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© Representation: The Finite Case
o Building Blocks for Lattices
o Finite Boolean Algebras are Powerset Algebras
o Finite Distributive Lattices are Down-Set Lattices
o Finite Distributive Lattices and Finite Ordered Sets
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Representation: The Finite Case Building Blocks for Lattices

Subsection 1

Building Blocks for Lattices
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Representation: The Finite Case Building Blocks for Lattices

“Skeletal” Subset of a Lattice

@ Recall that a non-zero element x of a lattice L is join-irreducible if
x=aV bimplies x=aor x=b, for all a,be L.

o We saw that, if L satisfies (DCC), and hence certainly if L is finite,
the set J(L) of join-irreducible elements of L is join-dense: every
element of L can be obtained as a join of elements from J(L).

@ We would like to discover a way of building a lattice L from a suitable
“skeletal” subset P of L, having the following properties:

(i) Pis “small” and readily identifiable;
(1) L is uniquely determined by the ordered set P;
(1) the process for obtaining L from P is simple to carry out.

o Conditions (i) and (ii) pull in opposite directions, since (ii) requires P
to be, in some sense, large.

@ Many important lattices are distributive. e.g., down-set lattices and,
in the Boolean case, powerset lattices.

We show that the join-irreducible elements of a finite distributive
lattice form a good skeleton for it.
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Representation: The Finite Case Building Blocks for Lattices

@ Our archetypal example of a Boolean algebra is a powerset algebra
(P(X);u,n,’”, @, X).
Any A€ P(X) is a union of singleton sets {x} for x € A:
The singletons are precisely the join-irreducible elements.
The singletons are exactly the elements in P(X) which cover 0.
o Let L be a lattice with least element 0.

Then a€ L is called an atom if 0 < a. The set of atoms of L is
denoted by A(L).

The lattice L is called atomic if, given a+# 0 in L, there exists

x € A(L), such that x < a.

Example: Every finite lattice is atomic. By contrast, it may happen
that an infinite lattice has no atoms at all. The chain of non-negative
real numbers provides an example.
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Representation: The Finite Case Building Blocks for Lattices

Atoms and Join-Irreducibles

@ The following lemma compares atoms and join-irreducible elements.
It shows that in any Boolean lattice, J(L) coincides with A(L).

Let L be a lattice with least element 0. Then:
(1) 0<xin L implies x € J(L);
(1) If Lis a Boolean lattice, x € (L) implies 0 < x.

(1) Suppose by way of contradiction that 0 < x and x = aVv b with a < x
and b< x. Since 0 < x, we have a=b=0. Thus, x=0, a
contradiction.

(11) Now assume L is a Boolean lattice and that x € J(L). Suppose
0<y<x. Wewant y=0. We have x=xVvy=(xVvy)a(y' vy)=
(x Ay") vy. Since x is join-irreducible and y < x, we must have
x=xAy', whence x<y' Buttheny=xAy<y' Ay=0.Soy=0.
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Representation: The Finite Case Finite Boolean Algebras are Powerset Algebras

Subsection 2

Finite Boolean Algebras are Powerset Algebras
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Representation: The Finite Case Finite Boolean Algebras are Powerset Algebras

Determining Elements via Atoms

o The set of atoms, A(L), of a finite Boolean lattice L meets the
building block criteria:

Lemma

Let B be a finite Boolean lattice. Then, for all a€ B,
a=\/{xeA(B):x<a}.

o FixaeB. Let S={xe A(B):x < a}. Certainly a is an upper bound
for S. Let b be any upper bound for S. We must show a < b.
Suppose not. Then 0 < ana b’. Choose x € A(B), such that
O<x<aAb'. Then xeS. So x < b. Since x < b also holds, we have
x<bAb =0, acontradiction.

o The lemma tells us how each individual element of L is determined by
the atoms, but it does not by itself fulfill the aim of Criterion (ii).
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Representation: The Finite Case Finite Boolean Algebras are Powerset Algebras

Representation Theorem for Finite Boolean Algebras

The Representation Theorem for Finite Boolean Algebras

Let B be a finite Boolean algebra. Then n:aw~ {x e A(B):x<a} is an
isomorphism of B onto P(X), where X = A(B), with the inverse of 7
given by n71(S) =V S for S e P(X).

o 7 maps B onto P(X): Clearly @ =n(0). Now let S ={a;,...,ax} be
a non-empty set of atoms of B and define a=V S. We claim
S =mn(a). Certainly S cn(a). Now let x be any atom, such that
x<a=ayV--Vag. Foreach i, we have 0 < x A a; < x. Because x is
an atom, either x A a; = 0, for all /, or there exists j, such x A aj = x.
In the former case, x=xAa=(xAa1) V-V (xrnak) =0, a
contradiction. Therefore x < aj, for some j, which forces x = aj, as aj
and x are atoms. Hence n(a) € S, as we wished to show. Let a, b€ B.
Then n(a) c n(b) implies that a= \V/n(a) <V n(b) = b. It is trivial
(by the transitivity of <) that n(a) € n(b) whenever a< b. So 7 is an
order-isomorphism. Thus, it is an isomorphism of Boolean algebras.
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Representation: The Finite Case Finite Boolean Algebras are Powerset Algebras

Shape of Finite Boolean Lattices

Corollary

Let B be a finite lattice. Then the following statements are equivalent:
(1) B is a Boolean lattice;

(1) B2P(A(B));

(111} B is isomorphic to 2", for some n > 0.

Further, any finite Boolean lattice has 2" elements, for some n > 0.

Example:

B Tam P(AB))
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Subsection 3

Finite Distributive Lattices are Down-Set Lattices
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Join Irreducible Down-Sets

o Let P be an ordered set.
Claim: Each set |x, for x € P, is join-irreducible in O(P).

Suppose that |x = Uu V, where U,V € O(P). Without loss of
generality, x € U. But then |x ¢ U. Since |x = Uu V implies U ¢ |x,
we conclude that |x = U. This shows that |x € 7(O(P)).

o Now assume that P is finite. Any non-empty U € O(P) is the union
of sets |x;, i=1,...,k, where x; || xj, for i # j. Unless k =1, the set
U is not join-irreducible. Hence, J(O(P)) = {Ix: x € P}.

o In the previous paragraph P must be finite:
{geQ:q<0} is join-irreducible in O(Q), but is not of the form |x.
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Join-Irreducible Lattice of Down-Set Lattice

Theorem

Let P be a finite ordered set. Then the map €: x — |x is an
order-isomorphism from P onto J(O(P)).

o We know that ¢ is an order-embedding of P into O(P). By the
preceding claim, the image of ¢ is 7 (O(P)).

o For order-isomorphic ordered sets P and Q we have O(P) 2 O(Q)
Therefore, the theorem tells us that, when L is a finite down-set
lattice O(P), we have L2 O(J(L)).
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Examples |

i L >L{ O(J (L))
SN
J(L2) O(J (L))

Observe that L~ O(J(L)).
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Examples |l

:: J(L3)  og(Ls))
i Ly j Ly) j

Since O(J (L)) is distributive, we cannot have L 2 O(J (L)) unless L is

distributive.
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Join-Irreducibles in Distributive Lattices

Lemma

Let L be a distributive lattice and let x € L, with x # 0 in case L has a zero.
Then the following are equivalent:

(1) x is join-irreducible;

(1) ifa,bel and x<av b, then x<aor x<b;

(1) forany ke N, if a1,...,ak € L and x < a; V-V ag, then x < a;, for
some i (1<i<k).

(i)=(ii): Assume that x € J(L) and that a,b € L are such that
x<avb. We have x=xA (avb) (since x<avb)=(xnra)V(xAb)
(since L is distributive). Because x is join-irreducible, x = x A a or
x=xAb. Hence x < a or x < b, as required.
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Join-Irreducibles in Distributive Lattices (Cont'd)

(it)=(iii): This is proved by induction on k:
The case k =1 is trivial;

The case k = 2 is by the hypothesis (ii).
Assume the conclusion holds for k = n.

Let ai,...,an,an41 € L, such that x<a; v---va,Vvaua. Then,
x<(apVv--Vap)Vap. By (i), x<ag v va,or x<ap. By the
Induction Hypothesis, x < aj; or .- or x < a, or x < ap;1-

Therefore, (iii) holds for all k € IN.

(iii)=(ii): Trivial.

(ii))=(i): Suppose (ii) holds and that x = aVv b. Then certainly
x<avhb,sox<aorx<b But x=avVvbforces x>aand x> b.
Hence x = a or x = b.
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Representation Theorem for Finite Distributive Lattices

Birkhoff's Representation Theorem for Finite Distributive Lattices

Let L be a finite distributive lattice. Then the map n: L — O(J(L))
defined by

n(a)={xeJ(L):x<a}(=TJ(L)nla)
is an isomorphism of L onto O(J(L)).

o It is immediate that n(a) e O(J (L)) (since < is transitive). It
remains only to show that 7 is an order-isomorphism:

o We have seen a < b implies n(a) € n(b). Conversely, suppose
n(a) cn(b). Then a= Vn(a) <n(b) = b.

o Finally, we prove that 7 is onto. Certainly @ =7(0). Now let
@+ UeO(J(L)) and write U = {ay,...,ax}. Define a to be
a V-V ak. We claim U =n(a). First, let x € U, so x = a;, for some i.
Then x is join-irreducible and x < a, hence x € n(a). Next, suppose
xemn(a). Then x<a=ay Vv Vvag Thus, x < a;, for some i. Since U is
a down-set and a; € U, we have x € U.
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Representation: The Finite Case Finite Distributive Lattices are Down-Set Lattices

Characterizing Finite Distributive Lattices

Corollary

Let L be a finite lattice. Then the following statements are equivalent:
(1) Lis distributive;

(ii
(iii

)
)

(1v) L is isomorphic to a lattice of sets;
)

L=O(J(L));

L is isomorphic to a down-set lattice;

(v) L is isomorphic to a sublattice of 2" for some n > 0.

o Of course, no non-distributive lattice could be isomorphic to a
down-set lattice.

o Birkhoff's Representation Theorem provides an alternative to the
M3-Ng5 Theorem for establishing nondistributivity of a finite lattice L:
If L2 O(J(L)) fails, then L cannot be distributive.
Example: We saw that M3 and N5 form such examples.
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Subsection 4

Finite Distributive Lattices and Finite Ordered Sets
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

The Join-Irreducible Elements of a Product Lattice

o Consider the product Ly x Ly of lattices L1 and Ly each with a least
element, but not necessarily distributive.

o Note that (x1,x2) = (x1,0) v (0,x2). Thus, (x1,x2) is not
join-irreducible unless either x; or x; is zero. Further, x3 = a; v by in
Ly implies (x1,0) = (a1,0) v (b1,0). It follows that
J (L1 x L2) € (T (L) x{0}) u ({0} x T(L2)).

It is readily seen that the reverse inclusion also holds.
We have an order-isomorphism J (L1 x L2) 2 J(L1) v J(Lp).

Ly Lo L1 x Lo
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Product of Finite Distributive Lattices

@ Now assume that L1 and L, are finite and distributive.

@ In this case, the result of the previous paragraph can be derived from
(a) P=J(O(P));
(b) Birkhoff’s Representation Theorem;
(c) the fact that O(Py b P,) is isomorphic to O(Py) x O(P5).

Namely, we have:

T(lixl) 2 J(O(J (L)) x O(T(L2)))
2 70T (L) v I (L))
Y T(L)wT(L).
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Some Examples

(1) Consider the lattice L;.

L, I(L) Ly J(Ly)

The ordered set 7 (L) is also shown. Since J(L1)21u(1®2), we
have O(J(L1)) =2 x (1 ®22), which has 10 elements. We deduce
that Ly is not isomorphic to O(J(L1)). So L; is not distributive.

(2) Now consider L. We could compute O(J(L2)) directly. Instead, we
note that [, = Lg, but J(L2) is not isomorphic to its order dual.

Hence, L, cannot be isomorphic to O(J(Ly)). Consequently, Ly is
not distributive.
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Finite Distributive Lattices and Finite Ordered Sets

@ We denote by Dfg the class of all finite distributive lattices and by Pg
the class of all finite ordered sets.

Then, we have
Lz=O(J(L)) and P=z=J(O(P)),
for all L e Df and P € Pf.

o We call J(L) the dual of L and O(P) the dual of P.

o When we identify each finite distributive lattice L with the isomorphic
lattice O(J (L)) of down-sets of J(L), we may regard D¢ as
consisting of the concrete lattices O(P), for P € Pg, rather than as
abstract objects satisfying certain identities.

o Up to isomorphism, we have a one-to-one correspondence
O(P)=L=P=J(L),
for Le DF and P € Pf.
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

Example

o The figure shows P(X) and O(P(X)) for |X|=3:

X[ 19X lO(9(X))|
I 2 3
2 4 6
3 s 20
4 16 168
5 32 7581
6 64 7828354
7 128 2414682040998
PHL2,3Y) owqraay) 8 956 | 56130437228687557907788

o We also see the table with |P(X)| and |[O(P(X))] for |X|<8.

o The dual J(L) of a finite distributive lattice L is generally much
smaller and less complex than L itself. So lattice problems concerning
D£ are likely to become simpler when translated into problems about
Pr.

In some sense the maps L+~ J(L) and P — O(P) play a role
analogous to that of the logarithm and exponential functions.
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Duality for Boolean Lattices and Chains

o Special properties of a finite distributive lattice are reflected in special
properties of its dual.

Let L = O(P) be a finite distributive lattice. Then:

(1) Lis a Boolean lattice if and only if P is an antichain; O(n) = 2".

(1) Lis a chain if and only if P is a chain; O(n) =n+1.

(1) Recall that L is a finite Boolean lattice if and only if L = 2", for some
n. Now it suffices to observe that L = 2" implies (L) 2 n and that
P =n implies O(P) = 2".

(11) We have L~ n+1 implies J(L) 2 n and P = n implies O(P) 2n+1.
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Representation: The Finite Case Finite Distributive Lattices and Finite Ordered Sets

The Maps in Duality

o Setting up a correspondence between {0, 1}-homomorphisms from
O(P) to O(Q) and order-preserving maps from Q to P, for
P, @ € Pg is harder to formulate and to prove:

Theorem

Let P and Q be finite ordered sets and let L = O(P) and K = O(Q). Given
a {0,1}-homomorphism f : L — K, there is an associated order-preserving
map ¢r : @ - P defined by pr(y) =min{xe P:yef({x)}, forall y € Q.
Given an order-preserving map ¢ : @ — P, there is an associated

{0, 1}-homomorphism f, : L - K defined by f,(a) = ¢ 1(a), for all a€ L.
Equivalently, ¢(y) € a if and only if y € f,(a), forall ac L, y € Q.

The maps f = ¢r and ¢ ~ f, establish a one-to-one correspondence
between {0, 1}-homomorphisms from L to K and order-preserving maps
from Q to P. Further,

(1) f is one-to-one if and only if ¢ is onto,

(1) f is onto if and only if r is an order-embedding.
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Example

@ An order-preserving map ¢ : @ — P and the associated
{0,1}-homomorphism f : O(P) - O(Q):

’ N T e =) C D
=p q
o 6 s = (6)
P

Q 5
{p7 q, 5} {p, 5}) {pa q, 8}) -

{q.s} ={a, 3,6} {o, 7,6
{p’ 5} 5 {a (5} {’Y? 6}

{5} =

f(ds}) =
Lo f(a.s})

K =0(Q)
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The Relation Between the Two “Dualities”

o We established a correspondence between
Dfr + {0, 1}-homomorphisms and P g+ order-preserving maps (a
duality or a dual equivalence of categories).
o It follows that statements about finite distributive lattices can be
translated into statements about finite ordered sets, and vice versa.
@ We can now see that our two uses of the word “dual” have an
underlying commonality:
o If, in an ordered set P, we think of x < y as representing an “arrow”
from x to y, then P9 is obtained by reversing the arrows.
o Similarly, for L, K € Df, a {0,1}-homomorphism f : L - K provides an
“arrow” from L to K, and, when we pass from Dr to Pf, the arrows
again reverse.
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