f(0) =0 and (1) = 1.
Such maps are called {0, 1}-homomorphisms.
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

Examples of Mappings

o The maps @2 and @3 are homomorphisms:

‘ a(€) ¢ (=)
=ps(e
A e S ‘7
b c b c
a p2(a)=p2(b) a 3(a)=ps(b)

o The maps ¢4 and s are order preserving but not homomorphisms:

‘ pa(d)=pa(e) ‘ s (e)

d ¥4 d 5 w5 (b)=ps(c)
X T ()=o) Pl e 4

a pa(a) a ¢s(a)

o In general an order-preserving map may not be a homomorphism.
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

Order and Lattice Isomorphisms

Let L and K be lattices and f : L - K a map.
(1) The following are equivalent:

(a) f is order-preserving;
(b) (Va,beL)f(avb)>f(a)vf(b);
(c) (Va,beL)f(anb)<f(a)Af(b).

In particular, if f is a homomorphism, then f is order-preserving.

(1) fis a lattice isomorphism if and only if it is an order-isomorphism.

(1) Sincea<avb,b<avb,anb<aand anb<b, we get

f(a)<f(avb)
f(b)<f(avb)
f(anb)<f(a)
f(anb)<f(b)

= f(a) vf(b)<f(avb);

= f(anb)<f(a)Arf(b).
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Lattices and Complete Lattices Sublattices, Products and Homomorphisms

Order and Lattice Isomorphisms (Cont'd)

(11) Assume that f is a lattice isomorphism. Then, by the Connecting
Lemma, a< biffavb=>biff f(avb)=1(b)iff f(a)v (b)="r(b) iff
f(a) < f(b), whence, f is an order-embedding, and so is an
order-isomorphism.

o Conversely, assume that f is an order-isomorphism. Then f is
bijective. By (i) and duality, to show that f is a lattice isomorphism it
suffices to show that

f(a)vf(b)>f(avb), forallabel.

Since f is surjective, there exists c € L, such that f(a) v f(b) = f(c).
Then f(a) < f(c) and f(b) < f(c). Since f is an order-embedding, it
follows that a < c and b < ¢, whence av b< c. Because f is
order-preserving, f(av b) < f(c) =f(a) Vv f(b), as required.
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Subsection 4

Ideals and Filters
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Lattices and Complete Lattices Ideals and Filters

Ideals

Definition

Let L be a lattice. A non-empty subset J of L is called an ideal if

(1) a,be JimpliesavbeJ,
(1) ael,beJand a<bimply ae J.

@ More compactly, an ideal is a non-empty down-set closed under join.

An ideal and two non-
ideals.

o Every ideal J of a lattice L is a sublattice, since a A b < a for any
a,bel.
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Lattices and Complete Lattices Ideals and Filters

Filters

Definition

Let L be a lattice. A non-empty subset G of L is called a filter if
(1) a,be G impliesanbeG,

(1) ael, beGand a>bimply aeG.

o The set of all ideals of L is denoted by Z(L).

o The set of all filters of L is denoted by F(L).
o An ideal or filter is called proper if it does not coincide with L.

o An ideal J of a lattice with 1 is proper if and only if 1 ¢ J;
o Dually, a filter G of a lattice with 0 is proper if and only if 0 ¢ G.

o For each a€ L, the set |a is an ideal, known as the principal ideal
generated by a.

o Dually, ta is the principal filter generated by a.
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Lattices and Complete Lattices Ideals and Filters

Examples

(1) In a finite lattice, every ideal or filter is principal:
o The ideal J equals |V J.
o The filter G equals 1 A G.
(?) Let L and K be bounded lattices and f: L - K a
{0,1}-homomorphism. Then f~1(0) is an ideal and f71(1) is a filter
in L.
(3) The following are ideals in P(X):
(a) all subsets not containing a fixed element of X;
(b) all finite subsets (this ideal is non-principal if X is infinite).
(4) Let (X;7T) be a topological space and let x € X. Then the set
{VeX:(3UeT)xeUc V}is afilter in P(X). It is called the
filter of neighborhoods of x.
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Subsection 5

Complete Lattices and N-Structures
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Lattices and Complete Lattices Complete Lattices and N-Structures

Complete Lattices: Basic Properties

o Recall that a complete lattice is defined to be a non-empty, ordered
set P, such that the join (supremum), VV S, and the meet (infimum),
NS, exist for every subset S of P.

@ The following are immediate consequences of the definitions of least
upper bound and greatest lower bound:

Lemma

Let P be an ordered set, let S, T € P and assume that VS,V T,A S and
A T exist in P.

(1) s<VSands>AS, forall seS.
(i)
(iii)
() VS<AT ifand only if s<t, forallseS andall teT.
(v) fScT,thenVS<VTand AS>AT.
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Proof of the Basic Properties

(1) V'S is an upper bound of S and s € S. Hence, s<VS.
A S is a lower bound of S and s€S. Hence, AS <s.

(11) Suppose x < A'S. Since AS <s, for all s€ S, we get, by transitivity,
x<s, forall seS.
Suppose x < s, for all s €S. This means that x is a lower bound of S.
Since A S is a greatest lower bound of S, x < AS.

(111) Dual to Part (ii).

(1v) Suppose VS<AT. LetseSandteT. Thens<VS<AT<¢t.
Assume, conversely, that, for all se S and all te€ T, s <t. By Part
(i), s< A T. By Part (iii), VS<AT.

(v) Suppose Sc T.

@ \/ T is an upper bound of T. Since Sc T, \V T is an upper bound of
S. VS is the least upper bound of S. Hence, VS<V T.

o AT isalower bound of T. Since Sc T, VT is also a lower bound of
S. AS is the greatest lower bound of S. Hence, AT < AS.
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Join and Meet and Set Unions

Let P be a lattice, let S, T € P and assume that VS,V T,AS and AT
exist in P. Then

V(ESuT)=(VSVv(VT) and AGSUT)=(ASAAT).

o V(SuT)isan upper bound of SUT. Thus, VV(SuU T) is an upper
bound of S and of T. Since \V S is the least upper bound of S,
VS <V(SuT). Since VT is the least upper bound of T,
VT <V(SuUT). Since (VS) Vv (V T) is the least upper bound of
{VS, VT (VS)v(VT)<V(SuT).
(VS)Vv(V T)is an upper bound of {\/ S,V T}. By transitivity,
(VS) Vv (VT)is an upper bound of SuU T. Since V(SuU T) is the
least upper bound of SUT, V(SUT)<(VS)V(VT).
By antisymmetry, V(SuT)=(VS)Vv(VT).
The second equality can be shown similarly.
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On Finite Joins and Meets

@ Using the preceding lemma, we get, using induction,

Lemma

Let P be a lattice. Then \V F and A F exist for every finite, non-empty
subset F of P.

o Let F={x1,x2,...,Xn}, n>1. Then:

o V{xi} =xi;
o V{x1,x} =x1Vx;
o VX1, X2, Xn = V{X1, X0, -+, Xn-1} V Xp-

Similarly, we may show that the finite meet A F also exists.
Corollary

Every finite lattice is complete.
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Joins and Meets and Order-Preserving Maps

Definition
Let P and @ be ordered sets and ¢ : P - @ a map. Then we say that
o  preserves existing joins if whenever \/ S exists in P then V ¢(S)
exists in @ and (V' S) =V ¢(S);
o  preserves existing meets if whenever A S exists in P then A ¢(S)
exists in Q and (A S) = Ap(S)

Lemma
Let P and @ be ordered sets and ¢ : P - @ be an order-preserving map.

(1) Assume that S C P is such that \/ S exists in P and V ¢(S) exists in
Q. Then p(VS) >V ¢(S). Dually, (A S) < Ap(S) if both meets

exist.

(1) Assume now that ¢ : P — Q is an order-isomorphism. Then ¢
preserves all existing joins and meets.
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Proof of the Lemma

(1) VS is an upper bound of S: S<VS. ¢ is order preserving:
©(S) <p(VS). V(S) is the least upper bound of ¢(S). Hence,
Ve(S) <o(VS).

A'S is a lower bound of S: AS <S. ¢ is order-preserving:
©(AS) <p(S). Ap(S) is the greatest lower bound of ¢(S). Hence,
©(AS) < Np(S).

(11) Assume ¢ is an order isomorphism. In particular, it is surjective.
Thus, there exists x € P, such that \V ¢(S) = ¢(x). Thus, for all
seS, ¢o(s) <p(x). Since @ is order reflecting, S < x. Since VS is
the least upper bound of S, V'S < x. Since ¢ is order preserving,
©(VS) <p(x). Thus, o(VS) <V ¢(S). Equality follows by Part (i)
and antisymmetry.

Preservation of meets can be shown similarly.
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Subsets of Complete Lattices

o The next lemma is useful for showing that certain subsets of complete
lattices are themselves complete lattices.

Lemma

Let @ be a subset, with the induced order, of some ordered set P and let
S5c Q. If VpS exists and belongs to Q, then /¢ S exists and equals \/p S
(and dually for A S).

o For any x€ S, we have x <\V/pS. since Vp S € Q, by hypothesis, it
acts as an upper bound for S in Q. Further, if y is any upper bound
for Sin Q, it is also an upper bound for S in P andso y > V/p S.

Corollary

Let £ be a family of subsets of a set X and let {A;};; be a subset of L.
(1) If Ues Ai € L, then \V/{A; :i €|} exists and equals U A;.
(1) If Njes Ai € L, then A{A;:i¢€l} exists and equals N;¢; A;.
Consequently, any (complete) lattice of sets is a (complete) lattice with
joins and meets given by union and intersection.
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Synthesizing Joins Using Meets

o To show that an ordered set is a complete lattice requires only half as
much work as the definition would have us believe.

Lemma

Let P be an ordered set such that A S exists in P, for every non-empty
subset S of P. Then \/ S exists in P, for every subset S of P which has an
upper bound in P; indeed, \V S = A SY.

@ Let S ¢ P and assume that S has an upper bound in P. Thus, $" + @.
Hence, by assumption, a = A S exists in P. We claim that \V S = a.

For all se€ S and all ue SY, s < u. Consequently, for all s€ S,
s<ASY=a. Thus, ais an upper bound of S.

Suppose b is also an upper bound of S. By definition, b€ SY. Hence,
a=AS"<b. Therefore, a is the least upper bound of S, i.e.,, a=V S.
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Complete Lattices in Terms of Arbitrary Meets

Theorem

Let P be a non-empty ordered set. Then the following are equivalent:
(1) P is a complete lattice;
(1) AS exists in P, for every subset S of P;
(111} P has a top element, T, and A S exists in P for every non-empty
subset S of P.
o It is trivial that (i) implies (ii).

(i) implies (iii) since the meet of the empty subset of P exists only if
P has a top element.

It follows easily from the previous lemma that (iii) implies (i).
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Complete Lattices of Sets

Corollary

Let X be a set and let £ be a family of subsets of X, ordered by inclusion,
such that:

(2) Nies Ai € L, for every non-empty family {A;};e; € £, and
(b) XeL.

Then L is a complete lattice in which

/\A,’ = mA,', \/A,' = m{B eL: UA,‘ c B}.
iel iel iel iel
o To show that (£;C) is a complete lattice, it suffices to show that £

has a top element and that the meet of every nonempty subset of £
exists in L. By (b), £ has a top element, namely X. Let {A;}ic be a
non-empty subset of £. Then (a) gives Nje; Aj € L. Therefore Ajej A;
exists and is given by N A;. Thus, (£; <) is a complete lattice.
Since X is an upper bound of {A;}i; in L, Vi Ai= N{Ai:iel}¥=
M{BeLl:(Vie NAcBY=N{BeL:UpAcB).
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Intersection Structures

Definitions
If £ is a non-empty family of subsets of X which satisfies

() Ai € L, for every non-empty family {A;}e/ € L,

i€l

then L is called an intersection structure (or N-structure) on X.
If £ also satisfies X € L, we refer to it as a topped intersection
structure on X. An alternative term is closure system.

o In a complete lattice £ of this type:

o the meet is just set intersection, but
o in general the join is not set union.
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Algebraic N-Intersection Structures

o Each of the following is a topped -structure and so forms a
complete lattice under inclusion:

o the subgroups, SubG, of a group G;

the normal subgroups, N-SubG, of a group G;

the equivalence relations on a set X;

the subspaces, SubV of a vector space V;

the convex subsets of a real vector space;

the subrings of a ring;

the ideals of a ring;

SubgL, the sublattices of a lattice L, with the empty set adjoined (note

that SubL is not closed under intersections, except when |L| = 1);

o the ideals of a lattice L with 0 (or, if L has no zero element, the ideals
of L with the empty set added), and dually for filters.

€ ¢ ¢ ¢ ¢ ¢ ¢

These families all belong to a class of N-structures, called algebraic
(M-structures because of their provenance.
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Topological MN-Intersection Structures

o The closed subsets of a topological space are closed under finite
unions and finite intersections and hence form a lattice of sets in
which AvB=AuBand AAB=AnB.

In fact, the closed sets form a topped (-structure and, consequently,
the lattice of closed sets is complete.

o Meet is given by intersection;
o The join of a family of closed sets is not their union but is obtained by
forming the closure of their union.

@ Since the open subsets of a topological space are closed under
arbitrary union and include the empty set, they form a complete
lattice under inclusion.

By the dual version of the preceding corollary, join and meet are given
b
’ VA=UA and  AA=Int(()A),
iel iel iel iel
where Int(A) denotes the interior of A.
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The Knaster-Tarski Fixpoint Theorem

o Given an ordered set P and a map F: P — P, an element x € P is
called a fixpoint of F if F(x) = x.

The Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and F : L — L an order-preserving map. Then

a=\{xel:x<F(x)}

is a fixpoint of F. Further, « is the greatest fixpoint of F.
Dually, F has a least fixpoint, given by A{x € L: F(x) < x}.

o Let H={xel:x<F(x)}. Forall xe H, x<a, so x< F(x) < F(a).
Thus, F(a) € HY, whence o < F(«). Since F is order-preserving,
F(a) < F(F(w)). This says F(a) € H, so F(«) < a.

If 8 is any fixpoint of F, then S € H, so 8 < a.
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Subsection 6

Chain Conditions and Completeness
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Finiteness Conditions

o We know that every finite lattice is complete.

@ There are various finiteness conditions, of which “P is finite" is the
strongest, which will guarantee that a lattice P is complete.
Let P be an ordered set.
(1) If C={co,c1,...,Cn} is a finite chain in P with |C| = n+1, then we say that
the length of C is n.

(1) P is said to have length n, written £(P) = n, if the length of the longest
chain in P is n.

(1i1) P is of finite length if it has length n for some n € IN.
(i) P has no infinite chains if every chain in P is finite.

(v) P satisfies the ascending chain condition, (ACC), if given any sequence
X1 < Xxp <+ < X, < --- Of elements of P, there exists k € IN, such that
Xk = Xk+1 = -
The dual of the ACC is the descending chain condition, (DCC).
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Examples

(1) The lattices M, are of length 2. A lattice of finite length has no
infinite chains and so satisfies both (ACC) and (DCC).

(2) The lattice (INg; <) satisfies (DCC) but not (ACC).

The chain IN satisfies (DCC) but not

(ACC). Dually, IN? satisfies (ACC) but

not (DCC). The lattice 1 (U, n) ®

1 is the simplest example of a lattice

which has no infinite chains but is not
N N? 1o, ot of finite length.

(4) It can be shown that a vector space V is finite dimensional if and only
if SubV is of finite length, in which case dimV = ¢(SubV).
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ACC and Maximal Elements

Lemma

An ordered set P satisfies (ACC) if and only if every non-empty subset A
of P has a maximal element.

Informal Proof: We shall prove the contrapositive in both directions,
i.e., we prove that P has an infinite ascending chain if and only if
there is a non-empty subset A of P which has no maximal element.
@ Assume that x; < xp < < x, < --- is an infinite ascending chain in P.
Then, clearly, A ={x,:neIN} has no maximal element.
o Conversely, assume that A is a non-empty subset of P which has no
maximal element. Let x; € A. Since x; is not maximal in A, there exists
X2 € A, with x; < xp. Similarly, there exists x3 € A, with x5 < x3.
Continuing in this way (the Axiom of Choice is needed) we obtain an
infinite ascending chain in P.
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ACC, DCC and Infinite Chains

An ordered set P has no infinite chains if and only if it satisfies both
(ACC) and (DCC).

o If P has no infinite chains, then it satisfies both (ACC) and (DCC).
Suppose that P satisfies both (ACC) and (DCC) and contains an
infinite chain C. Note that if A is a non-empty subset of C, then A
has a maximal element m, by the preceding lemma. If a € A, then,
since C is a chain, we have a<mor m< a.

o But m < aimplies m = a, by the maximality of m.
@ Hence, a< m, for all a€ A. So every non-empty subset of C has a
greatest element.
Let x; be the greatest element of C; let xo be the greatest element of
C\{x1}; in general let x,,1 be the greatest element of
C\{x1,%2,...,Xn}. Then xg > xp > -+ > x, > -+ is an infinite,
descending, covering chain in P, contradicting the (DCC).
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Chain Conditions and Completeness

o Lattices with no infinite chains are complete:

Let P be a lattice.

(1) If P satisfies (ACC), then for every non-empty subset A of P, there exists a
finite subset F of A, such that \/ A=V F (which exists in P).

(11) If P has a bottom element and satisfies (ACC), then P is complete.

(111) If P has no infinite chains, then P is complete.

o Assume that P satisfies (ACC) and let A be a non-empty subset of P.
Then, B:={V F : F is a finite non-empty subset of A} is a
well-defined subset of P. Since B is non-empty, B has a maximal
element m =\ F, for some finite subset F of A. Let ac€ A. Then
V(Fu{a})eBand m=\VF <\V(Fu{a}). Since mis maximal in B,
m=\F=V(Fu{a}). As m=V(Fu{a}), we have a < m, whence
m is an upper bound of A.
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Chain Conditions and Completeness (Cont'd)

o Let x € P be an upper bound of A. Then x is an upper bound of F,
since F € A. Hence m =\ F < x. Thus, m is the least upper bound of

A ie,VA=m=VF.
(ii) follows from (i) and a preceding result.

A lattice with no infinite chains has a bottom element and satisfies
(ACC), whence (iii) follows from (ii).
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Subsection 7

Join-Irreducible Elements
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Join- and Meet-Irreducible Elements

Definition

Let L be a lattice. An element x € L is join-irreducible if:
(1) x#0 (in case L has a zero);

(1) x=avV bimplies x=aor x=b, for all a,be L.

Condition (ii) is equivalent to the more pictorial:

(1) a<xand b<x imply avb<x, forall a,belL.

Definition

Let L be a lattice. An element x € L is meet-irreducible if:
(1) x#1 (in case L has a one);

(1) x=anbimplies x=aor x=b, for all a,be L.

Condition (ii) is equivalent to the more pictorial:

(1) x<aand x< bimply x<anb, forall a,be L.
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Join-Dense and Meet-Dense Subsets

o We denote:
o the set of join-irreducible elements of L by J(L);
o the set of meet-irreducible elements by M(L).
Each of these sets inherits L's order relation, and will be regarded as
an ordered set.
@ Let P be an ordered set and let Q ¢ P.

o @ is called join-dense in P if for every element a € P, there is a subset
A of Q such that a=\VpA;

o @ is called meet-dense in P if for every element a € P, there exists a
subset A of @ such that a= Ap A.
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Examples |

(1) In a chain, every non-zero element is join-irreducible. Thus, if L is an
n-element chain, then J(L) is an (n—1)-element chain.

(2) In a finite lattice L, an element is join-irreducible if and only if it has
exactly one lower cover. This makes J (L) extremely easy to identify
from a diagram of L.

VR
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Examples |l

(3) Consider the lattice (INg; lcm, gcd). A non-zero element m € INg is

join-irreducible if and only if m is of the form p”, where p is a prime
and r e IN.

(4) In a lattice P(X) the join-irreducible elements are exactly the
singleton sets, {x}, for x € X.

(5) It is easily seen that the lattice of open subsets of R (that is, subsets
which are unions of open intervals) has no join-irreducible elements.
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Some Remarks

o We have excluded O from being regarded as join-irreducible.
o Note that we can never write 0 as a non-empty join, Vp A, unless 0 € A.
o To compensate for this restriction, we have not excluded A =& in the
definition of join-density, noting that \/p @ =0 in a lattice P with zero.
Insisting that O is not join-irreducible is the lattice-theoretic
equivalent of declaring that 1 is not a prime number.
o Our examples have shown that join-irreducible elements do not
necessarily exist in infinite lattices.
On the other hand, it is easy to see that in a finite lattice every
element is a join of join-irreducible elements.
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DCC and Join-Irreducibles

Proposition
Let L be a lattice satisfying (DCC).

(1) Suppose a,be L and a£ b. Then, there exists x € J(L), such that
x<aand x¢b.

(1) a=V{xeJ(L):x<a}, forall aeL.
These conclusions hold in particular if L is finite.

(1) Letagbandlet S:i={xel:x<aand x¢b}. Theset S is
non-empty since it contains a. Hence, since L satisfies (DCC), there
exists a minimal element x of S. We claim that x is join-irreducible.
Suppose that x = c v d, with ¢ < x and d < x. By the minimality of x,
neither ¢ nor d lies in S. We have c < x < a, so ¢ < a, and, similarly,
d < a. Therefore c,d ¢ S implies c < b and d < b. But then
x =cvd<b, a contradiction. Thus x € J(L) n'S, proving (i).
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DCC and Join-Irreducibles (Cont'd)

(1) Let aeLand let T:={xe J(L):x<a}. Clearly ais an upper bound
of T. Let c be an upper bound of T. We claim that a < c. Suppose
that a £ ¢; then a £ aAc. By (i), there exists x € J(L), with x < a
and x £ an c. Hence x € T and, consequently, x < ¢, since c is an
upper bound of T. Thus x is a lower bound of {a, c} and
consequently x < aA ¢, a contradiction. Hence a < ¢, as claimed. This
proves that a=\/ T in L, whence (ii) holds.
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Chain Conditions and Join Density

o Part (iii) below is an analogue of (the existence portion of) the
Fundamental Theorem of Arithmetic.

Theorem
Let L be a lattice.

(1) If L satisfies (DCC), then J(L) and, more generally, any subset Q which
contains J (L) is join-dense in L.

(1) If L satisfies (ACC) and @ is join-dense in L, then, for each a € L, there
exists a finite subset F of Q, such that a=V F.

(111) If L has no infinite chains, then, for each a € L, there exists a finite subset F
of J(L), such that a=\VF.

(iv) If L has no infinite chains, then @ is join-dense in L if and only if J(L) ¢ Q.
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Chain Conditions and Join Density (Cont'd)

(1) This an immediate consequence of Part (ii) of the previous
proposition.

(11) This follows immediately from a previous result.

(111) No infinite chains implies both (ACC) and (DCC), so (iii) is a
consequence of (i) and (ii).

(iv) One direction follows from (i).

In the other direction, assume that @ is join-dense in L and let
x € J(L). By (ii), there is a finite subset F of Q such that x=V F.
Since x is join-irreducible we have x € F and, hence, x € Q. Thus,

J(L)cQ.
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