Introduction to Lattices and Order

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University
LSSU Math 400

(1) Modular, Distributive and Boolean Lattices

- Lattices Satisfying Additional Identities
- The $\mathbf{M}_{3}-\mathbf{N}_{5}$ Theorem
- Boolean Lattices and Boolean Algebras
- Boolean Terms and Disjunctive Normal Form

Subsection 1

Lattices Satisfying Additional Identities

Some Lattice Inequalities

Lemma

Let L be a lattice and let $a, b, c \in L$. Then:
(i) $a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c)$; and dually,
(ii) $a \geq c$ implies $a \wedge(b \vee c) \geq(a \wedge b) \vee c$; and dually,
(iii) $(a \wedge b) \vee(b \wedge c) \vee(c \wedge a) \leq(a \vee b) \wedge(b \vee c) \wedge(c \vee a)$.
(i) We have

$$
\left.\left.\begin{array}{rl}
b \leq b \vee c \\
c \leq b \vee c
\end{array}\right\} \quad \begin{array}{l}
\Rightarrow \quad a \wedge b \leq a \wedge(b \vee c) \\
\\
\end{array} \quad \Rightarrow \quad(a \wedge c \leq a \wedge(b \vee c)\}\right) \vee(a \wedge c) \leq a \wedge(b \vee c) .
$$

(ii) This is a special case of Part (i). By hypothesis,

$$
(a \wedge b) \vee c c^{c \leq a} \leq(a \wedge b) \vee(a \wedge c) \leq a \wedge(b \vee c)
$$

Some Lattice Inequalities (Cont'd)

(iii)

$$
\left.\begin{array}{l}
a \wedge b \leq a \leq a \vee b, c \vee a \\
a \wedge b \leq b \leq b \vee c
\end{array}\right\} \Rightarrow a \wedge b \leq(a \vee b) \wedge(b \vee c) \wedge(c \vee a) .
$$

Similarly,

$$
\begin{aligned}
& b \wedge c \leq(a \vee b) \wedge(b \vee c) \wedge(c \vee a) ; \\
& c \wedge a \leq(a \vee b) \wedge(b \vee c) \wedge(c \vee a) .
\end{aligned}
$$

Thus,

$$
(a \wedge b) \vee(b \wedge c) \vee(c \wedge a) \leq(a \vee b) \wedge(b \vee c) \wedge(c \vee a)
$$

On the Modular Law

Lemma

Let L be a lattice. Then, the following are equivalent:
(i) $(\forall a, b, c \in L) a \geq c \Rightarrow a \wedge(b \vee c)=(a \wedge b) \vee c$;
(ii) $(\forall a, b, c \in L) a \geq c \Rightarrow a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$;
(iii) $(\forall p, q, r \in L) p \wedge(q \vee(p \wedge r))=(p \wedge q) \vee(p \wedge r)$.

- The Connecting Lemma gives the equivalence of (i) and (ii). (ii) \Rightarrow (iii): Assume (ii) holds and let $p, q, r \in L$. Then

$$
p \wedge(q \vee(p \wedge r)) \stackrel{(i)}{=}(p \wedge q) \vee(p \wedge(p \wedge r))=(p \wedge q) \vee(p \wedge r) .
$$

(iii) \Rightarrow (i): Assume (iii) and let $a, b, c \in L$, with $c \leq a$. Then

$$
a \wedge(b \vee c) \stackrel{c \leqq a}{\equiv} a \wedge(b \vee(a \wedge c)) \stackrel{(i i i)}{=}(a \wedge b) \vee(a \wedge c)
$$

On the Distributive Law

Lemma

Let L be a lattice. Then the following are equivalent:
(D) $(\forall a, b, c \in L) a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$;
$(D)^{\partial}(\forall p, q, r \in L) p \vee(q \wedge r)=(p \vee q) \wedge(p \vee r)$.

- Assume (D) holds. Then, for $p, q, r \in L$,

$$
\begin{aligned}
(p \vee q) \wedge(p \vee r) & =((p \vee q) \wedge p) \vee((p \vee q) \wedge r) \quad(\text { by }(\mathrm{D})) \\
& =p \vee(r \wedge(p \vee q)) \quad\left(b y(\mathrm{~L} 2)^{\partial} \&(\mathrm{~L} 4)^{\partial}\right) \\
& =p \vee((r \wedge p) \vee(r \wedge q)) \quad(\mathrm{by}(\mathrm{D})) \\
& =p \vee(q \wedge r) \quad\left(\mathrm{by}(\mathrm{~L} 1),(\mathrm{L} 2)^{\partial} \&(\mathrm{~L} 4)\right)
\end{aligned}
$$

So (D) implies (D) ${ }^{\partial}$.
By duality, (D) implies (D) too.

Distributivity and Modularity

Definitions

Let L be a lattice.
(i) L is said to be distributive if it satisfies the distributive law,

$$
(\forall a, b, c \in L) a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) .
$$

(ii) L is said to be modular if it satisfies the modular law,

$$
(\forall a, b, c \in L) a \geq c \Rightarrow a \wedge(b \vee c)=(a \wedge b) \vee c .
$$

Remarks:

(1) Any lattice is "half-way" to being both modular and distributive. To establish distributivity or modularity we only need to check an inequality.

Distributivity and Modularity: Additional Remarks

(2) Any distributive lattice is modular.

Moreover, the rather mysterious modular law can be reformulated as an identity.
The modular law may be regarded as licence to rebracket $a \wedge(b \vee c)$ as $(a \wedge b) \vee c$, provided $a \geq c$.
(3) Providentially, distributivity can be defined either by (D) or by (D) ${ }^{2}$. Thus the apparent asymmetry between join and meet is illusory. L is distributive if and only if L^{∂} is and L is modular if and only if L^{∂} is.
(4) The universal quantifiers in Remark (3) are essential: it is not true that if particular elements a, b and c in an arbitrary lattice satisfy $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$, then they also satisfy $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.

Examples I

(1) Any powerset lattice $\mathcal{P}(X)$ is distributive.

More generally, any lattice of sets is distributive.
(2) Any chain is distributive.
(3) The lattice $\left\langle\mathbb{N}_{0} ; \mid c m, \operatorname{gcd}\right\rangle$ is distributive.
(4) The subgroup lattice of the infinite cyclic group $\langle\mathbb{Z}$; +\rangle is isomorphic to $\left\langle\mathbb{N}_{0} ; \mathrm{Icm}, \operatorname{gcd}\right\rangle^{\partial}$. Consequently SubZ \mathbb{Z} is distributive. Consider a finite group G. Sub G is distributive if G is cyclic. The converse is also true but much harder to prove.

Examples II

(5) Our examples of classes of modular lattices come from algebra:
(i) The set \mathcal{N}-Sub G of normal subgroups of a group G forms a lattice under the operations

$$
H \wedge K=H \cap K \text { and } H \vee K=H K \text {, }
$$

with \subseteq as the underlying order.
Let $H, K, N \in \mathcal{N}$-Sub G, with $H \supseteq N$. Take $g \in H \wedge(K \vee N)$, so $g \in H$ and $g=k n$, for some $k \in K$ and $n \in N$. Then $k=g n^{-1} \in H$, since $H \supseteq N$ and H is a subgroup. This proves that $g \in(H \wedge K) \vee N$. Hence $H \wedge(K \vee N) \subseteq(H \wedge K) \vee N$. Since the reverse inequality holds in any lattice, the lattice \mathcal{N}-Sub G is modular, for any group G.
(ii) It can be shown in a similar way that the lattice of subspaces of a vector space is modular.

The Diamond and the Pentagon

(6) Consider the lattices \mathbf{M}_{3} (the diamond) and \mathbf{N}_{5} (the pentagon):

- The lattice \mathbf{M}_{3} arises as \mathcal{N}-Sub \mathbf{V}_{4}. Hence, by (5)(i), \mathbf{M}_{3} is modular. It is, however, not distributive: in the diagram of \mathbf{M}_{3}

$$
p \wedge(q \vee r)=p \wedge 1=p \neq 0=0 \vee 0=(p \wedge q) \vee(p \wedge r) .
$$

- The lattice \mathbf{N}_{5} is not modular (and not distributive): in the diagram we have $u \geq w$ and $u \wedge(v \vee w)=u \wedge 1=u>w=0 \vee w=(u \wedge v) \vee w$.
- These examples turn out to play a crucial role in the identification of non-modular and non-distributive lattices as seen below.

Sublattices, Products and Homomorphic Images

- New lattices can be manufactured by forming sublattices, products and homomorphic images.
- Modularity and distributivity are preserved by these constructions:
(i) If L is a modular (distributive) lattice, then every sublattice of L is modular (distributive).
(ii) If L and K are modular (distributive) lattices, then $L \times K$ is modular (distributive).
(iii) If L is modular (distributive) and K is the image of L under a homomorphism, then K is modular (distributive).
- Here (i) is immediate and (ii) holds because \vee and \wedge are defined coordinatewise on products.
For (iii) we use the fact that a join- and meet-preserving map preserves any lattice identity; for the modular case we then invoke that the inequality can be replaced by an identity.

Examples

Proposition

If a lattice is isomorphic to a sublattice of a product of distributive (modular) lattices, then it is distributive (modular).

Examples:

The lattice L_{1} is distributive because it is a sublattice of $\mathbf{4 \times 4 \times 2}$.

The lattice L_{2} is isomorphic to the shaded sublattice of the modular lattice $\mathbf{M}_{3} \times 2$ and so is itself modular.

Subsection 2

The $\mathbf{M}_{3}-\mathbf{N}_{5}$ Theorem

The $\mathbf{M}_{3}-\mathbf{N}_{5}$ Theorem

- The $\mathbf{M}_{\mathbf{3}}-\mathbf{N}_{5}$ Theorem implies that it is possible to determine whether or not a finite lattice is modular or distributive from its diagram.
- Recall that we write $M>L$ to indicate that the lattice L has a sublattice isomorphic to the lattice M.

The $\mathbf{M}_{3}-\mathbf{N}_{5}$ Theorem

Let L be a lattice.
(i) L is non-modular if and only if $\mathbf{N}_{5} \gtrdot L$.
(ii) L is non-distributive if and only if $\mathbf{N}_{5} \rightarrow L$ or $\mathbf{M}_{3} \gtrdot L$.

- It is enough to prove that a non-modular lattice has a sublattice isomorphic to \mathbf{N}_{5} and that a lattice which is modular but not distributive has a sublattice isomorphic to \mathbf{M}_{3}.

Proof of Part (i)

- Assume that L is not modular. Then, there exist elements d, e and f such that $d>f$ and $v>u$, where $u=(d \wedge e) \vee f$ and $v=d \wedge(e \vee f)$.
We aim to prove that $e \wedge u=e \wedge v$ (= pay) and $e \vee u=e \vee v$ ($=q$ say).
Then our required sublattice has elements u, v, e, p, q (which are clearly distinct).

The lattice identities give
$\vee \wedge e=(d \wedge(e \vee f)) \wedge e=(e \wedge(e \vee f)) \wedge d=d \wedge e$ and
$u \vee e=((d \wedge e) \vee f) \vee e=(e \vee(d \wedge e)) \vee f=e \vee f$. Also,
$d \wedge e=(d \wedge e) \wedge e \leq u \wedge e \leq v \wedge e=d \wedge e$ and, similarly,
$e \vee f=u \vee e \leq v \vee e \leq e \vee f \vee e=e \vee f$.
This proves our claims and so completes the proof of (i).

Proof of Part (ii)

- Now assume that L is modular but not distributive. We build a sublattice isomorphic to \mathbf{M}_{3}. Take d, e and f, such that $(d \wedge e) \vee(d \wedge f)<d \wedge(e \vee f)$.

Let

$$
\begin{aligned}
p & =(d \wedge e) \vee(e \wedge f) \vee(f \wedge d) \\
q & =(d \vee e) \wedge(e \vee f) \wedge(f \vee d) \\
u & =(d \wedge q) \vee p \\
v & =(e \wedge q) \vee p \\
w & =(f \wedge q) \vee p
\end{aligned}
$$

Clearly $u \geq p, v \geq p$ and $w \geq p$. Also, $p \leq q$. Hence $u \leq(d \wedge q) \vee q=q$. Similarly, $v \leq q$ and $w \leq q$. Our candidate for a copy of \mathbf{M}_{3} has elements $\{p, q, u, v, w\}$. We need to check that this subset has the correct joins and meets, and that its elements are distinct. We shall repeatedly appeal to the modular law, viz.
(M) $\quad a \geq c$ implies $a \wedge(b \vee c)=(a \wedge b) \vee c$.

Proof of Part (ii) (Cont'd)

- We have $d \wedge q=d \wedge((d \vee e) \wedge(e \vee f) \wedge(f \vee d)) \stackrel{(44))^{\rho}}{=} d \wedge(e \vee f)$. Also $d \wedge p=\underline{d} \wedge((e \wedge f) \vee((d \wedge e) \vee(d \wedge f)))=$ $(d \wedge(e \wedge f)) \vee((d \wedge e) \vee(d \wedge f))=(d \wedge e) \vee(d \wedge f)$. Thus $p=q$ is impossible. We conclude that $p<q$. We next prove that $u \wedge v=p$.

$$
\begin{aligned}
u \wedge v & =((d \wedge q) \vee p) \wedge((e \wedge q) \vee p) \\
& =(((e \wedge q) \vee p) \wedge \overline{(d \wedge q)) \vee p \quad(\text { by }(M))} \\
& =((q \wedge(e \vee p \overline{(d)} \wedge(d \wedge q)) \vee p \quad(\text { by }(\mathrm{M})) \\
& =((e \vee p) \wedge(d \wedge q)) \vee p \\
& \left.=((d \wedge(e \vee f)) \wedge(e \vee(f \wedge d))) \vee p \quad(\text { by }(\mathrm{L} 4) \&(\mathrm{~L}))^{\partial}\right) \\
& =(d \wedge((e \vee f) \wedge((e \vee(f \wedge d)))) \vee p \\
& =(d \wedge(((e \vee f) \wedge(f \wedge d)) \vee e)) \vee p \quad(\text { by }(\mathrm{M})) \\
& =(d \wedge((f \wedge d) \vee e)) \vee p(\text { since } d \wedge f \leq f \leq e \vee f) \\
& =((d \wedge e) \vee(f \wedge d)) \vee p \quad(\text { by }(\mathrm{M})) \\
& =p .
\end{aligned}
$$

In exactly the same way, $v \wedge w=p$ and $w \wedge u=p$. Similar calculations yield $u v v=v \vee w=w \vee u=q$. Finally, it is easy to see that if any two of the elements u, v, w, p, q are equal, then $p=q$, which is impossible.

Applying the $\mathbf{M}_{3}-\mathbf{N}_{5}$ Theorem

- The lattices L_{1} and L_{2} have sublattices isomorphic to \mathbf{N}_{5}.
- $\mathrm{M}_{3} \rightarrow L_{3}$.
- The $\mathbf{M}_{3}-\mathbf{N}_{5}$ Theorem implies that L_{1} and L_{2} are non-modular and that L_{3} is non-distributive.

Applying the $M_{3}-N_{5}$ Theorem (Cont'd)

- \mathbf{N}_{5} does not embed in L_{3}.
- Neither \mathbf{N}_{5} nor \mathbf{M}_{3} embeds in L_{4}.
- To justify such assertions requires a tedious enumeration of cases: Suppose $\{u, a, b, c, v\}$, with $u<c<a<v, u<b<v$, were a sublattice of L_{3} isomorphic to \mathbf{N}_{5}. Since L_{3} and \mathbf{N}_{5} both have length 3 , we must have $u=0$ and $v=1$. Since $a \wedge b=c \wedge b=0$ and $a \vee b=c \vee b=1$, by duality and symmetry we may assume without loss of generality that $a=r, c=p$ and $b=x$. But the choice does not satisfy $c<a$ nor is $\{0, r, x, p, 1\}$ a sublattice of L_{3}, a contradiction.

An Important Remark

- The statement of the $\mathbf{M}_{\mathbf{3}}-\mathbf{N}_{5}$ Theorem refers to the occurrence of the pentagon or diamond as a sublattice of L;
This means that the joins and meets in a candidate copy of \mathbf{N}_{5} or \mathbf{M}_{3} must be the same as those in L.

Example: The pentagon $K=\{0, a, b, d, 1\}$ in L_{1} is not a sublattice; $a \vee b=c \notin K$.

In the other direction, in applying the positive proposition, one must be sure to embed the given lattice as a sublattice. \mathbf{N}_{5} is not distributive: it sits inside the distributive lattice 2^{3}, but not as a sublattice.

Example

- $\mathbf{M}_{3,3}$ is modular:

To see this, note that for $u \in\{x, y, z\}$, the sublattice $\mathbf{M}_{3,3} \backslash\{u\}$ is isomorphic to L or to its dual L^{∂}, both of which are modular.
Thus, any sublattice of $\mathbf{M}_{3,3}$ isomorphic to \mathbf{N}_{5} would need to contain the antichain $\{x, y, z\}$, which is impossible.

Subsection 3

Boolean Lattices and Boolean Algebras

Complements

Definition

Let L be a lattice with 0 and 1 . For $a \in L$, we say $b \in L$ is a complement of a if $a \wedge b=0$ and $a \vee b=1$. If a has a unique complement, we denote this complement by a^{\prime}.

- Assume L is distributive and suppose that b_{1} and b_{2} are both complements of a. Then

$$
b_{1}=b_{1} \wedge 1=b_{1} \wedge\left(a \vee b_{2}\right)=\left(b_{1} \wedge a\right) \vee\left(b_{1} \wedge b_{2}\right)=0 \vee\left(b_{1} \wedge b_{2}\right)=b_{1} \wedge b_{2} .
$$

Hence $b_{1} \leq b_{2}$ by the Connecting Lemma. Interchanging b_{1} and b_{2} gives $b_{2} \leq b_{1}$. Therefore in a distributive lattice an element can have at most one complement.

- It is easy to find examples of non-unique complements in non-distributive lattices, e.g., in $\mathbf{M}_{\mathbf{3}}$ or \mathbf{N}_{5}.

Boolean Lattices

- A lattice element may have no complement. The only complemented elements in a bounded chain are 0 and 1 .
- If $\mathcal{L} \subseteq \mathcal{P}(X)$ is a lattice of sets, then an element $A \in \mathcal{L}$ has a complement if and only if $X \backslash A$ belongs to \mathcal{L}.
Thus, the complemented elements of $\mathcal{O}(P)$ are the sets which are simultaneously down-sets and up-sets.

Definition

A lattice L is called a Boolean lattice if:
(i) L is distributive;
(ii) L has 0 and 1 ;
(iii) each $a \in L$ has a (necessarily unique) complement $a^{\prime} \in L$.

Properties of Complements in Boolean Lattices

Lemma

Let L be a Boolean lattice. Then:
(i) $0^{\prime}=1$ and $1^{\prime}=0$;
(ii) $a^{\prime \prime}=a$, for all $a \in L$;
(iii) de Morgan's laws hold: for all $a, b \in L,(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$ and $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime} ;$
(iv) $a \wedge b=\left(a^{\prime} \vee b^{\prime}\right)^{\prime}$ and $a \vee b=\left(a^{\prime} \wedge b^{\prime}\right)^{\prime}$, for all $a, b \in L$;
(v) $a \wedge b^{\prime}=0$ if and only if $a \leq b$, for all $a, b \in L$.

- To prove $p=q^{\prime}$ in L it is sufficient to prove that $p \vee q=1$ and $p \wedge q=0$, since the complement of q is unique.
(i) We have $0 \wedge 1=0$ and $0 \vee 1=1$. Hence $0^{\prime}=1$ and $1^{\prime}=0$.

Properties of Complements (Cont'd)

(ii) We have, by definition, $a \wedge a^{\prime}=0$ and $a \vee a^{\prime}=1$. Hence, again by definition, $a^{\prime \prime}=\left(a^{\prime}\right)^{\prime}=a$.
(iii) We show $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$. The other de Morgan Law can be shown dually. We have

$$
\begin{aligned}
(a \vee b) \wedge\left(a^{\prime} \wedge b^{\prime}\right) & =\left(a \wedge a^{\prime} \wedge b^{\prime}\right) \vee\left(b \wedge a^{\prime} \wedge b^{\prime}\right) \\
& =\left(0 \wedge b^{\prime}\right) \vee\left(0 \wedge a^{\prime}\right) \\
& =0 \vee 0=0 ; \\
(a \vee b) \vee\left(a^{\prime} \wedge b^{\prime}\right) & =\left(a \vee b \vee a^{\prime}\right) \wedge\left(a \vee b \vee b^{\prime}\right) \\
& =(1 \vee b) \wedge(a \vee 1) \\
& =1 \wedge 1=1 .
\end{aligned}
$$

Hence, $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$.

- $\left(a^{\prime} \vee b^{\prime}\right)^{\prime}=a^{\prime \prime} \wedge b^{\prime \prime}=a \wedge b$.

Properties of Complements (Cont'd)

(v) Suppose $a \wedge b^{\prime}=0$. Then:

$$
a \wedge b=(a \wedge b) \vee\left(a \wedge b^{\prime}\right)=a \wedge\left(b \vee b^{\prime}\right)=a \wedge 1=a
$$

Hence, $a \leq b$.
Suppose, conversely, that $a \leq b$. Then:

$$
a \wedge b^{\prime}=(a \wedge b) \wedge b^{\prime}=a \wedge\left(b \wedge b^{\prime}\right)=a \wedge 0=0
$$

Boolean Algebras

- A Boolean lattice was defined to be a special kind of distributive lattice, with 0 and 1 , where each element has a (necessarily unique) complement.

Definition

A Boolean algebra is defined to be a structure $\left\langle B ; \vee, \wedge,^{\prime}, 0,1\right\rangle$, such that:
(i) $\langle B ; \vee, \wedge\rangle$ is a distributive lattice;
(ii) $a \vee 0=a$ and $a \wedge 1=a$, for all $a \in B$;
(iii) $a \vee a^{\prime}=1$ and $a \wedge a^{\prime}=0$, for all $a \in B$.

- A subset A of a Boolean algebra B is a subalgebra if A is a sublattice of B which contains 0 and 1 and is such that $a \in A$ implies $a^{\prime} \in A$.
- Given Boolean algebras B and C, a map $f: B \rightarrow C$ is a Boolean homomorphism if f is a lattice homomorphism which also preserves 0,1 and $\quad\left(f(0)=0, f(1)=1\right.$ and $f\left(a^{\prime}\right)=(f(a))^{\prime}$, for all $\left.a \in B\right)$.

Conditions for Boolean Homomorphisms

Lemma

Let $f: B \rightarrow C$, where B and C are Boolean algebras.
(i) Assume f is a lattice homomorphism. The following are equivalent:
(a) $f(0)=0$ and $f(1)=1$;
(b) $f\left(a^{\prime}\right)=(f(a))^{\prime}$, for all $a \in B$.
(ii) If f preserves ${ }^{\prime}$, then f preserves \vee if and only if f preserves \wedge.
(i) $(\mathrm{a}) \Rightarrow$ (b) Use the equations

$$
\begin{aligned}
& 0=f(0)=f\left(a \wedge a^{\prime}\right)=f(a) \wedge f\left(a^{\prime}\right), \\
& 1=f(1)=f\left(a \vee a^{\prime}\right)=f(a) \vee f\left(a^{\prime}\right) .
\end{aligned}
$$

$(\mathrm{b}) \Rightarrow(\mathrm{a})$ Conversely, if (b) holds, we have

$$
\begin{aligned}
& f(0)=f\left(a \wedge a^{\prime}\right)=f(a) \wedge(f(a))^{\prime}=0, \\
& f(1)=f\left(a \vee a^{\prime}\right)=f(a) \vee(f(a))^{\prime}=1 .
\end{aligned}
$$

(ii) Assume f preserves ' and \vee. For all $a, b \in B$,

$$
\begin{aligned}
f(a \wedge b) & =f\left(\left(a^{\prime} \vee b^{\prime}\right)^{\prime}\right)=\left(f\left(a^{\prime} \vee b^{\prime}\right)\right)^{\prime}=\left(f\left(a^{\prime}\right) \vee f\left(b^{\prime}\right)\right)^{\prime} \\
& =\left((f(a))^{\prime} \vee(f(b))^{\prime}\right)^{\prime}=f(a) \wedge f(b) .
\end{aligned}
$$

Example of Boolean Algebras I

(1) For any set X, let $A^{\prime}:=X \backslash A$, for all $A \subseteq X$. Then the structure $\left\langle\mathcal{P}(X) ; \cup, \cap,{ }^{\prime}, \varnothing, X\right\rangle$ is a Boolean algebra known as the powerset algebra on X.
By an algebra of sets (also known as a field of sets) we mean a subalgebra of some powerset algebra $\mathcal{P}(X)$, that is, a family of sets which forms a Boolean algebra under the set-theoretic operations.

- We will prove that every finite Boolean algebra is isomorphic to $\mathcal{P}(X)$, for some finite set X.
- The following example shows that there are infinite Boolean algebras which are not powerset algebras.
However, we will also:
- Show that every Boolean algebra is isomorphic to an algebra of sets;
- Characterize the powerset algebras among Boolean algebras.

Example of Boolean Algebras II

(2) The finite-cofinite algebra of the set X is defined to be

$$
\mathrm{FC}(X)=\{A \subseteq X: A \text { is finite or } X \backslash A \text { is finite }\} .
$$

- It is easily checked that this is an algebra of sets.

Claim: $\mathrm{FC}(\mathbb{N})$ is not isomorphic to $\mathcal{P}(X)$ for any set X.
Reasoning by Cardinalities: $\mathrm{FC}(\mathbb{N})$ is countable. On the other hand,
Cantor's Theorem implies that any powerset is either finite or uncountable.
Reasoning Lattice-Theoretically: $\mathrm{FC}(\mathbb{N})$ is not complete. But $\mathcal{P}(X)$ is always complete and an isomorphism must preserve completeness.

Examples of Boolean Algebras III

(3) The family of all clopen subsets of a topological space $(X ; \mathcal{T})$ is an algebra of sets. Clearly this example will not be of much interest unless X has plenty of clopen sets. We will show that every Boolean algebra can be concretely represented as such an algebra.
(4) For $n \geq 1$ the lattice $\mathbf{2}^{n}$ is lattice-isomorphic to $\mathcal{P}(\{1,2, \ldots, n\})$, which is a Boolean algebra. Hence $\mathbf{2}^{n}$ is a Boolean algebra, with $0=(0,0, \ldots, 0)$ and $1=(1,1, \ldots, 1),\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\prime}=\left(\eta_{1}, \ldots, \eta_{n}\right)$, where $\eta_{i}=0 \Leftrightarrow \varepsilon_{i}=1$.
The simplest non-trivial Boolean algebra of all is $\mathbf{2}=\{0,1\}$. It arises frequently in logic and computer science as an algebra of truth values. In such contexts the symbols F and T , or alternatively \perp and T , are used in place of 0 and 1 . We have $F \vee F=F \wedge F=F \wedge T=T^{\prime}=F$, $\mathrm{T} \wedge \mathrm{T}=\mathrm{F} \vee \mathrm{T}=\mathrm{T} \vee \mathrm{T}=\mathrm{F}^{\prime}=\mathrm{T}$.

Subsection 4

Boolean Terms and Disjunctive Normal Form

Propositional Variables and Logical Connectives

- In propositional calculus, propositions are designated by propositional variables which take values in $\{\mathrm{F}, \mathrm{T}\}$.
- Admissible compound statements are formed using logical connectives.
- Connectives include "and", "or" and "not", denoted respectively by \wedge, \vee and ${ }^{\prime}$.
- Another natural connective is "implies" (\rightarrow).
- Compound statements built from these are assigned the expected truth values according to the truth values of their constituent parts.
Example:
- $p \wedge q$ has value T if and only if both p and q have value T ;
- $p \rightarrow q$ has value T unless p has value T and q has value F.

Well-Formed Formulas

- We take an infinite set of propositional variables, denoted p, q, r, \ldots, and define a wff (or well-formed formula) by the rules:
(i) any propositional variable standing alone is a wff (optionally, constant symbols T and F may also be included as wffs);
(ii) if φ and ψ are wffs, so are $(\varphi \wedge \psi),(\varphi \vee \psi), \varphi^{\prime},(\varphi \rightarrow \psi)$ (this clause is suitably adapted if a different set of connectives is used);
(iii) any wff arises from a finite number of applications of (i) and (ii).

Example: $\left(\left(p \wedge q^{\prime}\right) \vee r\right)^{\prime}$ is a wff; $\left(\left(p^{\prime} \rightarrow q\right) \rightarrow\left(\left(p^{\prime} \rightarrow q^{\prime}\right) \rightarrow p\right)\right)$ is a wff; $(((p \vee q) \wedge p)$ is not a wff (invalid bracketing); $\vee \rightarrow q$ is not a wff.

- The parentheses guarantee non-ambiguity. In practice we drop parentheses where no ambiguity would result, just as if we were writing a string of joins, meets and complements in a lattice.

Truth Functions and Truth Tables

- A wff φ involving the propositional variables p_{1}, \ldots, p_{n} defines a truth function F_{φ} of n variables.
For a given assignment of values in $\{\mathrm{F}, \mathrm{T}\}$ to p_{1}, \ldots, p_{n}, substitute these values into φ and compute the resulting expression in the Boolean algebra $\{\mathrm{F}, \mathrm{T}\}$ to obtain the value of F_{φ}.
- Truth functions are presented via truth tables:

			p_{1}	p_{2}	p_{3}	$\left(p_{1} \vee p_{2}\right)$	$\left(p_{1}^{\prime} \vee p_{3}\right)$	$\left(\left(p_{1} \vee p_{2}\right) \wedge\left(p_{1}^{\prime} \vee p_{3}\right)\right)^{\prime}$
		T	T	T	T	T	F	
p	q	$p \rightarrow q$	T	T	F	T	F	T
T	T	T	T	F	T	T	T	F
T	F	F	T	F	F	T	F	T
F	T	T	F	T	T	T	T	F
F	F	T	F	T	F	T	T	F
		F	F	T	F	T	T	
		F	F	F	F	T	T	

Logically Equivalent Formulas

- Two wffs φ and ψ are called logically equivalent (written $\varphi \equiv \psi$) if they define the same truth function, i.e., they give rise to the same truth table.
- For any wffs φ and ψ,

$$
\begin{array}{ll}
(\varphi \wedge \psi) \equiv\left(\varphi^{\prime} \vee \psi^{\prime}\right)^{\prime}, & (\varphi \vee \psi) \equiv\left(\varphi^{\prime} \wedge \psi^{\prime}\right)^{\prime}, \\
(\varphi \rightarrow \psi) \equiv\left(\varphi^{\prime} \vee \psi\right), & (\varphi \wedge \psi) \equiv\left(\varphi \rightarrow \psi^{\prime}\right)^{\prime} .
\end{array}
$$

- A proof by induction on the number of connectives then shows that any wff built using \vee, \wedge and ' is logically equivalent to one built using \rightarrow and ', and vice versa.
- Therefore, up to logical equivalence, we arrive at the same set of wffs whether we take $\left\{\vee, \wedge,{ }^{\prime}, \rightarrow\right\}$, just $\left\{\rightarrow,{ }^{\prime}\right\}$ or just $\left\{\vee, \wedge,{ }^{\prime}\right\}$ as the basic set of connectives.
- The choice of $\left\{\rightarrow,{ }^{\prime}\right\}$ is the most natural for studying logic;
- $\left\{\vee, \wedge,{ }^{\prime}\right\}$ brings out the connections with Boolean algebras.

The Algebra of Propositions: A Preview

- The set of wffs, with \vee, \wedge and ' as operations, closely resembles a Boolean lattice:
- The axioms do not hold if = is taken to mean "is the same wff as";
- The axioms hold if $=$ is read as "is logically equivalent to".

Example: To establish (L4), note that $\varphi \vee(\varphi \wedge \psi)$ takes value T if and only if φ does. So $\varphi \vee(\varphi \wedge \psi) \equiv \varphi$.

- If F and T are included as wffs, to serve as 0 and 1 , we obtain a Boolean algebra, called the algebra of propositions.

Boolean Terms

- We define the class BT of Boolean terms (or Boolean polynomials) as follows:
Let S be a set of variables, whose members will be denoted by letters such as $x, y, z, x_{1}, x_{2}, \ldots$, and let $\vee, \wedge,{ }^{\prime}, 0,1$ be the symbols used to axiomatize Boolean algebras. Then:
(i) $0,1 \in \mathbf{B} \mathbf{T}$ and $x \in \mathbf{B} \mathbf{T}$, for all $x \in S$;
(ii) if $p, \boldsymbol{q} \in \mathbf{B T}$, then $(p \vee q),(p \wedge q)$ and p^{\prime} belong to $\mathbf{B T}$;
(iii) every element of $\mathbf{B T}$ is an expression formed by a finite number of applications of (i) and (ii).
- A Boolean term p whose variables are drawn from among x_{1}, \ldots, x_{n} will be written $p\left(x_{1}, \ldots, x_{n}\right)$.
Example: Some Boolean terms:

$$
1, x, y, y^{\prime},\left(x \vee y^{\prime}\right),\left(1 \wedge\left(x \vee y^{\prime}\right)\right),\left(1 \wedge\left(x \vee y^{\prime}\right)\right)^{\prime} .
$$

Semantics of Boolean Terms

- Just as numbers may be substituted into "ordinary" polynomials, elements of any Boolean algebra B may be substituted for the variables of a Boolean term to yield an element of B.
- If we take, in particular, $B=\mathbf{2}$, every Boolean term $p\left(x_{1}, \ldots, x_{n}\right)$ defines a map $F_{p}: \mathbf{2}^{n} \rightarrow \mathbf{2}$.
The map F_{p} associated with p can be specified by a "truth table" in just the same way as a wff determines a truth function. The only difference is that each entry of the table is 0 or 1 , instead of F or T .
- It is usual to use p to denote both the term and the function F_{p} it induces.

Equivalence of Boolean Terms

- We say that the Boolean terms $p\left(x_{1}, \ldots, x_{n}\right)$ and $q\left(x_{1}, \ldots, x_{n}\right)$ are equivalent, and write $p \equiv q$, if p and q have the same truth function, that is, $F_{p}=F_{q}$.
Example: For instance, we may check $\left(x \wedge y^{\prime}\right)^{\prime} \equiv\left(x^{\prime} \vee y\right)$ (both sides give the same truth table).
The right-hand side can be obtained from the left by applying the laws of Boolean algebra:

$$
\left(x \wedge y^{\prime}\right)^{\prime}=\left(x^{\prime} \vee y^{\prime \prime}\right)=\left(x^{\prime} \vee y\right)
$$

- In general, whenever $q\left(x_{1}, \ldots, x_{n}\right)$ can be obtained from $p\left(x_{1}, \ldots, x_{n}\right)$ by the laws of Boolean algebra, we have $p \equiv q$.
- We will see that the converse is also true.

Notation: Where removal of parentheses from a Boolean term would, up to equivalence, not result in ambiguity, we omit parentheses, e.g., we shall write $x \vee y \vee z$ in place of either $(x \vee(y \vee z))$ or $((x \vee y) \vee z)$.

Every Map is a Boolean Term Function

- Consider the truth table associated with a truth function $F: \mathbf{2}^{n} \rightarrow \mathbf{2}$.
- For each row (element of $\mathbf{2}^{n}$) on which F has value 1 , form the meet of n symbols by selecting for each variable x either x or x^{\prime} depending on whether x has value 1 or 0 in that row.
- Then take the join p of these terms.

Then p, is such that $F=F_{p}$.

Theorem

Every map $F: \mathbf{2}^{n} \rightarrow \mathbf{2}$ coincides with F_{p} for some Boolean term $p\left(x_{1}, \ldots, x_{n}\right)$. A suitable term p may be described as follows: For $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{2}^{n}$, define $p_{\boldsymbol{a}}\left(x_{1}, \ldots, x_{n}\right)$ by
$p_{\mathbf{a}}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{\varepsilon_{1}} \wedge \cdots \wedge x_{n}^{\varepsilon_{n}}$, where $x_{j}^{\varepsilon_{j}}=\left\{\begin{array}{ll}x_{j}, & \text { if } a_{j}=1 \\ x_{j}^{\prime}, & \text { if } a_{j}=0\end{array}\right.$. Then define
$p\left(x_{1}, \ldots, x_{n}\right)=\bigvee\left\{p_{\mathbf{a}}\left(x_{1}, \ldots, x_{n}\right): F(\mathbf{a})=1\right\}$.

Every Map is a Boolean Term Function (Cont'd)

- Let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{2}^{n}$ and $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{2}^{n}$. We have carefully chosen the term $p_{a}\left(x_{1}, \ldots, x_{n}\right)$ so that
$F_{p \boldsymbol{a}}\left(b_{1}, \ldots, b_{n}\right)= \begin{cases}1, & \text { if } \boldsymbol{b}=\boldsymbol{a} \\ 0, & \text { if } \boldsymbol{b} \neq \boldsymbol{a}\end{cases}$
Claim: $F=F_{p}$.
Assume that $F(\boldsymbol{b})=1$. Then

$$
\begin{aligned}
F_{p}\left(b_{1}, \ldots, b_{n}\right) & =\bigvee\left\{F_{p_{\boldsymbol{a}}}\left(b_{1}, \ldots, b_{n}\right): F(\boldsymbol{a})=1\right\} \\
& \geq F_{p_{\boldsymbol{p}} \boldsymbol{b}}\left(b_{1}, \ldots, b_{n}\right) \\
& =1 .
\end{aligned}
$$

Thus, $F(\boldsymbol{b})=1$ implies $F_{p}(\boldsymbol{b})=1$. Assume $F(\boldsymbol{b})=0$. Then $F(\boldsymbol{a})=1$ implies $\boldsymbol{b} \neq \boldsymbol{a}$. So $F_{p \boldsymbol{a}}\left(b_{1}, \ldots, b_{n}\right)=0$. Therefore $F_{p}\left(b_{1}, \ldots, b_{n}\right)=\bigvee\left\{F_{p_{\boldsymbol{a}}}\left(b_{1}, \ldots, b_{n}\right): F(\boldsymbol{a})=1\right\}=0$. Thus $F(\boldsymbol{b})=0$ implies $F_{p}(\boldsymbol{b})=0$. Hence $F=F_{p}$, as claimed.

Disjunctive Normal Form

- A Boolean term $p\left(x_{1}, \ldots, x_{n}\right)$ is said to be in full disjunctive normal form, or DNF, if it is a join of distinct meets of the form $x_{1}^{\varepsilon_{1}} \wedge \cdots \wedge x_{n}^{\varepsilon_{n}}$. By definition, x^{ε} equals x if $\varepsilon=1$, and x^{\prime} if $\varepsilon=0$. Terms of the form x^{ε} are known as literals.
- The theorem implies that any Boolean term is equivalent to a term in DNF (in the setting of propositional calculus this is just the classic result that any wff is logically equivalent to a wff in DNF).
- Note that the Boolean term 0 is already in DNF as it is the join of the empty set.
- At the other end of the spectrum, the DNF of the Boolean term 1 is the join of all 2^{n} meets of the form $x_{1}^{\varepsilon_{1}} \wedge \cdots \wedge x_{n}^{\varepsilon_{n}}$.

Disjunctive Normal Form and Equivalence

- Each truth function uniquely determines, and is determined by, a DNF term; so $p \equiv q$ in BT if and only if each of p and q is equivalent to the same DNF.
- We have already remarked that applying the laws of Boolean algebra to a Boolean term yields an equivalent term.
- This process can be used to reduce any term $p\left(x_{1}, \ldots, x_{n}\right)$ to DNF, as outlined below:
(i) Use de Morgan's laws to reduce $p\left(x_{1}, \ldots, x_{n}\right)$ to literals combined by joins and meets.
(ii) Use the distributive laws repeatedly, with the lattice identities, to obtain a join of meets of literals.
(iii) Finally, we require each x_{i} to occur, either primed or not, once and once only in each meet term. This is achieved by dropping any terms containing both x_{i} and x_{i}^{\prime}, for any i. If neither x_{j} nor x_{j}^{\prime} occurs in $\Lambda_{k \in K} x_{k}^{\varepsilon_{k}}$, it can be introduces as follows:
$\bigwedge_{k \in K} x_{k}^{\varepsilon_{k}} \equiv\left(\bigwedge_{k \in K} x_{k}^{\varepsilon_{k}}\right) \wedge\left(x_{j} \vee x_{j}^{\prime}\right) \equiv\left(\bigwedge_{k \in K} x_{k}^{\varepsilon_{k}} \wedge x_{j}\right) \vee\left(\bigwedge_{k \in K} x_{k}^{\varepsilon_{k}} \wedge x_{j}^{\prime}\right)$.
Repeating this for each missing variable we arrive at a term in DNF.

Example

- Write the term $\left(\left(p_{1} \vee p_{2}\right) \wedge\left(p_{1}^{\prime} \vee p_{3}\right)\right)^{\prime}$ in DNF.

Construct the truth table.

p_{1}	p_{2}	p_{3}	$\left(p_{1} \vee p_{2}\right)$	$\left(p_{1}^{\prime} \vee p_{3}\right)$	$\left(\left(p_{1} \vee p_{2}\right) \wedge\left(p_{1}^{\prime} \vee p_{3}\right)\right)^{\prime}$
T	T	T	T	T	F
T	T	F	T	F	T
T	F	T	T	T	F
T	F	F	T	F	T
F	T	T	T	T	F
F	T	F	T	T	F
F	F	T	F	T	T
F	F	F	F	T	T

Pick the rows, where the value is 1 and construct the corresponding meets. Then, take the join of those meets.

$$
\left(p_{1} \wedge p_{2} \wedge p_{3}^{\prime}\right) \vee\left(p_{1} \wedge p_{2}^{\prime} \wedge p_{3}^{\prime}\right) \vee\left(p_{1}^{\prime} \wedge p_{2}^{\prime} \wedge p_{3}\right) \vee\left(p_{1}^{\prime} \wedge p_{2}^{\prime} \wedge p_{3}^{\prime}\right)
$$

The Boolean Algebra of Functions of n Variables

Theorem

Let B be the Boolean algebra $2^{2^{n}}$. Then B is generated by n elements, in the sense that there exists an n-element subset X of B, such that the smallest Boolean subalgebra of B containing X is B.

- Identify B with the Boolean algebra $\mathcal{P}\left(\mathbf{2}^{n}\right)$. Define X to be $\left\{e_{1}, \ldots, e_{n}\right\}$, where $e_{i}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{2}^{n}: a_{i}=1\right\}$, for $i=1, \ldots, n$. Then, for each $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{2}^{n}$, we have

$$
\{\boldsymbol{a}\}=\bigcap\left\{e_{i}: a_{i}=1\right\} \cap \bigcap\left\{e_{i}^{\prime}: a_{i}=0\right\} .
$$

Each non-empty element of B is a union of singletons, $\{\boldsymbol{a}\}$. Hence, it is expressible as a join of meets of elements of the form e_{i} or e_{i}^{\prime}.
Note that $\varnothing=e_{1} \cap e_{1}^{\prime}$ takes care of the empty set.

