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Some Lattice Inequalities

Lemma

Let L be a lattice and let a,b, c ∈ L. Then:
(i) a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c); and dually,

(ii) a ≥ c implies a ∧ (b ∨ c) ≥ (a ∧ b) ∨ c ; and dually,

(iii) (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).
(i) We have

b ≤ b ∨ c
c ≤ b ∨ c } ⇒ a ∧ b ≤ a ∧ (b ∨ c)

a ∧ c ≤ a ∧ (b ∨ c) }
⇒ (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c).

(ii) This is a special case of Part (i). By hypothesis,

(a ∧ b) ∨ c c ≤ a≤ (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c).
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Some Lattice Inequalities (Cont’d)

(iii)

a ∧ b ≤ a ≤ a ∨ b, c ∨ a
a ∧ b ≤ b ≤ b ∨ c } ⇒ a ∧ b ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).

Similarly,
b ∧ c ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a);
c ∧ a ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).

Thus,

(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).
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On the Modular Law

Lemma

Let L be a lattice. Then, the following are equivalent:

(i) (∀a,b, c ∈ L) a ≥ c ⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ c ;
(ii) (∀a,b, c ∈ L) a ≥ c ⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);
(iii) (∀p,q, r ∈ L) p ∧ (q ∨ (p ∧ r)) = (p ∧ q) ∨ (p ∧ r).

The Connecting Lemma gives the equivalence of (i) and (ii).

(ii)⇒(iii): Assume (ii) holds and let p,q, r ∈ L. Then
p ∧ (q ∨ (p ∧ r)) (ii)= (p ∧ q) ∨ (p ∧ (p ∧ r)) = (p ∧ q) ∨ (p ∧ r).

(iii)⇒(i): Assume (iii) and let a,b, c ∈ L, with c ≤ a. Then
a ∧ (b ∨ c) c ≤ a= a ∧ (b ∨ (a ∧ c)) (iii)= (a ∧ b) ∨ (a ∧ c).
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On the Distributive Law

Lemma

Let L be a lattice. Then the following are equivalent:

(D) (∀a,b, c ∈ L) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);
(D)∂ (∀p,q, r ∈ L) p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r).

Assume (D) holds. Then, for p,q, r ∈ L,
(p ∨ q) ∧ (p ∨ r) = ((p ∨ q) ∧ p) ∨ ((p ∨ q) ∧ r) (by (D))= p ∨ (r ∧ (p ∨ q)) (by (L2)∂ & (L4)∂)= p ∨ ((r ∧ p) ∨ (r ∧ q)) (by (D))= p ∨ (q ∧ r) (by (L1), (L2)∂ & (L4))

So (D) implies (D)∂ .

By duality, (D)∂ implies (D) too.
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Distributivity and Modularity

Definitions

Let L be a lattice.

(i) L is said to be distributive if it satisfies the distributive law,

(∀a,b, c ∈ L) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
(ii) L is said to be modular if it satisfies the modular law,

(∀a,b, c ∈ L) a ≥ c ⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ c .

Remarks:

(1) Any lattice is “half-way” to being both modular and distributive. To
establish distributivity or modularity we only need to check an
inequality.
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Distributivity and Modularity: Additional Remarks

(2) Any distributive lattice is modular.

Moreover, the rather mysterious modular law can be reformulated as
an identity.

The modular law may be regarded as licence to rebracket a ∧ (b ∨ c)
as (a ∧ b) ∨ c , provided a ≥ c .

(3) Providentially, distributivity can be defined either by (D) or by (D)∂ .

Thus the apparent asymmetry between join and meet is illusory.

L is distributive if and only if L∂ is and L is modular if and only if L∂

is.

(4) The universal quantifiers in Remark (3) are essential: it is not true
that if particular elements a,b and c in an arbitrary lattice satisfy
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), then they also satisfy
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).
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Examples I

(1) Any powerset lattice P(X ) is distributive.
More generally, any lattice of sets is distributive.

(2) Any chain is distributive.

(3) The lattice ⟨N0; lcm,gcd⟩ is distributive.
(4) The subgroup lattice of the infinite cyclic group ⟨Z;+⟩ is isomorphic

to ⟨N0; lcm,gcd⟩∂ . Consequently SubZ is distributive.

Consider a finite group G . SubG is distributive if G is cyclic.

The converse is also true but much harder to prove.
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Examples II

(5) Our examples of classes of modular lattices come from algebra:

(i) The set N -SubG of normal subgroups of a group G forms a lattice
under the operations

H ∧K = H ∩K and H ∨K = HK ,
with ⊆ as the underlying order.
Let H ,K ,N ∈ N -SubG , with H ⊇ N . Take g ∈ H ∧ (K ∨N), so g ∈ H
and g = kn, for some k ∈ K and n ∈ N . Then k = gn−1 ∈ H , since H ⊇ N
and H is a subgroup. This proves that g ∈ (H ∧K) ∨N . Hence
H ∧ (K ∨N) ⊆ (H ∧K) ∨N . Since the reverse inequality holds in any
lattice, the lattice N -SubG is modular, for any group G .

(ii) It can be shown in a similar way that the lattice of subspaces of a
vector space is modular.

George Voutsadakis (LSSU) Lattices and Order April 2020 11 / 49



Modular, Distributive and Boolean Lattices Lattices Satisfying Additional Identities

The Diamond and the Pentagon

(6) Consider the lattices M3 (the diamond) and N5 (the pentagon):

The lattice M3 arises as N -SubV4. Hence, by (5)(i), M3 is modular. It
is, however, not distributive: in the diagram of M3

p ∧ (q ∨ r) = p ∧ 1 = p ≠ 0 = 0 ∨ 0 = (p ∧ q) ∨ (p ∧ r).
The lattice N5 is not modular (and not distributive): in the diagram we
have u ≥ w and u ∧ (v ∨w) = u ∧ 1 = u > w = 0 ∨w = (u ∧ v) ∨w .

These examples turn out to play a crucial role in the identification of
non-modular and non-distributive lattices as seen below.
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Sublattices, Products and Homomorphic Images

New lattices can be manufactured by forming sublattices, products
and homomorphic images.

Modularity and distributivity are preserved by these constructions:

(i) If L is a modular (distributive) lattice, then every sublattice of L is
modular (distributive).

(ii) If L and K are modular (distributive) lattices, then L ×K is modular
(distributive).

(iii) If L is modular (distributive) and K is the image of L under a
homomorphism, then K is modular (distributive).

Here (i) is immediate and (ii) holds because ∨ and ∧ are defined
coordinatewise on products.

For (iii) we use the fact that a join- and meet-preserving map
preserves any lattice identity; for the modular case we then invoke
that the inequality can be replaced by an identity.
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Examples

Proposition

If a lattice is isomorphic to a sublattice of a product of distributive
(modular) lattices, then it is distributive (modular).

Examples:

The lattice L1 is dis-
tributive because it is a
sublattice of 4 × 4 × 2.

The lattice L2 is isomor-
phic to the shaded sub-
lattice of the modular
lattice M3 × 2 and so is
itself modular.

George Voutsadakis (LSSU) Lattices and Order April 2020 14 / 49



Modular, Distributive and Boolean Lattices The M3-N5 Theorem

Subsection 2

The M3-N5 Theorem
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The M3-N5 Theorem

The M3-N5 Theorem implies that it is possible to determine whether
or not a finite lattice is modular or distributive from its diagram.

Recall that we write M ↣ L to indicate that the lattice L has a
sublattice isomorphic to the lattice M.

The M3-N5 Theorem

Let L be a lattice.

(i) L is non-modular if and only if N5 ↣ L.

(ii) L is non-distributive if and only if N5 ↣ L or M3 ↣ L.

It is enough to prove that a non-modular lattice has a sublattice
isomorphic to N5 and that a lattice which is modular but not
distributive has a sublattice isomorphic to M3.
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Proof of Part (i)

Assume that L is not modular. Then, there exist elements d , e and f

such that d > f and v > u, where u = (d ∧ e) ∨ f and v = d ∧ (e ∨ f ).
We aim to prove that e ∧ u = e ∧ v (= p say) and
e ∨ u = e ∨ v (= q say).
Then our required sublattice has elements u, v , e,p,q
(which are clearly distinct).

The lattice identities give
v ∧ e = (d ∧ (e ∨ f )) ∧ e = (e ∧ (e ∨ f )) ∧ d = d ∧ e and
u ∨ e = ((d ∧ e) ∨ f ) ∨ e = (e ∨ (d ∧ e)) ∨ f = e ∨ f . Also,
d ∧ e = (d ∧ e) ∧ e ≤ u ∧ e ≤ v ∧ e = d ∧ e and, similarly,
e ∨ f = u ∨ e ≤ v ∨ e ≤ e ∨ f ∨ e = e ∨ f .
This proves our claims and so completes the proof of (i).
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Proof of Part (ii)

Now assume that L is modular but not distributive. We build a
sublattice isomorphic to M3. Take d , e and f , such that(d ∧ e) ∨ (d ∧ f ) < d ∧ (e ∨ f ).
Let p = (d ∧ e) ∨ (e ∧ f ) ∨ (f ∧ d),

q = (d ∨ e) ∧ (e ∨ f ) ∧ (f ∨ d),
u = (d ∧ q) ∨ p,
v = (e ∧ q) ∨ p,
w = (f ∧ q) ∨ p.

Clearly u ≥ p, v ≥ p and w ≥ p. Also, p ≤ q. Hence u ≤ (d ∧ q) ∨ q = q.
Similarly, v ≤ q and w ≤ q. Our candidate for a copy of M3 has
elements {p,q,u, v ,w}. We need to check that this subset has the
correct joins and meets, and that its elements are distinct. We shall
repeatedly appeal to the modular law, viz.
(M) a ≥ c implies a ∧ (b ∨ c) = (a ∧ b) ∨ c .
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Proof of Part (ii) (Cont’d)

We have d ∧ q = d ∧ ((d ∨ e) ∧ (e ∨ f ) ∧ (f ∨ d)) (L4)∂= d ∧ (e ∨ f ). Also
d ∧ p = d ∧ ((e ∧ f ) ∨ ((d ∧ e) ∨ (d ∧ f ))) =
(d ∧ (e ∧ f )) ∨ ((d ∧ e) ∨ (d ∧ f )) = (d ∧ e) ∨ (d ∧ f ). Thus p = q is
impossible. We conclude that p < q. We next prove that u ∧ v = p.

u ∧ v = ((d ∧ q) ∨ p) ∧ ((e ∧ q) ∨ p)

= (((e ∧ q) ∨ p) ∧ (d ∧ q)) ∨ p (by (M))

= ((q ∧ (e ∨ p)) ∧ (d ∧ q)) ∨ p (by (M))
= ((e ∨ p) ∧ (d ∧ q)) ∨ p

= ((d ∧ (e ∨ f )) ∧ (e ∨ (f ∧ d))) ∨ p (by (L4) & (L4)∂)
= (d ∧ ((e ∨ f ) ∧ (e ∨ (f ∧ d)))) ∨ p
= (d ∧ (((e ∨ f ) ∧ (f ∧ d)) ∨ e)) ∨ p (by (M))
= (d ∧ ((f ∧ d) ∨ e)) ∨ p (since d ∧ f ≤ f ≤ e ∨ f )
= ((d ∧ e) ∨ (f ∧ d)) ∨ p (by (M))
= p.

In exactly the same way, v ∧w = p and w ∧u = p. Similar calculations
yield u ∨ v = v ∨w = w ∨ u = q. Finally, it is easy to see that if any two
of the elements u, v ,w ,p,q are equal, then p = q, which is impossible.
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Applying the M3-N5 Theorem

The lattices L1 and L2 have sublattices isomorphic to N5.

M3 ↣ L3.

The M3-N5 Theorem implies that L1 and L2 are non-modular and
that L3 is non-distributive.
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Applying the M3-N5 Theorem (Cont’d)

N5 does not embed in L3.

Neither N5 nor M3 embeds
in L4.

To justify such assertions requires a tedious enumeration of cases:

Suppose {u,a,b, c , v}, with u < c < a < v , u < b < v , were a sublattice
of L3 isomorphic to N5. Since L3 and N5 both have length 3, we
must have u = 0 and v = 1. Since a ∧ b = c ∧ b = 0 and
a ∨ b = c ∨ b = 1, by duality and symmetry we may assume without
loss of generality that a = r , c = p and b = x . But the choice does not
satisfy c < a nor is {0, r , x ,p,1} a sublattice of L3, a contradiction.

George Voutsadakis (LSSU) Lattices and Order April 2020 21 / 49



Modular, Distributive and Boolean Lattices The M3-N5 Theorem

An Important Remark

The statement of the M3-N5 Theorem refers to the occurrence of the
pentagon or diamond as a sublattice of L;

This means that the joins and meets in a candidate copy of N5 or M3

must be the same as those in L.

Example: The pentagon K = {0,a,b,d ,1} in L1 is not a sublattice;
a ∨ b = c ∉ K .

In the other direction, in applying the
positive proposition, one must be sure
to embed the given lattice as a sub-
lattice. N5 is not distributive: it sits
inside the distributive lattice 23, but
not as a sublattice.
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Example

M3,3 is modular:

To see this, note that for u ∈ {x , y , z}, the sublattice M3,3/{u} is
isomorphic to L or to its dual L∂ , both of which are modular.

Thus, any sublattice of M3,3 isomorphic to N5 would need to contain
the antichain {x , y , z}, which is impossible.
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Subsection 3

Boolean Lattices and Boolean Algebras
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Complements

Definition

Let L be a lattice with 0 and 1. For a ∈ L, we say b ∈ L is a complement

of a if a ∧ b = 0 and a ∨ b = 1. If a has a unique complement, we denote
this complement by a′.

Assume L is distributive and suppose that b1 and b2 are both
complements of a. Then

b1 = b1∧1 = b1∧(a∨b2) = (b1 ∧a)∨(b1∧b2) = 0∨(b1 ∧b2) = b1∧b2.
Hence b1 ≤ b2 by the Connecting Lemma. Interchanging b1 and b2
gives b2 ≤ b1. Therefore in a distributive lattice an element can have
at most one complement.

It is easy to find examples of non-unique complements in
non-distributive lattices, e.g., in M3 or N5.
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Boolean Lattices

A lattice element may have no complement. The only complemented
elements in a bounded chain are 0 and 1.

If L ⊆ P(X ) is a lattice of sets, then an element A ∈ L has a
complement if and only if X /A belongs to L.
Thus, the complemented elements of O(P) are the sets which are
simultaneously down-sets and up-sets.

Definition

A lattice L is called a Boolean lattice if:

(i) L is distributive;

(ii) L has 0 and 1;

(iii) each a ∈ L has a (necessarily unique) complement a′ ∈ L.
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Properties of Complements in Boolean Lattices

Lemma

Let L be a Boolean lattice. Then:

(i) 0′ = 1 and 1′ = 0;
(ii) a′′ = a, for all a ∈ L;
(iii) de Morgan’s laws hold: for all a,b ∈ L, (a ∨ b)′ = a′ ∧ b′ and(a ∧ b)′ = a′ ∨ b′;
(iv) a ∧ b = (a′ ∨ b′)′ and a ∨ b = (a′ ∧ b′)′, for all a,b ∈ L;
(v) a ∧ b′ = 0 if and only if a ≤ b, for all a,b ∈ L.

To prove p = q′ in L it is sufficient to prove that p ∨ q = 1 and
p ∧ q = 0, since the complement of q is unique.

(i) We have 0 ∧ 1 = 0 and 0 ∨ 1 = 1. Hence 0′ = 1 and 1′ = 0.
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Properties of Complements (Cont’d)

(ii) We have, by definition, a ∧ a′ = 0 and a ∨ a′ = 1. Hence, again by
definition, a′′ = (a′)′ = a.

(iii) We show (a ∨ b)′ = a′ ∧ b′. The other de Morgan Law can be shown
dually. We have

(a ∨ b) ∧ (a′ ∧ b′) = (a ∧ a′ ∧ b′) ∨ (b ∧ a′ ∧ b′)= (0 ∧ b′) ∨ (0 ∧ a′)= 0 ∨ 0 = 0;(a ∨ b) ∨ (a′ ∧ b′) = (a ∨ b ∨ a′) ∧ (a ∨ b ∨ b′)= (1 ∨ b) ∧ (a ∨ 1)= 1 ∧ 1 = 1.
Hence, (a ∨ b)′ = a′ ∧ b′.
(a′ ∨ b′)′ = a′′ ∧ b′′ = a ∧ b.
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Properties of Complements (Cont’d)

(v) Suppose a ∧ b′ = 0. Then:
a ∧ b = (a ∧ b) ∨ (a ∧ b′) = a ∧ (b ∨ b′) = a ∧ 1 = a.

Hence, a ≤ b.
Suppose, conversely, that a ≤ b. Then:

a ∧ b′ = (a ∧ b) ∧ b′ = a ∧ (b ∧ b′) = a ∧ 0 = 0.
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Boolean Algebras

A Boolean lattice was defined to be a special kind of distributive
lattice, with 0 and 1, where each element has a (necessarily unique)
complement.

Definition

A Boolean algebra is defined to be a structure ⟨B ;∨,∧, ′,0,1⟩, such that:

(i) ⟨B;∨,∧⟩ is a distributive lattice;

(ii) a ∨ 0 = a and a ∧ 1 = a, for all a ∈ B;
(iii) a ∨ a′ = 1 and a ∧ a′ = 0, for all a ∈ B.

A subset A of a Boolean algebra B is a subalgebra if A is a sublattice
of B which contains 0 and 1 and is such that a ∈ A implies a′ ∈ A.
Given Boolean algebras B and C , a map f ∶ B → C is a Boolean

homomorphism if f is a lattice homomorphism which also preserves
0, 1 and ′ (f (0) = 0, f (1) = 1 and f (a′) = (f (a))′, for all a ∈ B).
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Conditions for Boolean Homomorphisms

Lemma

Let f ∶ B → C , where B and C are Boolean algebras.
(i) Assume f is a lattice homomorphism. The following are equivalent:

(a) f (0) = 0 and f (1) = 1;
(b) f (a′) = (f (a))′, for all a ∈ B.

(ii) If f preserves ′, then f preserves ∨ if and only if f preserves ∧.
(i) (a)⇒(b) Use the equations

0 = f (0) = f (a ∧ a′) = f (a) ∧ f (a′),
1 = f (1) = f (a ∨ a′) = f (a) ∨ f (a′).

(b)⇒(a) Conversely, if (b) holds, we have

f (0) = f (a ∧ a′) = f (a) ∧ (f (a))′ = 0,
f (1) = f (a ∨ a′) = f (a) ∨ (f (a))′ = 1.

(ii) Assume f preserves ′ and ∨. For all a,b ∈ B ,

f (a ∧ b) = f ((a′ ∨ b′)′) = (f (a′ ∨ b′))′ = (f (a′) ∨ f (b′))′= ((f (a))′ ∨ (f (b))′)′ = f (a) ∧ f (b).
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Example of Boolean Algebras I

(1) For any set X , let A′ ∶= X /A, for all A ⊆ X . Then the structure⟨P(X );∪,∩, ′,∅,X ⟩ is a Boolean algebra known as the powerset

algebra on X .

By an algebra of sets (also known as a field of sets) we mean a
subalgebra of some powerset algebra P(X ), that is, a family of sets
which forms a Boolean algebra under the set-theoretic operations.

We will prove that every finite Boolean algebra is isomorphic toP(X ), for some finite set X .

The following example shows that there are infinite Boolean algebras
which are not powerset algebras.

However, we will also:

Show that every Boolean algebra is isomorphic to an algebra of sets;
Characterize the powerset algebras among Boolean algebras.
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Example of Boolean Algebras II

(2) The finite-cofinite algebra of the set X is defined to be

FC(X ) = {A ⊆ X ∶ A is finite or X /A is finite}.
It is easily checked that this is an algebra of sets.

Claim: FC(N) is not isomorphic to P(X ) for any set X .

Reasoning by Cardinalities: FC(N) is countable. On the other hand,
Cantor’s Theorem implies that any powerset is either finite or
uncountable.

Reasoning Lattice-Theoretically: FC(N) is not complete. But P(X )
is always complete and an isomorphism must preserve completeness.
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Examples of Boolean Algebras III

(3) The family of all clopen subsets of a topological space (X ;T ) is an
algebra of sets. Clearly this example will not be of much interest
unless X has plenty of clopen sets. We will show that every Boolean
algebra can be concretely represented as such an algebra.

(4) For n ≥ 1 the lattice 2n is lattice-isomorphic to P({1,2, . . . ,n}),
which is a Boolean algebra. Hence 2n is a Boolean algebra, with
0 = (0,0, . . . ,0) and 1 = (1,1, . . . ,1), (ε1, . . . , εn)′ = (η1, . . . , ηn),
where ηi = 0⇔ εi = 1.
The simplest non-trivial Boolean algebra of all is 2 = {0,1}. It arises
frequently in logic and computer science as an algebra of truth values.
In such contexts the symbols F and T, or alternatively � and ⊺, are
used in place of 0 and 1. We have F ∨ F = F ∧ F = F ∧T = T′ = F,
T ∧T = F ∨T = T ∨T = F′ = T.
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Subsection 4

Boolean Terms and Disjunctive Normal Form
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Propositional Variables and Logical Connectives

In propositional calculus, propositions are designated by
propositional variables which take values in {F,T}.
Admissible compound statements are formed using logical

connectives.

Connectives include “and”, “or” and “not”, denoted respectively by∧,∨ and ′.

Another natural connective is “implies” (→).

Compound statements built from these are assigned the expected
truth values according to the truth values of their constituent parts.

Example:

p ∧ q has value T if and only if both p and q have value T;
p → q has value T unless p has value T and q has value F.
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Well-Formed Formulas

We take an infinite set of propositional variables, denoted p,q, r , . . .,
and define a wff (or well-formed formula) by the rules:

(i) any propositional variable standing alone is a wff (optionally, constant
symbols T and F may also be included as wffs);

(ii) if ϕ and ψ are wffs, so are (ϕ ∧ψ), (ϕ ∨ψ), ϕ′, (ϕ→ ψ) (this clause is
suitably adapted if a different set of connectives is used);

(iii) any wff arises from a finite number of applications of (i) and (ii).

Example: ((p ∧ q′) ∨ r)′ is a wff; ((p′ → q)→ ((p′ → q′)→ p)) is a
wff; (((p ∨ q)∧ p) is not a wff (invalid bracketing); ∨ → q is not a wff.

The parentheses guarantee non-ambiguity.

In practice we drop parentheses where no ambiguity would result, just
as if we were writing a string of joins, meets and complements in a
lattice.
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Truth Functions and Truth Tables

A wff ϕ involving the propositional variables p1, . . . ,pn defines a
truth function Fϕ of n variables.

For a given assignment of values in {F,T} to p1, . . . ,pn, substitute
these values into ϕ and compute the resulting expression in the
Boolean algebra {F,T} to obtain the value of Fϕ.

Truth functions are presented via truth tables:

p q p → q

T T T
T F F
F T T
F F T

p1 p2 p3 (p1 ∨ p2) (p′1 ∨ p3) ((p1 ∨ p2) ∧ (p
′

1 ∨ p3))
′

T T T T T F
T T F T F T
T F T T T F
T F F T F T
F T T T T F
F T F T T F
F F T F T T
F F F F T T
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Logically Equivalent Formulas

Two wffs ϕ and ψ are called logically equivalent (written ϕ ≡ ψ) if
they define the same truth function, i.e., they give rise to the same
truth table.

For any wffs ϕ and ψ,

(ϕ ∧ ψ) ≡ (ϕ′ ∨ψ′)′, (ϕ ∨ ψ) ≡ (ϕ′ ∧ ψ′)′,(ϕ → ψ) ≡ (ϕ′ ∨ψ), (ϕ ∧ ψ) ≡ (ϕ→ ψ′)′.
A proof by induction on the number of connectives then shows that
any wff built using ∨,∧ and ′ is logically equivalent to one built using
→ and ′, and vice versa.

Therefore, up to logical equivalence, we arrive at the same set of wffs
whether we take {∨,∧, ′,→}, just {→, ′} or just {∨,∧, ′} as the basic
set of connectives.

The choice of {→, ′} is the most natural for studying logic;{∨,∧, ′} brings out the connections with Boolean algebras.
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The Algebra of Propositions: A Preview

The set of wffs, with ∨,∧ and ′ as operations, closely resembles a
Boolean lattice:

The axioms do not hold if = is taken to mean “is the same wff as”;
The axioms hold if = is read as “is logically equivalent to”.

Example: To establish (L4), note that ϕ ∨ (ϕ ∧ ψ) takes value T if
and only if ϕ does. So ϕ ∨ (ϕ ∧ψ) ≡ ϕ.
If F and T are included as wffs, to serve as 0 and 1, we obtain a
Boolean algebra, called the algebra of propositions.
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Boolean Terms

We define the class BT of Boolean terms (or Boolean
polynomials) as follows:

Let S be a set of variables, whose members will be denoted by letters
such as x , y , z , x1, x2, . . ., and let ∨,∧, ′,0,1 be the symbols used to
axiomatize Boolean algebras. Then:

(i) 0,1 ∈ BT and x ∈ BT, for all x ∈ S ;
(ii) if p,q ∈ BT, then (p ∨ q), (p ∧ q) and p′ belong toBT;
(iii) every element of BT is an expression formed by a finite number of

applications of (i) and (ii).

A Boolean term p whose variables are drawn from among x1, . . . , xn
will be written p(x1, . . . , xn).
Example: Some Boolean terms:

1, x , y , y ′, (x ∨ y ′), (1 ∧ (x ∨ y ′)), (1 ∧ (x ∨ y ′))′.
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Semantics of Boolean Terms

Just as numbers may be substituted into “ordinary” polynomials,
elements of any Boolean algebra B may be substituted for the
variables of a Boolean term to yield an element of B .

If we take, in particular, B = 2, every Boolean term p(x1, . . . , xn)
defines a map Fp ∶ 2n → 2.

The map Fp associated with p can be specified by a “truth table” in
just the same way as a wff determines a truth function. The only
difference is that each entry of the table is 0 or 1, instead of F or T.

It is usual to use p to denote both the term and the function Fp it
induces.
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Equivalence of Boolean Terms

We say that the Boolean terms p(x1, . . . , xn) and q(x1, . . . , xn) are
equivalent, and write p ≡ q, if p and q have the same truth function,
that is, Fp = Fq.
Example: For instance, we may check (x ∧ y ′)′ ≡ (x ′ ∨ y) (both sides
give the same truth table).

The right-hand side can be obtained from the left by applying the
laws of Boolean algebra:

(x ∧ y ′)′ = (x ′ ∨ y ′′) = (x ′ ∨ y).
In general, whenever q(x1, . . . , xn) can be obtained from p(x1, . . . , xn)
by the laws of Boolean algebra, we have p ≡ q.
We will see that the converse is also true.

Notation: Where removal of parentheses from a Boolean term would,
up to equivalence, not result in ambiguity, we omit parentheses, e.g.,
we shall write x ∨ y ∨ z in place of either (x ∨(y ∨ z)) or ((x ∨ y)∨ z).
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Every Map is a Boolean Term Function

Consider the truth table associated with a truth function F ∶ 2n → 2.

For each row (element of 2n) on which F has value 1, form the meet of
n symbols by selecting for each variable x either x or x ′ depending on
whether x has value 1 or 0 in that row.
Then take the join p of these terms.

Then p, is such that F = Fp.
Theorem

Every map F ∶ 2n → 2 coincides with Fp for some Boolean term
p(x1, . . . , xn). A suitable term p may be described as follows: For
a = (a1, . . . ,an) ∈ 2n, define pa(x1, . . . , xn) by
pa(x1, . . . , xn) = xε11 ∧⋯∧ xεnn , where x

εj
j
= { xj , if aj = 1

x ′j , if aj = 0 . Then define

p(x1, . . . , xn) = ⋁{pa(x1, . . . , xn) ∶ F (a) = 1}.
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Every Map is a Boolean Term Function (Cont’d)

Let a = (a1, . . . ,an) ∈ 2n and b = (b1, . . . ,bn) ∈ 2n. We have carefully
chosen the term pa(x1, . . . , xn) so that

Fpa (b1, . . . ,bn) = { 1, if b = a

0, if b ≠ a

Claim: F = Fp.
Assume that F (b) = 1. Then

Fp(b1, . . . ,bn) = ⋁{Fpa (b1, . . . ,bn) ∶ F (a) = 1}≥ Fp
b
(b1, . . . ,bn)

= 1.

Thus, F (b) = 1 implies Fp(b) = 1. Assume F (b) = 0. Then F (a) = 1
implies b ≠ a. So Fpa (b1, . . . ,bn) = 0. Therefore
Fp(b1, . . . ,bn) = ⋁{Fpa (b1, . . . ,bn) ∶ F (a) = 1} = 0. Thus F (b) = 0
implies Fp(b) = 0. Hence F = Fp, as claimed.
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Disjunctive Normal Form

A Boolean term p(x1, . . . , xn) is said to be in full disjunctive normal

form, or DNF, if it is a join of distinct meets of the form
xε11 ∧⋯∧ xεnn . By definition, xε equals x if ε = 1, and x ′ if ε = 0.
Terms of the form xε are known as literals.

The theorem implies that any Boolean term is equivalent to a term in
DNF (in the setting of propositional calculus this is just the classic
result that any wff is logically equivalent to a wff in DNF).

Note that the Boolean term 0 is already in DNF as it is the join of
the empty set.

At the other end of the spectrum, the DNF of the Boolean term 1 is
the join of all 2n meets of the form xε11 ∧⋯∧ xεnn .
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Disjunctive Normal Form and Equivalence

Each truth function uniquely determines, and is determined by, a
DNF term; so p ≡ q in BT if and only if each of p and q is equivalent
to the same DNF.

We have already remarked that applying the laws of Boolean algebra
to a Boolean term yields an equivalent term.
This process can be used to reduce any term p(x1, . . . , xn) to DNF, as
outlined below:
(i) Use de Morgan’s laws to reduce p(x1, . . . , xn) to literals combined by

joins and meets.
(ii) Use the distributive laws repeatedly, with the lattice identities, to

obtain a join of meets of literals.
(iii) Finally, we require each xi to occur, either primed or not, once and

once only in each meet term. This is achieved by dropping any terms
containing both xi and x ′i , for any i . If neither xj nor x

′

j occurs in

⋀k∈K xεkk , it can be introduces as follows:

⋀k∈K xεk
k
≡ (⋀k∈K xεk

k
) ∧ (xj ∨ x ′j ) ≡ (⋀k∈K xεk

k
∧ xj) ∨ (⋀k∈K xεk

k
∧ x ′j ).

Repeating this for each missing variable we arrive at a term in DNF.
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Example

Write the term ((p1 ∨ p2) ∧ (p′1 ∨ p3))′ in DNF.

Construct the truth table.

p1 p2 p3 (p1 ∨ p2) (p′1 ∨ p3) ((p1 ∨ p2) ∧ (p
′

1 ∨ p3))
′

T T T T T F
T T F T F T
T F T T T F
T F F T F T
F T T T T F
F T F T T F
F F T F T T
F F F F T T

Pick the rows, where the value is 1 and construct the corresponding
meets. Then, take the join of those meets.

(p1 ∧ p2 ∧ p′3) ∨ (p1 ∧ p′2 ∧ p′3) ∨ (p′1 ∧ p′2 ∧ p3) ∨ (p′1 ∧ p′2 ∧ p′3).
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The Boolean Algebra of Functions of n Variables

Theorem

Let B be the Boolean algebra 22
n

. Then B is generated by n elements, in
the sense that there exists an n-element subset X of B , such that the
smallest Boolean subalgebra of B containing X is B .

Identify B with the Boolean algebra P(2n). Define X to be{e1, . . . , en}, where ei ∶= {(a1, . . . ,an) ∈ 2n ∶ ai = 1}, for i = 1, . . . ,n.
Then, for each a = (a1, . . . ,an) ∈ 2n, we have

{a} = ⋂{ei ∶ ai = 1} ∩⋂{e′i ∶ ai = 0}.
Each non-empty element of B is a union of singletons, {a}. Hence,
it is expressible as a join of meets of elements of the form ei or e

′

i .

Note that ∅ = e1 ∩ e′1 takes care of the empty set.
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