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Representation: The Finite Case Building Blocks for Lattices

Subsection 1

Building Blocks for Lattices
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Representation: The Finite Case Building Blocks for Lattices

“Skeletal” Subset of a Lattice

Recall that a non-zero element x of a lattice L is join-irreducible if
x = a ∨ b implies x = a or x = b, for all a,b ∈ L.
We saw that, if L satisfies (DCC), and hence certainly if L is finite,
the set J (L) of join-irreducible elements of L is join-dense: every
element of L can be obtained as a join of elements from J (L).
We would like to discover a way of building a lattice L from a suitable
“skeletal” subset P of L, having the following properties:
(i) P is “small” and readily identifiable;
(ii) L is uniquely determined by the ordered set P ;
(iii) the process for obtaining L from P is simple to carry out.

Conditions (i) and (ii) pull in opposite directions, since (ii) requires P
to be, in some sense, large.

Many important lattices are distributive. e.g., down-set lattices and,
in the Boolean case, powerset lattices.

We show that the join-irreducible elements of a finite distributive
lattice form a good skeleton for it.
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Representation: The Finite Case Building Blocks for Lattices

Atoms

Our archetypal example of a Boolean algebra is a powerset algebra
⟨P(X );∪,∩, ′,∅,X ⟩.

Any A ∈ P(X ) is a union of singleton sets {x} for x ∈ A:

The singletons are precisely the join-irreducible elements.

The singletons are exactly the elements in P(X ) which cover 0.

Let L be a lattice with least element 0.

Then a ∈ L is called an atom if 0 ⋖ a. The set of atoms of L is
denoted by A(L).

The lattice L is called atomic if, given a ≠ 0 in L, there exists
x ∈ A(L), such that x ≤ a.

Example: Every finite lattice is atomic. By contrast, it may happen
that an infinite lattice has no atoms at all. The chain of non-negative
real numbers provides an example.
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Representation: The Finite Case Building Blocks for Lattices

Atoms and Join-Irreducibles

The following lemma compares atoms and join-irreducible elements.

It shows that in any Boolean lattice, J (L) coincides with A(L).

Lemma

Let L be a lattice with least element 0. Then:

(i) 0 ⋖ x in L implies x ∈ J (L);

(ii) If L is a Boolean lattice, x ∈ J (L) implies 0 ⋖ x .

(i) Suppose by way of contradiction that 0 ⋖ x and x = a ∨ b with a < x
and b < x . Since 0 ⋖ x , we have a = b = 0. Thus, x = 0, a
contradiction.

(ii) Now assume L is a Boolean lattice and that x ∈ J (L). Suppose
0 ≤ y < x . We want y = 0. We have x = x ∨ y = (x ∨ y) ∧ (y ′ ∨ y) =
(x ∧ y ′) ∨ y . Since x is join-irreducible and y < x , we must have
x = x ∧ y ′, whence x ≤ y ′. But then y = x ∧ y ≤ y ′ ∧ y = 0. So y = 0.
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Representation: The Finite Case Finite Boolean Algebras are Powerset Algebras

Subsection 2

Finite Boolean Algebras are Powerset Algebras
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Representation: The Finite Case Finite Boolean Algebras are Powerset Algebras

Determining Elements via Atoms

The set of atoms, A(L), of a finite Boolean lattice L meets the
building block criteria:

Lemma

Let B be a finite Boolean lattice. Then, for all a ∈ B ,

a = ⋁{x ∈ A(B) ∶ x ≤ a}.

Fix a ∈ B . Let S = {x ∈ A(B) ∶ x ≤ a}. Certainly a is an upper bound
for S . Let b be any upper bound for S . We must show a ≤ b.
Suppose not. Then 0 < a ∧ b′. Choose x ∈ A(B), such that
0 ⋖ x ≤ a ∧ b′. Then x ∈ S . So x ≤ b. Since x ≤ b′ also holds, we have
x ≤ b ∧ b′ = 0, a contradiction.

The lemma tells us how each individual element of L is determined by
the atoms, but it does not by itself fulfill the aim of Criterion (ii).
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Representation: The Finite Case Finite Boolean Algebras are Powerset Algebras

Representation Theorem for Finite Boolean Algebras

The Representation Theorem for Finite Boolean Algebras

Let B be a finite Boolean algebra. Then η ∶ a ↦ {x ∈ A(B) ∶ x ≤ a} is an
isomorphism of B onto P(X ), where X = A(B), with the inverse of η
given by η

−1(S) = ⋁S for S ∈ P(X ).

η maps B onto P(X ): Clearly ∅ = η(0). Now let S = {a1, . . . ,ak} be
a non-empty set of atoms of B and define a = ⋁S . We claim
S = η(a). Certainly S ⊆ η(a). Now let x be any atom, such that
x ≤ a = a1 ∨⋯∨ ak . For each i , we have 0 ≤ x ∧ ai ≤ x . Because x is
an atom, either x ∧ ai = 0, for all i , or there exists j , such x ∧ aj = x .
In the former case, x = x ∧ a = (x ∧ a1) ∨⋯ ∨ (x ∧ ak) = 0, a
contradiction. Therefore x ≤ aj , for some j , which forces x = aj , as aj
and x are atoms. Hence η(a) ⊆ S , as we wished to show. Let a,b ∈ B .
Then η(a) ⊆ η(b) implies that a = ⋁ η(a) ≤ ⋁ η(b) = b. It is trivial
(by the transitivity of ≤) that η(a) ⊆ η(b) whenever a ≤ b. So η is an
order-isomorphism. Thus, it is an isomorphism of Boolean algebras.
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Representation: The Finite Case Finite Boolean Algebras are Powerset Algebras

Shape of Finite Boolean Lattices

Corollary

Let B be a finite lattice. Then the following statements are equivalent:

(i) B is a Boolean lattice;

(ii) B ≅ P(A(B));

(iii) B is isomorphic to 2n, for some n ≥ 0.

Further, any finite Boolean lattice has 2n elements, for some n ≥ 0.

Example:
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Subsection 3

Finite Distributive Lattices are Down-Set Lattices
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Join Irreducible Down-Sets

Let P be an ordered set.

Claim: Each set ↓x , for x ∈ P , is join-irreducible in O(P).

Suppose that ↓x = U ∪ V , where U,V ∈ O(P). Without loss of
generality, x ∈ U. But then ↓x ⊆ U. Since ↓x = U ∪V implies U ⊆ ↓x ,
we conclude that ↓x = U. This shows that ↓x ∈ J (O(P)).

Now assume that P is finite. Any non-empty U ∈ O(P) is the union
of sets ↓xi , i = 1, . . . ,k , where xi ∥ xj , for i ≠ j . Unless k = 1, the set
U is not join-irreducible. Hence, J (O(P)) = {↓x ∶ x ∈ P}.

In the previous paragraph P must be finite:

{q ∈ Q ∶ q < 0} is join-irreducible in O(Q), but is not of the form ↓x .
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Join-Irreducible Lattice of Down-Set Lattice

Theorem

Let P be a finite ordered set. Then the map ε ∶ x ↦ ↓x is an
order-isomorphism from P onto J (O(P)).

We know that ε is an order-embedding of P into O(P). By the
preceding claim, the image of ε is J (O(P)).

For order-isomorphic ordered sets P and Q we have O(P) ≅ O(Q).
Therefore, the theorem tells us that, when L is a finite down-set
lattice O(P), we have L ≅ O(J (L)).
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Examples I

Observe that L ≅ O(J (L)).
George Voutsadakis (LSSU) Lattices and Order April 2020 14 / 29



Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Examples II

Since O(J (L)) is distributive, we cannot have L ≅ O(J (L)) unless L is
distributive.
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Join-Irreducibles in Distributive Lattices

Lemma

Let L be a distributive lattice and let x ∈ L, with x ≠ 0 in case L has a zero.
Then the following are equivalent:

(i) x is join-irreducible;

(ii) if a,b ∈ L and x ≤ a ∨ b, then x ≤ a or x ≤ b;

(iii) for any k ∈N, if a1, . . . ,ak ∈ L and x ≤ a1 ∨⋯∨ ak , then x ≤ ai , for
some i (1 ≤ i ≤ k).

(i)⇒(ii): Assume that x ∈ J (L) and that a,b ∈ L are such that
x ≤ a ∨ b. We have x = x ∧ (a ∨ b) (since x ≤ a ∨ b) = (x ∧ a) ∨ (x ∧ b)
(since L is distributive). Because x is join-irreducible, x = x ∧ a or
x = x ∧ b. Hence x ≤ a or x ≤ b, as required.
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Join-Irreducibles in Distributive Lattices (Cont’d)

(ii)⇒(iii): This is proved by induction on k :

The case k = 1 is trivial;

The case k = 2 is by the hypothesis (ii).

Assume the conclusion holds for k = n.

Let a1, . . . ,an,an+1 ∈ L, such that x ≤ a1 ∨⋯ ∨ an ∨ an+1. Then,
x ≤ (a1 ∨⋯ ∨ an) ∨ an+1. By (ii), x ≤ a1 ∨⋯∨ an or x ≤ an+1. By the
Induction Hypothesis, x ≤ a1 or ⋯ or x ≤ an or x ≤ an+1.

Therefore, (iii) holds for all k ∈N.

(iii)⇒(ii): Trivial.

(ii)⇒(i): Suppose (ii) holds and that x = a ∨ b. Then certainly
x ≤ a ∨ b, so x ≤ a or x ≤ b. But x = a ∨ b forces x ≥ a and x ≥ b.
Hence x = a or x = b.
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Representation Theorem for Finite Distributive Lattices

Birkhoff’s Representation Theorem for Finite Distributive Lattices

Let L be a finite distributive lattice. Then the map η ∶ L → O(J (L))
defined by

η(a) = {x ∈ J (L) ∶ x ≤ a}(= J (L) ∩ ↓a)

is an isomorphism of L onto O(J (L)).

It is immediate that η(a) ∈ O(J (L)) (since ≤ is transitive). It
remains only to show that η is an order-isomorphism:

We have seen a ≤ b implies η(a) ⊆ η(b). Conversely, suppose
η(a) ⊆ η(b). Then a = ⋁η(a) ≤ η(b) = b.
Finally, we prove that η is onto. Certainly ∅ = η(0). Now let
∅ ≠ U ∈ O(J (L)) and write U = {a1, . . . , ak}. Define a to be
a1 ∨⋯∨ ak . We claim U = η(a). First, let x ∈ U , so x = ai , for some i .
Then x is join-irreducible and x ≤ a, hence x ∈ η(a). Next, suppose
x ∈ η(a). Then x ≤ a = a1 ∨⋯∨ ak . Thus, x ≤ ai , for some i . Since U is
a down-set and ai ∈ U , we have x ∈ U .
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Characterizing Finite Distributive Lattices

Corollary

Let L be a finite lattice. Then the following statements are equivalent:

(i) L is distributive;

(ii) L ≅ O(J (L));

(iii) L is isomorphic to a down-set lattice;

(iv) L is isomorphic to a lattice of sets;

(v) L is isomorphic to a sublattice of 2n for some n ≥ 0.

Of course, no non-distributive lattice could be isomorphic to a
down-set lattice.

Birkhoff’s Representation Theorem provides an alternative to the
M3-N5 Theorem for establishing nondistributivity of a finite lattice L:
If L ≅ O(J (L)) fails, then L cannot be distributive.

Example: We saw that M3 and N5 form such examples.
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Subsection 4

Finite Distributive Lattices and Finite Ordered Sets
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

The Join-Irreducible Elements of a Product Lattice

Consider the product L1 × L2 of lattices L1 and L2 each with a least
element, but not necessarily distributive.

Note that (x1, x2) = (x1,0) ∨ (0, x2). Thus, (x1, x2) is not
join-irreducible unless either x1 or x2 is zero. Further, x1 = a1 ∨ b1 in
L1 implies (x1,0) = (a1,0) ∨ (b1,0). It follows that
J (L1 × L2) ⊆ (J (L1) × {0}) ∪ ({0} × J (L2)).

It is readily seen that the reverse inclusion also holds.

We have an order-isomorphism J (L1 × L2) ≅ J (L1) ⊍ J (L2).
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Product of Finite Distributive Lattices

Now assume that L1 and L2 are finite and distributive.

In this case, the result of the previous paragraph can be derived from

(a) P ≅ J (O(P));
(b) Birkhoff’s Representation Theorem;
(c) the fact that O(P1 ⊍ P2) is isomorphic to O(P1) ×O(P2).

Namely, we have:

J (L1 × L2)
(b)

≅ J (O(J (L1)) ×O(J (L2)))
(c)

≅ J (O(J (L1) ⊍ J (L2)))
(a)

≅ J (L1) ⊍ J (L2).
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Some Examples

(1) Consider the lattice L1.

The ordered set J (L1) is also shown. Since J (L1) ≅ 1 ⊍ (1⊕ 2), we
have O(J (L1)) ≅ 2 × (1⊕ 22), which has 10 elements. We deduce
that L1 is not isomorphic to O(J (L1)). So L1 is not distributive.

(2) Now consider L2. We could compute O(J (L2)) directly. Instead, we
note that L2 ≅ L∂2 , but J (L2) is not isomorphic to its order dual.
Hence, L2 cannot be isomorphic to O(J (L2)). Consequently, L2 is
not distributive.
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Finite Distributive Lattices and Finite Ordered Sets

We denote by DF the class of all finite distributive lattices and by PF

the class of all finite ordered sets.

Then, we have

L ≅ O(J (L)) and P ≅ J (O(P)),

for all L ∈ DF and P ∈ PF .

We call J (L) the dual of L and O(P) the dual of P .

When we identify each finite distributive lattice L with the isomorphic
lattice O(J (L)) of down-sets of J (L), we may regard DF as
consisting of the concrete lattices O(P), for P ∈ PF , rather than as
abstract objects satisfying certain identities.

Up to isomorphism, we have a one-to-one correspondence

O(P) = L ✲

✛ P = J (L),

for L ∈ DF and P ∈ PF .
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Example

The figure shows P(X ) and O(P(X )) for ∣X ∣ = 3:

We also see the table with ∣P(X )∣ and ∣O(P(X ))∣ for ∣X ∣ ≤ 8.
The dual J (L) of a finite distributive lattice L is generally much
smaller and less complex than L itself. So lattice problems concerning
DF are likely to become simpler when translated into problems about
PF .

In some sense the maps L↦ J(L) and P ↦O(P) play a role
analogous to that of the logarithm and exponential functions.
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Duality for Boolean Lattices and Chains

Special properties of a finite distributive lattice are reflected in special
properties of its dual.

Lemma

Let L = O(P) be a finite distributive lattice. Then:

(i) L is a Boolean lattice if and only if P is an antichain; O(n) = 2n.

(ii) L is a chain if and only if P is a chain; O(n) = n + 1.

(i) Recall that L is a finite Boolean lattice if and only if L ≅ 2n, for some
n. Now it suffices to observe that L ≅ 2n implies J (L) ≅ n and that
P ≅ n implies O(P) ≅ 2n.

(ii) We have L ≅ n + 1 implies J (L) ≅ n and P ≅ n implies O(P) ≅ n + 1.
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

The Maps in Duality

Setting up a correspondence between {0,1}-homomorphisms from
O(P) to O(Q) and order-preserving maps from Q to P , for
P ,Q ∈ PF is harder to formulate and to prove:

Theorem

Let P and Q be finite ordered sets and let L = O(P) and K = O(Q). Given
a {0,1}-homomorphism f ∶ L→ K , there is an associated order-preserving
map ϕf ∶ Q → P defined by ϕf (y) = min{x ∈ P ∶ y ∈ f (↓x)}, for all y ∈ Q.
Given an order-preserving map ϕ ∶ Q → P , there is an associated
{0,1}-homomorphism fϕ ∶ L → K defined by fϕ(a) = ϕ−1(a), for all a ∈ L.
Equivalently, ϕ(y) ∈ a if and only if y ∈ fϕ(a), for all a ∈ L, y ∈ Q.
The maps f ↦ ϕf and ϕ↦ fϕ establish a one-to-one correspondence
between {0,1}-homomorphisms from L to K and order-preserving maps
from Q to P . Further,

(i) f is one-to-one if and only if ϕf is onto,

(ii) f is onto if and only if ϕf is an order-embedding.
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Example

An order-preserving map ϕ ∶ Q → P and the associated
{0,1}-homomorphism f ∶ O(P)→ O(Q):
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

The Relation Between the Two “Dualities”

We established a correspondence between
DF + {0,1}-homomorphisms and PF+ order-preserving maps (a
duality or a dual equivalence of categories).

It follows that statements about finite distributive lattices can be
translated into statements about finite ordered sets, and vice versa.

We can now see that our two uses of the word “dual” have an
underlying commonality:

If, in an ordered set P , we think of x ≤ y as representing an “arrow”
from x to y , then P∂ is obtained by reversing the arrows.
Similarly, for L,K ∈ DF , a {0,1}-homomorphism f ∶ L → K provides an
“arrow” from L to K , and, when we pass from DF to PF , the arrows
again reverse.
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