Introduction to Lattices and Order

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

- Lattices Satisfying Additional Identities
- The M₃-N₅ Theorem
- Boolean Lattices and Boolean Algebras
- Boolean Terms and Disjunctive Normal Form

Subsection 1

Lattices Satisfying Additional Identities

Some Lattice Inequalities

Lemma

Let *L* be a lattice and let $a, b, c \in L$. Then:

(i)
$$a \land (b \lor c) \ge (a \land b) \lor (a \land c)$$
; and dually,

- (ii) $a \ge c$ implies $a \land (b \lor c) \ge (a \land b) \lor c$; and dually,
- (iii) $(a \land b) \lor (b \land c) \lor (c \land a) \le (a \lor b) \land (b \lor c) \land (c \lor a).$

(i) We have

$$\begin{array}{c} b \leq b \lor c \\ c \leq b \lor c \end{array} \right\} \quad \Rightarrow \quad \begin{array}{c} a \land b \leq a \land (b \lor c) \\ a \land c \leq a \land (b \lor c) \end{array} \\ \Rightarrow \quad (a \land b) \lor (a \land c) \leq a \land (b \lor c). \end{array}$$

(ii) This is a special case of Part (i). By hypothesis,

$$(a \wedge b) \vee c \stackrel{c \leq a}{\leq} (a \wedge b) \vee (a \wedge c) \leq a \wedge (b \vee c).$$

Some Lattice Inequalities (Cont'd)

(iii)

$$\left. \begin{array}{l} a \wedge b \leq a \leq a \vee b, c \vee a \\ a \wedge b \leq b \leq b \vee c \end{array} \right\} \Rightarrow a \wedge b \leq (a \vee b) \wedge (b \vee c) \wedge (c \vee a).$$

Similarly,

$$\begin{array}{rcl} b \wedge c & \leq & (a \lor b) \land (b \lor c) \land (c \lor a); \\ c \land a & \leq & (a \lor b) \land (b \lor c) \land (c \lor a). \end{array}$$

Thus,

$$(a \land b) \lor (b \land c) \lor (c \land a) \le (a \lor b) \land (b \lor c) \land (c \lor a).$$

On the Modular Law

Lemma

Let L be a lattice. Then, the following are equivalent:

(i)
$$(\forall a, b, c \in L) \ a \ge c \Rightarrow a \land (b \lor c) = (a \land b) \lor c;$$

(ii) $(\forall a, b, c \in L) \ a \ge c \Rightarrow a \land (b \lor c) = (a \land b) \lor (a \land c);$
(iii) $(\forall p, q, r \in L) \ p \land (q \lor (p \land r)) = (p \land q) \lor (p \land r)$

The Connecting Lemma gives the equivalence of (i) and (ii).
 (ii)⇒(iii): Assume (ii) holds and let p, q, r ∈ L. Then

$$p \wedge (q \vee (p \wedge r)) \stackrel{(ii)}{=} (p \wedge q) \vee (p \wedge (p \wedge r)) = (p \wedge q) \vee (p \wedge r).$$

(iii) \Rightarrow (i): Assume (iii) and let $a, b, c \in L$, with $c \leq a$. Then

$$a \wedge (b \vee c) \stackrel{c \leq a}{=} a \wedge (b \vee (a \wedge c)) \stackrel{(iii)}{=} (a \wedge b) \vee (a \wedge c).$$

On the Distributive Law

Lemma

Let L be a lattice. Then the following are equivalent:

$$(D) (\forall a, b, c \in L) a \land (b \lor c) = (a \land b) \lor (a \land c);$$

$$\bigcirc)^{\partial} (\forall p,q,r \in L) p \lor (q \land r) = (p \lor q) \land (p \lor r).$$

• Assume (D) holds. Then, for $p, q, r \in L$,

$$(p \lor q) \land (p \lor r) = ((p \lor q) \land p) \lor ((p \lor q) \land r) \quad (by (D))$$

= $p \lor (r \land (p \lor q)) \quad (by (L2)^{\partial} \& (L4)^{\partial})$
= $p \lor ((r \land p) \lor (r \land q)) \quad (by (D))$
= $p \lor (q \land r) \quad (by (L1), (L2)^{\partial} \& (L4))$

So (D) implies (D)^{∂}. By duality, (D)^{∂} implies (D) too.

Distributivity and Modularity

Definitions

Let L be a lattice.

(i) L is said to be **distributive** if it satisfies the **distributive law**,

$$(\forall a, b, c \in L) a \land (b \lor c) = (a \land b) \lor (a \land c).$$

(ii) L is said to be modular if it satisfies the modular law,

$$(\forall a, b, c \in L) \ a \ge c \Rightarrow a \land (b \lor c) = (a \land b) \lor c.$$

Remarks:

(1) Any lattice is "half-way" to being both modular and distributive. To establish distributivity or modularity we only need to check an inequality.

Distributivity and Modularity: Additional Remarks

(2) Any distributive lattice is modular.

Moreover, the rather mysterious modular law can be reformulated as an identity.

The modular law may be regarded as licence to rebracket $a \land (b \lor c)$ as $(a \land b) \lor c$, provided $a \ge c$.

- (3) Providentially, distributivity can be defined either by (D) or by (D)[∂]. Thus the apparent asymmetry between join and meet is illusory. L is distributive if and only if L[∂] is and L is modular if and only if L[∂] is.
- (4) The universal quantifiers in Remark (3) are essential: it is not true that if particular elements a, b and c in an arbitrary lattice satisfy a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), then they also satisfy a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Examples I

(1) Any powerset lattice $\mathcal{P}(X)$ is distributive.

More generally, any lattice of sets is distributive.

- (2) Any chain is distributive.
- (3) The lattice $\langle \mathbb{N}_0$; lcm, gcd \rangle is distributive.

(4) The subgroup lattice of the infinite cyclic group (ℤ; +) is isomorphic to (𝔅₀; lcm, gcd)[∂]. Consequently Subℤ is distributive.
Consider a finite group G. SubG is distributive if G is cyclic.
The converse is also true but much harder to prove.

Examples II

(5) Our examples of classes of modular lattices come from algebra:

i) The set N-SubG of normal subgroups of a group G forms a lattice under the operations

$$H \wedge K = H \cap K$$
 and $H \vee K = HK$,

with \subseteq as the underlying order.

Let $H, K, N \in \mathcal{N}$ -SubG, with $H \supseteq N$. Take $g \in H \land (K \lor N)$, so $g \in H$ and g = kn, for some $k \in K$ and $n \in N$. Then $k = gn^{-1} \in H$, since $H \supseteq N$ and H is a subgroup. This proves that $g \in (H \land K) \lor N$. Hence $H \land (K \lor N) \subseteq (H \land K) \lor N$. Since the reverse inequality holds in any lattice, the lattice \mathcal{N} -SubG is modular, for any group G.

(ii) It can be shown in a similar way that the lattice of subspaces of a vector space is modular.

The Diamond and the Pentagon

(6) Consider the lattices M_3 (the diamond) and N_5 (the pentagon):

- The lattice M₃ arises as N-SubV₄. Hence, by (5)(i), M₃ is modular. It is, however, not distributive: in the diagram of M₃
 p ∧ (q ∨ r) = p ∧ 1 = p ≠ 0 = 0 ∨ 0 = (p ∧ q) ∨ (p ∧ r).
- The lattice N₅ is not modular (and not distributive): in the diagram we have u ≥ w and u ∧ (v ∨ w) = u ∧ 1 = u > w = 0 ∨ w = (u ∧ v) ∨ w.
- These examples turn out to play a crucial role in the identification of non-modular and non-distributive lattices as seen below.

Sublattices, Products and Homomorphic Images

- New lattices can be manufactured by forming sublattices, products and homomorphic images.
- Modularity and distributivity are preserved by these constructions:
 - (i) If *L* is a modular (distributive) lattice, then every sublattice of *L* is modular (distributive).
 - (ii) If L and K are modular (distributive) lattices, then $L \times K$ is modular (distributive).
 - (iii) If L is modular (distributive) and K is the image of L under a homomorphism, then K is modular (distributive).
- Here (i) is immediate and (ii) holds because ∨ and ∧ are defined coordinatewise on products.

For (iii) we use the fact that a join- and meet-preserving map preserves any lattice identity; for the modular case we then invoke that the inequality can be replaced by an identity.

Examples

Proposition

If a lattice is isomorphic to a sublattice of a product of distributive (modular) lattices, then it is distributive (modular).

Examples:

The lattice L_1 is distributive because it is a sublattice of $\mathbf{4} \times \mathbf{4} \times \mathbf{2}$.

The lattice L_2 is isomorphic to the shaded sublattice of the modular lattice $\mathbf{M}_3 \times \mathbf{2}$ and so is itself modular.

Subsection 2

The M_3 - N_5 Theorem

The M_3 - N_5 Theorem

- The M₃-N₅ Theorem implies that it is possible to determine whether or not a finite lattice is modular or distributive from its diagram.
- Recall that we write M → L to indicate that the lattice L has a sublattice isomorphic to the lattice M.

The M_3 - N_5 Theorem

Let *L* be a lattice.

- (i) *L* is non-modular if and only if $N_5 \rightarrow L$.
- (ii) *L* is non-distributive if and only if $N_5 \rightarrow L$ or $M_3 \rightarrow L$.
- It is enough to prove that a non-modular lattice has a sublattice isomorphic to N_5 and that a lattice which is modular but not distributive has a sublattice isomorphic to M_3 .

Proof of Part (i)

Assume that L is not modular. Then, there exist elements d, e and f such that d > f and v > u, where u = (d ∧ e) ∨ f and v = d ∧ (e ∨ f).
We aim to prove that e ∧ u = e ∧ v (= p say) and e ∨ u = e ∨ v (= q say).
Then our required sublattice has elements u, v, e, p, q (which are clearly distinct).

The lattice identities give $v \land e = (d \land (e \lor f)) \land e = (e \land (e \lor f)) \land d = d \land e \text{ and}$ $u \lor e = ((d \land e) \lor f) \lor e = (e \lor (d \land e)) \lor f = e \lor f.$ Also, $d \land e = (d \land e) \land e \le u \land e \le v \land e = d \land e \text{ and, similarly,}$ $e \lor f = u \lor e \le v \lor e \le e \lor f \lor e = e \lor f.$

This proves our claims and so completes the proof of (i).

Proof of Part (ii)

Now assume that L is modular but not distributive. We build a sublattice isomorphic to M₃. Take d, e and f, such that (d ∧ e) ∨ (d ∧ f) < d ∧ (e ∨ f).

Let
$$p = (d \land e) \lor (e \land f) \lor (f \land d),$$

 $q = (d \lor e) \land (e \lor f) \land (f \lor d),$
 $u = (d \land q) \lor p,$
 $v = (e \land q) \lor p,$
 $w = (f \land q) \lor p.$

Clearly $u \ge p, v \ge p$ and $w \ge p$. Also, $p \le q$. Hence $u \le (d \land q) \lor q = q$. Similarly, $v \le q$ and $w \le q$. Our candidate for a copy of \mathbf{M}_3 has elements $\{p, q, u, v, w\}$. We need to check that this subset has the correct joins and meets, and that its elements are distinct. We shall repeatedly appeal to the modular law, viz.

$$(\mathsf{M}) \qquad a \ge c \text{ implies } a \land (b \lor c) = (a \land b) \lor c.$$

Proof of Part (ii) (Cont'd)

• We have $d \wedge q = d \wedge ((d \vee e) \wedge (e \vee f) \wedge (f \vee d)) \stackrel{(L4)^{\partial}}{=} d \wedge (e \vee f)$. Also $d \wedge p = \underline{d} \wedge ((e \wedge f) \vee ((d \wedge e) \vee (d \wedge f))) = (d \wedge (e \wedge f)) \vee ((d \wedge e) \vee (d \wedge f)) = (d \wedge e) \vee (d \wedge f)$. Thus p = q is impossible. We conclude that p < q. We next prove that $u \wedge v = p$.

$$\begin{array}{rcl} u \wedge v &=& \left(\left(d \wedge q \right) \vee \underline{p} \right) \wedge \left(\left(e \wedge q \right) \vee p \right) \\ &=& \left(\left(\left(e \wedge q \right) \vee \underline{p} \right) \wedge \left(d \wedge q \right) \right) \vee p & (by (M)) \right) \\ &=& \left(\left(q \wedge \left(e \vee p \right) \right) \wedge \left(d \wedge q \right) \right) \vee p & (by (M)) \\ &=& \left(\left(d \wedge \left(e \vee f \right) \right) \wedge \left(e \vee \left(f \wedge d \right) \right) \right) \vee p & (by (L4) \& (L4)^{\partial} \right) \\ &=& \left(d \wedge \left(\left(e \vee f \right) \wedge \left(e \vee \left(f \wedge d \right) \right) \right) \vee p & (by (M)) \\ &=& \left(d \wedge \left(\left(e \vee f \right) \wedge \left(f \wedge d \right) \right) \vee e \right) \vee p & (by (M)) \\ &=& \left(\left(d \wedge \left(e \vee \left(f \wedge d \right) \right) \vee e \right) \vee p & (since \ d \wedge f \leq f \leq e \vee f) \\ &=& \left(\left(d \wedge e \right) \vee \left(f \wedge d \right) \right) \vee p & (by (M)) \\ &=& p. \end{array}$$

In exactly the same way, $v \land w = p$ and $w \land u = p$. Similar calculations yield $u \lor v = v \lor w = w \lor u = q$. Finally, it is easy to see that if any two of the elements u, v, w, p, q are equal, then p = q, which is impossible.

Applying the M_3 - N_5 Theorem

- The lattices L₁ and L₂ have sublattices isomorphic to N₅.
- $\mathbf{M}_3 \rightarrow L_3$.
- The **M**₃-**N**₅ Theorem implies that *L*₁ and *L*₂ are non-modular and that *L*₃ is non-distributive.

Applying the M_3 - N_5 Theorem (Cont'd)

- N_5 does not embed in L_3 .
- Neither **N**₅ nor **M**₃ embeds in *L*₄.

• To justify such assertions requires a tedious enumeration of cases:

Suppose $\{u, a, b, c, v\}$, with u < c < a < v, u < b < v, were a sublattice of L_3 isomorphic to N_5 . Since L_3 and N_5 both have length 3, we must have u = 0 and v = 1. Since $a \land b = c \land b = 0$ and $a \lor b = c \lor b = 1$, by duality and symmetry we may assume without loss of generality that a = r, c = p and b = x. But the choice does not satisfy c < a nor is $\{0, r, x, p, 1\}$ a sublattice of L_3 , a contradiction.

An Important Remark

• The statement of the M₃-N₅ Theorem refers to the occurrence of the pentagon or diamond as a sublattice of *L*;

This means that the joins and meets in a candidate copy of N_5 or M_3 must be the same as those in *L*.

Example: The pentagon $K = \{0, a, b, d, 1\}$ in L_1 is not a sublattice; $a \lor b = c \notin K$.

In the other direction, in applying the positive proposition, one must be sure to embed the given lattice as a sublattice. N_5 is not distributive: it sits inside the distributive lattice 2^3 , but not as a sublattice.

Example

• **M**_{3,3} is modular:

To see this, note that for $u \in \{x, y, z\}$, the sublattice $M_{3,3} \setminus \{u\}$ is isomorphic to *L* or to its dual L^{∂} , both of which are modular.

Thus, any sublattice of $M_{3,3}$ isomorphic to N_5 would need to contain the antichain $\{x, y, z\}$, which is impossible.

Subsection 3

Boolean Lattices and Boolean Algebras

Complements

Definition

Let *L* be a lattice with 0 and 1. For $a \in L$, we say $b \in L$ is a **complement** of *a* if $a \land b = 0$ and $a \lor b = 1$. If *a* has a unique complement, we denote this complement by *a*'.

• Assume *L* is distributive and suppose that *b*₁ and *b*₂ are both complements of *a*. Then

$$b_1 = b_1 \wedge 1 = b_1 \wedge (a \vee b_2) = (b_1 \wedge a) \vee (b_1 \wedge b_2) = 0 \vee (b_1 \wedge b_2) = b_1 \wedge b_2.$$

Hence $b_1 \le b_2$ by the Connecting Lemma. Interchanging b_1 and b_2 gives $b_2 \le b_1$. Therefore in a distributive lattice an element can have at most one complement.

• It is easy to find examples of non-unique complements in non-distributive lattices, e.g., in M_3 or N_5 .

Boolean Lattices

- A lattice element may have no complement. The only complemented elements in a bounded chain are 0 and 1.
- If L ⊆ P(X) is a lattice of sets, then an element A ∈ L has a complement if and only if X\A belongs to L.

Thus, the complemented elements of $\mathcal{O}(P)$ are the sets which are simultaneously down-sets and up-sets.

Definition

A lattice L is called a **Boolean lattice** if:

- (i) *L* is distributive;
- (ii) L has 0 and 1;

(iii) each $a \in L$ has a (necessarily unique) complement $a' \in L$.

Properties of Complements in Boolean Lattices

Lemma

- Let L be a Boolean lattice. Then:
 - (i) 0' = 1 and 1' = 0;

(ii)
$$a'' = a$$
, for all $a \in L$;

(iii) de Morgan's laws hold: for all $a, b \in L$, $(a \lor b)' = a' \land b'$ and $(a \land b)' = a' \lor b'$;

(iv)
$$a \wedge b = (a' \vee b')'$$
 and $a \vee b = (a' \wedge b')'$, for all $a, b \in L$;

(v) $a \wedge b' = 0$ if and only if $a \leq b$, for all $a, b \in L$.

 To prove p = q' in L it is sufficient to prove that p ∨ q = 1 and p ∧ q = 0, since the complement of q is unique.

(i) We have $0 \land 1 = 0$ and $0 \lor 1 = 1$. Hence 0' = 1 and 1' = 0.

Properties of Complements (Cont'd)

- (ii) We have, by definition, $a \wedge a' = 0$ and $a \vee a' = 1$. Hence, again by definition, a'' = (a')' = a.
- (iii) We show $(a \lor b)' = a' \land b'$. The other de Morgan Law can be shown dually. We have

$$(a \lor b) \land (a' \land b') = (a \land a' \land b') \lor (b \land a' \land b')$$

= $(0 \land b') \lor (0 \land a')$
= $0 \lor 0 = 0;$
 $(a \lor b) \lor (a' \land b') = (a \lor b \lor a') \land (a \lor b \lor b')$
= $(1 \lor b) \land (a \lor 1)$
= $1 \land 1 = 1.$

Hence,
$$(a \lor b)' = a' \land b'$$
.
• $(a' \lor b')' = a'' \land b'' = a \land b$.

Properties of Complements (Cont'd)

(v) Suppose $a \wedge b' = 0$. Then:

$$a \wedge b = (a \wedge b) \vee (a \wedge b') = a \wedge (b \vee b') = a \wedge 1 = a.$$

Hence, $a \leq b$.

Suppose, conversely, that $a \le b$. Then:

$$a \wedge b' = (a \wedge b) \wedge b' = a \wedge (b \wedge b') = a \wedge 0 = 0.$$

Boolean Algebras

• A Boolean lattice was defined to be a special kind of distributive lattice, with 0 and 1, where each element has a (necessarily unique) complement.

Definition

A **Boolean algebra** is defined to be a structure $(B; \lor, \land, ', 0, 1)$, such that:

(i) $\langle B; \vee, \wedge \rangle$ is a distributive lattice;

(ii)
$$a \lor 0 = a$$
 and $a \land 1 = a$, for all $a \in B$;

(iii)
$$a \lor a' = 1$$
 and $a \land a' = 0$, for all $a \in B$.

 A subset A of a Boolean algebra B is a subalgebra if A is a sublattice of B which contains 0 and 1 and is such that a ∈ A implies a' ∈ A.

Given Boolean algebras B and C, a map f : B → C is a Boolean homomorphism if f is a lattice homomorphism which also preserves 0, 1 and ' (f(0) = 0, f(1) = 1 and f(a') = (f(a))', for all a ∈ B).

Conditions for Boolean Homomorphisms

Lemma

Let $f : B \to C$, where B and C are Boolean algebras.

(i) Assume f is a lattice homomorphism. The following are equivalent:

(a)
$$f(0) = 0$$
 and $f(1) = 1;$

(b)
$$f(a') = (f(a))'$$
, for all $a \in B$.

(ii) If f preserves ', then f preserves \lor if and only if f preserves \land .

(i) (a) \Rightarrow (b) Use the equations

$$0 = f(0) = f(a \land a') = f(a) \land f(a'), 1 = f(1) = f(a \lor a') = f(a) \lor f(a').$$

 $(b) \Rightarrow (a)$ Conversely, if (b) holds, we have

$$f(0) = f(a \land a') = f(a) \land (f(a))' = 0,$$

$$f(1) = f(a \lor a') = f(a) \lor (f(a))' = 1.$$

(ii) Assume f preserves ' and \lor . For all $a, b \in B$,

$$\begin{aligned} f(a \wedge b) &= f((a' \vee b')') = (f(a' \vee b'))' = (f(a') \vee f(b'))' \\ &= ((f(a))' \vee (f(b))')' = f(a) \wedge f(b). \end{aligned}$$

Example of Boolean Algebras I

 For any set X, let A' := X\A, for all A ⊆ X. Then the structure ⟨P(X); ∪, ∩, ', Ø, X⟩ is a Boolean algebra known as the **powerset** algebra on X.

By an **algebra of sets** (also known as a **field of sets**) we mean a subalgebra of some powerset algebra $\mathcal{P}(X)$, that is, a family of sets which forms a Boolean algebra under the set-theoretic operations.

- We will prove that every finite Boolean algebra is isomorphic to $\mathcal{P}(X)$, for some finite set X.
- The following example shows that there are infinite Boolean algebras which are not powerset algebras.

However, we will also:

- Show that every Boolean algebra is isomorphic to an algebra of sets;
- Characterize the powerset algebras among Boolean algebras.

Example of Boolean Algebras II

2) The finite-cofinite algebra of the set X is defined to be

 $FC(X) = \{A \subseteq X : A \text{ is finite or } X \setminus A \text{ is finite}\}.$

It is easily checked that this is an algebra of sets.
 Claim: FC(IN) is not isomorphic to P(X) for any set X.
 Reasoning by Cardinalities: FC(IN) is countable. On the other hand, Cantor's Theorem implies that any powerset is either finite or uncountable.

Reasoning Lattice-Theoretically: $FC(\mathbb{N})$ is not complete. But $\mathcal{P}(X)$ is always complete and an isomorphism must preserve completeness.

Examples of Boolean Algebras III

- (3) The family of all clopen subsets of a topological space (X; T) is an algebra of sets. Clearly this example will not be of much interest unless X has plenty of clopen sets. We will show that every Boolean algebra can be concretely represented as such an algebra.
- (4) For $n \ge 1$ the lattice 2^n is lattice-isomorphic to $\mathcal{P}(\{1, 2, ..., n\})$, which is a Boolean algebra. Hence 2^n is a Boolean algebra, with 0 = (0, 0, ..., 0) and 1 = (1, 1, ..., 1), $(\varepsilon_1, ..., \varepsilon_n)' = (\eta_1, ..., \eta_n)$, where $\eta_i = 0 \Leftrightarrow \varepsilon_i = 1$.

The simplest non-trivial Boolean algebra of all is $\mathbf{2} = \{0, 1\}$. It arises frequently in logic and computer science as an algebra of truth values. In such contexts the symbols F and T, or alternatively \perp and \top , are used in place of 0 and 1. We have $F \lor F = F \land F = F \land T = T' = F$, $T \land T = F \lor T = T \lor T = F' = T$.

Subsection 4

Boolean Terms and Disjunctive Normal Form

Propositional Variables and Logical Connectives

- In propositional calculus, propositions are designated by propositional variables which take values in {F,T}.
- Admissible compound statements are formed using **logical connectives**.
- Connectives include "and", "or" and "not", denoted respectively by \wedge,\vee and '.
- Another natural connective is "implies" (\rightarrow) .
- Compound statements built from these are assigned the expected truth values according to the truth values of their constituent parts. Example:
 - $p \wedge q$ has value T if and only if both p and q have value T;
 - $p \rightarrow q$ has value T unless p has value T and q has value F.

Well-Formed Formulas

- We take an infinite set of propositional variables, denoted *p*, *q*, *r*, ..., and define a **wff** (or **well-formed formula**) by the rules:
 - (i) any propositional variable standing alone is a wff (optionally, constant symbols T and F may also be included as wffs);
 - (ii) if φ and ψ are wffs, so are $(\varphi \land \psi), (\varphi \lor \psi), \varphi', (\varphi \to \psi)$ (this clause is suitably adapted if a different set of connectives is used);
 - (iii) any wff arises from a finite number of applications of (i) and (ii).

Example: $((p \land q') \lor r)'$ is a wff; $((p' \rightarrow q) \rightarrow ((p' \rightarrow q') \rightarrow p))$ is a wff; $(((p \lor q) \land p)$ is not a wff (invalid bracketing); $\lor \rightarrow q$ is not a wff.

• The parentheses guarantee non-ambiguity.

In practice we drop parentheses where no ambiguity would result, just as if we were writing a string of joins, meets and complements in a lattice.

Truth Functions and Truth Tables

A wff φ involving the propositional variables p₁,..., p_n defines a truth function F_φ of n variables.

For a given assignment of values in $\{F, T\}$ to p_1, \ldots, p_n , substitute these values into φ and compute the resulting expression in the Boolean algebra $\{F, T\}$ to obtain the value of F_{φ} .

• Truth functions are presented via truth tables:

			p_1	p ₂	p 3	$(p_1 \lor p_2)$	$(p_1' \lor p_3)$	$((p_1 \lor p_2) \land (p_1' \lor p_3))'$
			Т	Т	Т	Т	Т	F
р	q	$p \rightarrow q$	Т	Т	F	Т	F	Т
Т	Т	Т	Т	F	Т	Т	Т	F
Т	F	F	Т	F	F	Т	F	Т
F	Т	Т	F	Т	Т	Т	Т	F
F	F	Т	F	Т	F	Т	Т	F
			F	F	Т	F	Т	Т
			F	F	F	F	Т	Т

Logically Equivalent Formulas

- Two wffs φ and ψ are called **logically equivalent** (written $\varphi \equiv \psi$) if they define the same truth function, i.e., they give rise to the same truth table.
- For any wffs φ and ψ ,

$$\begin{aligned} (\varphi \land \psi) &\equiv (\varphi' \lor \psi')', \quad (\varphi \lor \psi) \equiv (\varphi' \land \psi')', \\ (\varphi \to \psi) &\equiv (\varphi' \lor \psi), \quad (\varphi \land \psi) \equiv (\varphi \to \psi')'. \end{aligned}$$

- A proof by induction on the number of connectives then shows that any wff built using ∨, ∧ and ′ is logically equivalent to one built using → and ′, and vice versa.
- Therefore, up to logical equivalence, we arrive at the same set of wffs whether we take {∨, ∧, ', →}, just {→, '} or just {∨, ∧, '} as the basic set of connectives.
 - The choice of $\{ \rightarrow, ' \}$ is the most natural for studying logic;
 - $\{\vee, \wedge, '\}$ brings out the connections with Boolean algebras.

The Algebra of Propositions: A Preview

- The set of wffs, with ∨, ∧ and ' as operations, closely resembles a Boolean lattice:
 - The axioms do not hold if = is taken to mean "is the same wff as";
 - The axioms hold if = is read as "is logically equivalent to".

Example: To establish (L4), note that $\varphi \lor (\varphi \land \psi)$ takes value T if and only if φ does. So $\varphi \lor (\varphi \land \psi) \equiv \varphi$.

 If F and T are included as wffs, to serve as 0 and 1, we obtain a Boolean algebra, called the algebra of propositions.

Boolean Terms

• We define the class **BT** of **Boolean terms** (or **Boolean polynomials**) as follows:

Let S be a set of variables, whose members will be denoted by letters such as $x, y, z, x_1, x_2, \ldots$, and let $\lor, \land, ', 0, 1$ be the symbols used to axiomatize Boolean algebras. Then:

- (i) $0, 1 \in \mathbf{BT}$ and $x \in \mathbf{BT}$, for all $x \in S$;
- (ii) if $p, q \in \mathbf{BT}$, then $(p \lor q), (p \land q)$ and p' belong to \mathbf{BT} ;
- (iii) every element of **BT** is an expression formed by a finite number of applications of (i) and (ii).
- A Boolean term p whose variables are drawn from among x₁,..., x_n will be written p(x₁,..., x_n).

Example: Some Boolean terms:

$$1, \ x, \ y, \ y', \ (x \lor y'), \ (1 \land (x \lor y')), \ (1 \land (x \lor y'))'.$$

Semantics of Boolean Terms

- Just as numbers may be substituted into "ordinary" polynomials, elements of any Boolean algebra *B* may be substituted for the variables of a Boolean term to yield an element of *B*.
- If we take, in particular, B = 2, every Boolean term p(x₁,...,x_n) defines a map F_p: 2ⁿ → 2.

The map F_p associated with p can be specified by a "truth table" in just the same way as a wff determines a truth function. The only difference is that each entry of the table is 0 or 1, instead of F or T.

It is usual to use p to denote both the term and the function F_p it induces.

Equivalence of Boolean Terms

We say that the Boolean terms p(x₁,...,x_n) and q(x₁,...,x_n) are equivalent, and write p ≡ q, if p and q have the same truth function, that is, F_p = F_q.
Example: For instance, we may check (x ∧ y')' ≡ (x' ∨ y) (both sides give the same truth table).

The right-hand side can be obtained from the left by applying the laws of Boolean algebra:

$$(x \wedge y')' = (x' \vee y'') = (x' \vee y).$$

- In general, whenever q(x₁,...,x_n) can be obtained from p(x₁,...,x_n) by the laws of Boolean algebra, we have p ≡ q.
- We will see that the converse is also true.
 Notation: Where removal of parentheses from a Boolean term would, up to equivalence, not result in ambiguity, we omit parentheses, e.g., we shall write x v y v z in place of either (x v (y v z)) or ((x v y) v z).

Every Map is a Boolean Term Function

• Consider the truth table associated with a truth function $F: 2^n \rightarrow 2$.

- For each row (element of 2^n) on which F has value 1, form the meet of n symbols by selecting for each variable x either x or x' depending on whether x has value 1 or 0 in that row.
- Then take the join *p* of these terms.

Then p, is such that $F = F_p$.

Theorem

Every map $F: \mathbf{2}^n \to \mathbf{2}$ coincides with F_p for some Boolean term $p(x_1, \ldots, x_n)$. A suitable term p may be described as follows: For $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbf{2}^n$, define $p_{\mathbf{a}}(x_1, \ldots, x_n)$ by $p_{\mathbf{a}}(x_1, \ldots, x_n) = x_1^{\varepsilon_1} \wedge \cdots \wedge x_n^{\varepsilon_n}$, where $x_j^{\varepsilon_j} = \begin{cases} x_j, & \text{if } a_j = 1 \\ x'_j, & \text{if } a_j = 0 \end{cases}$. Then define $p(x_1, \ldots, x_n) = \bigvee \{ p_{\mathbf{a}}(x_1, \ldots, x_n) : F(\mathbf{a}) = 1 \}.$

Every Map is a Boolean Term Function (Cont'd)

• Let $\boldsymbol{a} = (a_1, \dots, a_n) \in 2^n$ and $\boldsymbol{b} = (b_1, \dots, b_n) \in 2^n$. We have carefully chosen the term $p_{\boldsymbol{a}}(x_1, \dots, x_n)$ so that $F_{p_{\boldsymbol{a}}}(b_1, \dots, b_n) = \begin{cases} 1, & \text{if } \boldsymbol{b} = \boldsymbol{a} \\ 0, & \text{if } \boldsymbol{b} \neq \boldsymbol{a} \end{cases}$ Claim: $F = F_p$. Assume that $F(\boldsymbol{b}) = 1$. Then $F_p(b_1, \dots, b_n) = \sum_{i=1}^n \sqrt{E_p(b_1, \dots, b_n)} : F(\boldsymbol{a}) = 1$

$$F_{p}(b_{1},...,b_{n}) = \bigvee \{F_{p\boldsymbol{a}}(b_{1},...,b_{n}):F(\boldsymbol{a})=1\}$$

$$\geq F_{p}(b_{1},...,b_{n})$$

$$= 1.$$

Thus, $F(\mathbf{b}) = 1$ implies $F_p(\mathbf{b}) = 1$. Assume $F(\mathbf{b}) = 0$. Then $F(\mathbf{a}) = 1$ implies $\mathbf{b} \neq \mathbf{a}$. So $F_{p\mathbf{a}}(b_1, \dots, b_n) = 0$. Therefore $F_p(b_1, \dots, b_n) = \bigvee \{F_{p\mathbf{a}}(b_1, \dots, b_n) : F(\mathbf{a}) = 1\} = 0$. Thus $F(\mathbf{b}) = 0$ implies $F_p(\mathbf{b}) = 0$. Hence $F = F_p$, as claimed.

Disjunctive Normal Form

- A Boolean term p(x₁,...,x_n) is said to be in full disjunctive normal form, or DNF, if it is a join of distinct meets of the form x₁^{ε₁} ∧ … ∧ x_n^{ε_n}. By definition, x^ε equals x if ε = 1, and x' if ε = 0. Terms of the form x^ε are known as literals.
- The theorem implies that any Boolean term is equivalent to a term in DNF (in the setting of propositional calculus this is just the classic result that any wff is logically equivalent to a wff in DNF).
- Note that the Boolean term 0 is already in DNF as it is the join of the empty set.
- At the other end of the spectrum, the DNF of the Boolean term 1 is the join of all 2ⁿ meets of the form x₁^{ε₁} ∧ … ∧ x_n^{ε_n}.

Disjunctive Normal Form and Equivalence

- Each truth function uniquely determines, and is determined by, a DNF term; so p ≡ q in BT if and only if each of p and q is equivalent to the same DNF.
- We have already remarked that applying the laws of Boolean algebra to a Boolean term yields an equivalent term.
- This process can be used to reduce any term $p(x_1, ..., x_n)$ to DNF, as outlined below:
 - (i) Use de Morgan's laws to reduce $p(x_1, ..., x_n)$ to literals combined by joins and meets.
 - (ii) Use the distributive laws repeatedly, with the lattice identities, to obtain a join of meets of literals.
 - (iii) Finally, we require each x_i to occur, either primed or not, once and once only in each meet term. This is achieved by dropping any terms containing both x_i and x'_i, for any i. If neither x_j nor x'_j occurs in ∧_{k∈K} x^{ε_k}_k, it can be introduces as follows: ∧_{k∈K} x^{ε_k}_k ≡ (∧_{k∈K} x^{ε_k}_k) ∧ (x_j ∨ x'_i) ≡ (∧_{k∈K} x^{ε_k}_k ∧ x_j) ∨ (∧_{k∈K} x^{ε_k}_k ∧ x'_i).

Repeating this for each missing variable we arrive at a term in DNF.

Example

 Write the term ((p₁ ∨ p₂) ∧ (p'₁ ∨ p₃))' in DNF. Construct the truth table.

p_1	p ₂	p ₃	$(p_1 \lor p_2)$	$(p_1' \lor p_3)$	$((p_1 \lor p_2) \land (p_1' \lor p_3))'$
Т	Т	Т	Т	Т	F
Т	Т	F	Т	F	Т
Т	F	Т	Т	Т	F
Т	F	F	Т	F	Т
F	Т	Т	Т	Т	F
F	Т	F	Т	Т	F
F	F	Т	F	Т	Т
F	F	F	F	Т	Т

Pick the rows, where the value is 1 and construct the corresponding meets. Then, take the join of those meets.

$$(p_1 \wedge p_2 \wedge p_3') \vee (p_1 \wedge p_2' \wedge p_3') \vee (p_1' \wedge p_2' \wedge p_3) \vee (p_1' \wedge p_2' \wedge p_3').$$

The Boolean Algebra of Functions of *n* Variables

Theorem

Let *B* be the Boolean algebra 2^{2^n} . Then *B* is generated by *n* elements, in the sense that there exists an *n*-element subset *X* of *B*, such that the smallest Boolean subalgebra of *B* containing *X* is *B*.

• Identify *B* with the Boolean algebra $\mathcal{P}(\mathbf{2}^n)$. Define *X* to be $\{e_1, \ldots, e_n\}$, where $e_i := \{(a_1, \ldots, a_n) \in \mathbf{2}^n : a_i = 1\}$, for $i = 1, \ldots, n$. Then, for each $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbf{2}^n$, we have

$$\{a\} = \bigcap \{e_i : a_i = 1\} \cap \bigcap \{e'_i : a_i = 0\}.$$

Each non-empty element of *B* is a union of singletons, $\{a\}$. Hence, it is expressible as a join of meets of elements of the form e_i or e'_i . Note that $\emptyset = e_1 \cap e'_1$ takes care of the empty set.