Introduction to Lattices and Order

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

Representation: The Finite Case

- Building Blocks for Lattices
- Finite Boolean Algebras are Powerset Algebras
- Finite Distributive Lattices are Down-Set Lattices
- Finite Distributive Lattices and Finite Ordered Sets

Subsection 1

Building Blocks for Lattices

"Skeletal" Subset of a Lattice

- Recall that a non-zero element x of a lattice L is join-irreducible if x = a ∨ b implies x = a or x = b, for all a, b ∈ L.
- We saw that, if L satisfies (DCC), and hence certainly if L is finite, the set $\mathcal{J}(L)$ of join-irreducible elements of L is join-dense: every element of L can be obtained as a join of elements from $\mathcal{J}(L)$.
- We would like to discover a way of building a lattice *L* from a suitable "skeletal" subset *P* of *L*, having the following properties:
 - (i) P is "small" and readily identifiable;
 - (ii) *L* is uniquely determined by the ordered set *P*;
 - (iii) the process for obtaining L from P is simple to carry out.
- Conditions (i) and (ii) pull in opposite directions, since (ii) requires *P* to be, in some sense, large.
- Many important lattices are distributive. e.g., down-set lattices and, in the Boolean case, powerset lattices.
 We show that the join-irreducible elements of a finite distributive lattice form a good skeleton for it.

George Voutsadakis (LSSU)

Atoms

 Our archetypal example of a Boolean algebra is a powerset algebra ⟨𝒫(𝑋); ∪, ∩, ', ∅, 𝑋⟩.

Any $A \in \mathcal{P}(X)$ is a union of singleton sets $\{x\}$ for $x \in A$:

The singletons are precisely the join-irreducible elements.

The singletons are exactly the elements in $\mathcal{P}(X)$ which cover 0.

• Let *L* be a lattice with least element 0.

Then $a \in L$ is called an **atom** if 0 < a. The set of atoms of L is denoted by $\mathcal{A}(L)$.

The lattice *L* is called **atomic** if, given $a \neq 0$ in *L*, there exists $x \in \mathcal{A}(L)$, such that $x \leq a$.

Example: Every finite lattice is atomic. By contrast, it may happen that an infinite lattice has no atoms at all. The chain of non-negative real numbers provides an example.

Atoms and Join-Irreducibles

The following lemma compares atoms and join-irreducible elements.
 It shows that in any Boolean lattice, *J(L)* coincides with *A(L)*.

Lemma

Let L be a lattice with least element 0. Then:

- (i) $0 \leq x$ in *L* implies $x \in \mathcal{J}(L)$;
- (ii) If L is a Boolean lattice, $x \in \mathcal{J}(L)$ implies $0 \leq x$.
- (i) Suppose by way of contradiction that 0 ≤ x and x = a ∨ b with a < x and b < x. Since 0 ≤ x, we have a = b = 0. Thus, x = 0, a contradiction.
- (ii) Now assume L is a Boolean lattice and that $x \in \mathcal{J}(L)$. Suppose $0 \le y < x$. We want y = 0. We have $x = x \lor y = (x \lor y) \land (y' \lor y) = (x \land y') \lor y$. Since x is join-irreducible and y < x, we must have $x = x \land y'$, whence $x \le y'$. But then $y = x \land y \le y' \land y = 0$. So y = 0.

Subsection 2

Finite Boolean Algebras are Powerset Algebras

Determining Elements via Atoms

• The set of atoms, A(L), of a finite Boolean lattice L meets the building block criteria:

Lemma

Let *B* be a finite Boolean lattice. Then, for all $a \in B$,

$$a = \bigvee \{x \in \mathcal{A}(B) : x \leq a\}.$$

- Fix a ∈ B. Let S = {x ∈ A(B) : x ≤ a}. Certainly a is an upper bound for S. Let b be any upper bound for S. We must show a ≤ b. Suppose not. Then 0 < a ∧ b'. Choose x ∈ A(B), such that 0 < x ≤ a ∧ b'. Then x ∈ S. So x ≤ b. Since x ≤ b' also holds, we have x ≤ b ∧ b' = 0, a contradiction.
- The lemma tells us how each individual element of *L* is determined by the atoms, but it does not by itself fulfill the aim of Criterion (ii).

Representation Theorem for Finite Boolean Algebras

The Representation Theorem for Finite Boolean Algebras

Let *B* be a finite Boolean algebra. Then $\eta : a \mapsto \{x \in \mathcal{A}(B) : x \leq a\}$ is an isomorphism of *B* onto $\mathcal{P}(X)$, where $X = \mathcal{A}(B)$, with the inverse of η given by $\eta^{-1}(S) = \bigvee S$ for $S \in \mathcal{P}(X)$.

• η maps *B* onto $\mathcal{P}(X)$: Clearly $\emptyset = \eta(0)$. Now let $S = \{a_1, \ldots, a_k\}$ be a non-empty set of atoms of B and define $a = \bigvee S$. We claim $S = \eta(a)$. Certainly $S \subseteq \eta(a)$. Now let x be any atom, such that $x \leq a = a_1 \vee \cdots \vee a_k$. For each *i*, we have $0 \leq x \wedge a_i \leq x$. Because x is an atom, either $x \wedge a_i = 0$, for all *i*, or there exists *j*, such $x \wedge a_i = x$. In the former case, $x = x \land a = (x \land a_1) \lor \cdots \lor (x \land a_k) = 0$, a contradiction. Therefore $x \le a_i$, for some *i*, which forces $x = a_i$, as a_i and x are atoms. Hence $\eta(a) \subseteq S$, as we wished to show. Let $a, b \in B$. Then $\eta(a) \subseteq \eta(b)$ implies that $a = \bigvee \eta(a) \leq \bigvee \eta(b) = b$. It is trivial (by the transitivity of \leq) that $\eta(a) \subseteq \eta(b)$ whenever $a \leq b$. So η is an order-isomorphism. Thus, it is an isomorphism of Boolean algebras.

Shape of Finite Boolean Lattices

Corollary

Let B be a finite lattice. Then the following statements are equivalent:

- (i) B is a Boolean lattice;
- (ii) $B \cong \mathcal{P}(\mathcal{A}(B));$
- (iii) *B* is isomorphic to 2^n , for some $n \ge 0$.

Further, any finite Boolean lattice has 2^n elements, for some $n \ge 0$.

Subsection 3

Finite Distributive Lattices are Down-Set Lattices

Join Irreducible Down-Sets

• Let *P* be an ordered set.

Claim: Each set $\downarrow x$, for $x \in P$, is join-irreducible in $\mathcal{O}(P)$.

Suppose that $\downarrow x = U \cup V$, where $U, V \in \mathcal{O}(P)$. Without loss of generality, $x \in U$. But then $\downarrow x \subseteq U$. Since $\downarrow x = U \cup V$ implies $U \subseteq \downarrow x$, we conclude that $\downarrow x = U$. This shows that $\downarrow x \in \mathcal{J}(\mathcal{O}(P))$.

- Now assume that P is finite. Any non-empty U ∈ O(P) is the union of sets ↓x_i, i = 1,..., k, where x_i || x_j, for i ≠ j. Unless k = 1, the set U is not join-irreducible. Hence, J(O(P)) = {↓x : x ∈ P}.
- In the previous paragraph P must be finite:
 {q ∈ Q : q < 0} is join-irreducible in O(Q), but is not of the form ↓x.

Join-Irreducible Lattice of Down-Set Lattice

Theorem

Let *P* be a finite ordered set. Then the map $\varepsilon : x \mapsto \downarrow x$ is an order-isomorphism from *P* onto $\mathcal{J}(\mathcal{O}(P))$.

- We know that ε is an order-embedding of P into O(P). By the preceding claim, the image of ε is J(O(P)).
- For order-isomorphic ordered sets P and Q we have $\mathcal{O}(P) \cong \mathcal{O}(Q)$. Therefore, the theorem tells us that, when L is a finite down-set lattice $\mathcal{O}(P)$, we have $L \cong \mathcal{O}(\mathcal{J}(L))$.

Examples I

Observe that $L \cong \mathcal{O}(\mathcal{J}(L))$.

George Voutsadakis (LSSU)

Examples II

Since $\mathcal{O}(\mathcal{J}(L))$ is distributive, we cannot have $L \cong \mathcal{O}(\mathcal{J}(L))$ unless L is distributive.

George Voutsadakis (LSSU)

Join-Irreducibles in Distributive Lattices

Lemma

Let *L* be a distributive lattice and let $x \in L$, with $x \neq 0$ in case *L* has a zero. Then the following are equivalent:

- (i) x is join-irreducible;
- (ii) if $a, b \in L$ and $x \le a \lor b$, then $x \le a$ or $x \le b$;

(iii) for any $k \in \mathbb{N}$, if $a_1, \ldots, a_k \in L$ and $x \leq a_1 \vee \cdots \vee a_k$, then $x \leq a_i$, for some i $(1 \leq i \leq k)$.

(i) \Rightarrow (ii): Assume that $x \in \mathcal{J}(L)$ and that $a, b \in L$ are such that $x \leq a \lor b$. We have $x = x \land (a \lor b)$ (since $x \leq a \lor b$) = $(x \land a) \lor (x \land b)$ (since *L* is distributive). Because *x* is join-irreducible, $x = x \land a$ or $x = x \land b$. Hence $x \leq a$ or $x \leq b$, as required.

Join-Irreducibles in Distributive Lattices (Cont'd)

(ii) \Rightarrow (iii): This is proved by induction on k:

The case k = 1 is trivial;

The case k = 2 is by the hypothesis (ii).

Assume the conclusion holds for k = n.

Let $a_1, \ldots, a_n, a_{n+1} \in L$, such that $x \le a_1 \lor \cdots \lor a_n \lor a_{n+1}$. Then, $x \le (a_1 \lor \cdots \lor a_n) \lor a_{n+1}$. By (ii), $x \le a_1 \lor \cdots \lor a_n$ or $x \le a_{n+1}$. By the Induction Hypothesis, $x \le a_1$ or \cdots or $x \le a_n$ or $x \le a_{n+1}$. Therefore, (iii) holds for all $k \in \mathbb{N}$. (iii) \Rightarrow (ii): Trivial. (ii) \Rightarrow (i): Suppose (ii) holds and that $x = a \lor b$. Then certainly $x \le a \lor b$, so $x \le a$ or $x \le b$. But $x = a \lor b$ forces $x \ge a$ and $x \ge b$. Hence x = a or x = b.

Representation Theorem for Finite Distributive Lattices

Birkhoff's Representation Theorem for Finite Distributive Lattices

Let L be a finite distributive lattice. Then the map $\eta: L \to \mathcal{O}(\mathcal{J}(L))$ defined by

$$\eta(a) = \{x \in \mathcal{J}(L) : x \le a\} (= \mathcal{J}(L) \cap \downarrow a)$$

is an isomorphism of L onto $\mathcal{O}(\mathcal{J}(L))$.

- It is immediate that η(a) ∈ O(J(L)) (since ≤ is transitive). It remains only to show that η is an order-isomorphism:
 - We have seen $a \le b$ implies $\eta(a) \subseteq \eta(b)$. Conversely, suppose $\eta(a) \subseteq \eta(b)$. Then $a = \bigvee \eta(a) \le \eta(b) = b$.
 - Finally, we prove that η is onto. Certainly Ø = η(0). Now let Ø ≠ U ∈ O(J(L)) and write U = {a₁,..., a_k}. Define a to be a₁ ∨ … ∨ a_k. We claim U = η(a). First, let x ∈ U, so x = a_i, for some i. Then x is join-irreducible and x ≤ a, hence x ∈ η(a). Next, suppose x ∈ η(a). Then x ≤ a = a₁ ∨ … ∨ a_k. Thus, x ≤ a_i, for some i. Since U is a down-set and a_i ∈ U, we have x ∈ U.

Characterizing Finite Distributive Lattices

Corollary

Let L be a finite lattice. Then the following statements are equivalent:

- (i) L is distributive;
- (ii) $L \cong \mathcal{O}(\mathcal{J}(L));$
- iii) L is isomorphic to a down-set lattice;
- iv) L is isomorphic to a lattice of sets;
- (v) *L* is isomorphic to a sublattice of $\mathbf{2}^n$ for some $n \ge 0$.
 - Of course, no non-distributive lattice could be isomorphic to a down-set lattice.
 - Birkhoff's Representation Theorem provides an alternative to the M_3 - N_5 Theorem for establishing nondistributivity of a finite lattice *L*: If $L \cong \mathcal{O}(\mathcal{J}(L))$ fails, then *L* cannot be distributive.

Example: We saw that M_3 and N_5 form such examples.

Subsection 4

Finite Distributive Lattices and Finite Ordered Sets

The Join-Irreducible Elements of a Product Lattice

- Consider the product $L_1 \times L_2$ of lattices L_1 and L_2 each with a least element, but not necessarily distributive.
- Note that (x₁, x₂) = (x₁, 0) ∨ (0, x₂). Thus, (x₁, x₂) is not join-irreducible unless either x₁ or x₂ is zero. Further, x₁ = a₁ ∨ b₁ in L₁ implies (x₁, 0) = (a₁, 0) ∨ (b₁, 0). It follows that J(L₁ × L₂) ⊆ (J(L₁) × {0}) ∪ ({0} × J(L₂)).

It is readily seen that the reverse inclusion also holds.

We have an order-isomorphism $\mathcal{J}(L_1 \times L_2) \cong \mathcal{J}(L_1) \cup \mathcal{J}(L_2)$.

Product of Finite Distributive Lattices

- Now assume that L_1 and L_2 are finite and distributive.
- In this case, the result of the previous paragraph can be derived from
 - (a) $P \cong \mathcal{J}(\mathcal{O}(P));$
 - b) Birkhoff's Representation Theorem;
 - (c) the fact that $\mathcal{O}(P_1 \cup P_2)$ is isomorphic to $\mathcal{O}(P_1) \times \mathcal{O}(P_2)$.

Namely, we have:

$$\begin{array}{ccc} \mathcal{J}(L_1 \times L_2) & \stackrel{\text{(b)}}{\cong} & \mathcal{J}(\mathcal{O}(\mathcal{J}(L_1)) \times \mathcal{O}(\mathcal{J}(L_2))) \\ & \stackrel{\text{(c)}}{\cong} & \mathcal{J}(\mathcal{O}(\mathcal{J}(L_1) \cup \mathcal{J}(L_2))) \\ & \stackrel{\text{(a)}}{\cong} & \mathcal{J}(L_1) \cup \mathcal{J}(L_2). \end{array}$$

Some Examples

(1) Consider the lattice L_1 .

The ordered set $\mathcal{J}(L_1)$ is also shown. Since $\mathcal{J}(L_1) \cong \mathbf{1} \cup (\mathbf{1} \oplus \overline{\mathbf{2}})$, we have $\mathcal{O}(\mathcal{J}(L_1)) \cong \mathbf{2} \times (\mathbf{1} \oplus \mathbf{2}^2)$, which has 10 elements. We deduce that L_1 is not isomorphic to $\mathcal{O}(\mathcal{J}(L_1))$. So L_1 is not distributive.

(2) Now consider L₂. We could compute O(J(L₂)) directly. Instead, we note that L₂ ≅ L₂[∂], but J(L₂) is not isomorphic to its order dual. Hence, L₂ cannot be isomorphic to O(J(L₂)). Consequently, L₂ is not distributive.

Finite Distributive Lattices and Finite Ordered Sets

We denote by D_F the class of all finite distributive lattices and by P_F the class of all finite ordered sets.
 Then, we have

 $L \cong \mathcal{O}(\mathcal{J}(L))$ and $P \cong \mathcal{J}(\mathcal{O}(P))$,

for all $L \in \mathbf{D}_F$ and $P \in \mathbf{P}_F$.

- We call $\mathcal{J}(L)$ the **dual** of L and $\mathcal{O}(P)$ the **dual** of P.
- When we identify each finite distributive lattice *L* with the isomorphic lattice O(J(L)) of down-sets of J(L), we may regard D_F as consisting of the concrete lattices O(P), for P ∈ P_F, rather than as abstract objects satisfying certain identities.
- Up to isomorphism, we have a one-to-one correspondence

$$\mathcal{O}(P) = L \rightleftharpoons P = \mathcal{J}(L),$$

for $L \in \mathbf{D}_F$ and $P \in \mathbf{P}_F$.

Example

• The figure shows $\mathcal{P}(X)$ and $\mathcal{O}(\mathcal{P}(X))$ for |X| = 3:

	Å	X	$ \mathscr{D}(X) $	$ \mathcal{O}(\mathscr{O}(X)) $
Å		1	2	3
		2	4	6
K A A		3	8	20
		4	16	168
$\langle \gamma \rangle$		5	32	7581
	\mathbf{V}	6	64	7828354
(2)(1,2,2))	I	7	128	2414682040998
$\mathcal{S}(\{1,2,3\})$	$\mathcal{O}(\tilde{\wp}(\{1,2,3\}))$	8	256	56130437228687557907788

• We also see the table with $|\mathcal{P}(X)|$ and $|\mathcal{O}(\mathcal{P}(X))|$ for $|X| \le 8$.

• The dual $\mathcal{J}(L)$ of a finite distributive lattice L is generally much smaller and less complex than L itself. So lattice problems concerning \mathbf{D}_F are likely to become simpler when translated into problems about \mathbf{P}_F .

In some sense the maps $L \mapsto \mathcal{J}(L)$ and $P \mapsto \mathcal{O}(P)$ play a role analogous to that of the logarithm and exponential functions.

Duality for Boolean Lattices and Chains

• Special properties of a finite distributive lattice are reflected in special properties of its dual.

Lemma

Let L = O(P) be a finite distributive lattice. Then:

- (i) *L* is a Boolean lattice if and only if *P* is an antichain; $\mathcal{O}(\overline{n}) = 2^n$.
- (ii) *L* is a chain if and only if *P* is a chain; $O(\mathbf{n}) = \mathbf{n} + \mathbf{1}$.
- (i) Recall that L is a finite Boolean lattice if and only if L ≅ 2ⁿ, for some n. Now it suffices to observe that L ≅ 2ⁿ implies J(L) ≅ n and that P ≅ n implies O(P) ≅ 2ⁿ.

(ii) We have $L \cong \mathbf{n} + \mathbf{1}$ implies $\mathcal{J}(L) \cong \mathbf{n}$ and $P \cong \mathbf{n}$ implies $\mathcal{O}(P) \cong \mathbf{n} + \mathbf{1}$.

The Maps in Duality

• Setting up a correspondence between $\{0,1\}$ -homomorphisms from $\mathcal{O}(P)$ to $\mathcal{O}(Q)$ and order-preserving maps from Q to P, for $P, Q \in \mathbf{P}_F$ is harder to formulate and to prove:

Theorem

Let *P* and *Q* be finite ordered sets and let $L = \mathcal{O}(P)$ and $K = \mathcal{O}(Q)$. Given a $\{0,1\}$ -homomorphism $f: L \to K$, there is an associated order-preserving map $\varphi_f: Q \to P$ defined by $\varphi_f(y) = \min \{x \in P : y \in f(\downarrow x)\}$, for all $y \in Q$. Given an order-preserving map $\varphi: Q \to P$, there is an associated $\{0,1\}$ -homomorphism $f_{\varphi}: L \to K$ defined by $f_{\varphi}(a) = \varphi^{-1}(a)$, for all $a \in L$. Equivalently, $\varphi(y) \in a$ if and only if $y \in f_{\varphi}(a)$, for all $a \in L$, $y \in Q$. The maps $f \mapsto \varphi_f$ and $\varphi \mapsto f_{\varphi}$ establish a one-to-one correspondence between $\{0,1\}$ -homomorphisms from *L* to *K* and order-preserving maps from *Q* to *P*. Further,

- (i) f is one-to-one if and only if φ_f is onto,
- (ii) f is onto if and only if φ_f is an order-embedding.

Example

An order-preserving map \(\varphi\): Q → P and the associated {0,1}-homomorphism f: \(\mathcal{O}\)(P) → \(\mathcal{O}\)(Q):

The Relation Between the Two "Dualities"

- We established a correspondence between
 D_F + {0,1}-homomorphisms and P_F+ order-preserving maps (a duality or a dual equivalence of categories).
- It follows that statements about finite distributive lattices can be translated into statements about finite ordered sets, and vice versa.
- We can now see that our two uses of the word "dual" have an underlying commonality:
 - If, in an ordered set P, we think of x ≤ y as representing an "arrow" from x to y, then P[∂] is obtained by reversing the arrows.
 - Similarly, for $L, K \in \mathbf{D}_F$, a $\{0, 1\}$ -homomorphism $f : L \to K$ provides an "arrow" from L to K, and, when we pass from \mathbf{D}_F to \mathbf{P}_F , the arrows again reverse.