Introduction to Lattices and Order

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University
LSSU Math 400

- Introducing Congruences
- Congruences and Diagrams
- The Lattice of Congruences of a Lattice

Subsection 1

Introducing Congruences

Equivalence Relations and Partitions

- An equivalence relation on a set A is a binary relation on A which is reflexive, symmetric and transitive.
- We write $a \equiv b(\bmod \theta)$ or $a \theta b$ to indicate that a and b are related under the relation θ;
We use instead the notation $(a, b) \in \theta$ where it is appropriate to be formally correct and to regard θ as a subset of $A \times A$.
- An equivalence relation θ on A gives rise to a partition of A into non-empty disjoint subsets. These subsets are the equivalence classes or blocks of θ. A typical block is of the form

$$
[a]_{\theta}:=\{x \in A: x \equiv a \quad(\bmod \theta)\} .
$$

- In the opposite direction, a partition of A into a union of non-empty disjoint subsets gives rise to an equivalence relation whose blocks are the subsets in the partition.

The Group Case

- Let G and H be groups and $f: G \rightarrow H$ be a group homomorphism.
- We may define an equivalence relation θ on G by

$$
(\forall a, b \in G) a \equiv b \quad(\bmod \theta) \Longleftrightarrow f(a)=f(b)
$$

- This relation and the partition of G it induces satisfy:
(1) The relation θ is compatible with the group operation in the sense that, for all $a, b, c, d \in G$,

$$
a \equiv b(\bmod \theta) \& c \equiv d \quad(\bmod \theta) \Rightarrow a c \equiv b d \quad(\bmod \theta) .
$$

(2) The block $N=[1]_{\theta}:=\{g \in G: g \equiv 1(\bmod \theta)\}$ is a normal subgroup of G.
(3) For each $a \in G$, the block $[a]_{\theta}:=\{g \in G: g \equiv a(\bmod \theta)\}$ equals the (left) coset $a N:=\{a n: n \in N\}$.
(4) The definition

$$
[a]_{\theta}[b]_{\theta}:=[a b]_{\theta}, \text { for all } a, b \in G,
$$

yields a well-defined group operation on $\left\{[a]_{\theta}: a \in G\right\}$;
By (2), (3), the resulting group is the quotient group G / N and, by the Homomorphism Theorem, is isomorphic to the subgroup $f(G)$ of H.

Compatibility with Join and Meet

- We say that an equivalence relation θ on a lattice L is compatible with join and meet if, for all $a, b, c, d \in L$,

$$
a \equiv b \quad(\bmod \theta) \quad \text { and } \quad c \equiv d \quad(\bmod \theta)
$$

imply

$$
a \vee c \equiv b \vee d \quad(\bmod \theta) \quad \text { and } \quad a \wedge c \equiv b \wedge d \quad(\bmod \theta) .
$$

Lemma

Let L and K be lattices and let $f: L \rightarrow K$ be a lattice homomorphism. Then the equivalence relation θ defined on L by

$$
(\forall a, b \in L) a \equiv b \quad(\bmod \theta) \Longleftrightarrow f(a)=f(b)
$$

is compatible with join and meet.

- θ is an equivalence relation. Now assume $a \equiv b(\bmod \theta)$ and $c \equiv d$ $(\bmod \theta)$. So $f(a)=f(b)$ and $f(c)=f(d)$. Hence, since f preserves join, $f(a \vee c)=f(a) \vee f(c)=f(b) \vee f(d)=f(b \vee d)$. Therefore $a \vee c \equiv b \vee d(\bmod \theta)$. Dually, θ is compatible with meet.

Congruences and Kernels of Homomorphisms

- An equivalence relation on a lattice L which is compatible with both join and meet is called a congruence on L.
- If L and K are lattices and $f: L \rightarrow K$ is a lattice homomorphism, then the associated congruence $\theta=\{\langle a, b\rangle: f(a)=f(b)\}$ on L, is known as the kernel of f and is denoted by kerf.
- The set of all congruences on L is denoted by Con L.

Examplec.

Properties of Congruences

Lemma

(i) An equivalence relation θ on a lattice L is a congruence if and only if, for all $a, b, c \in L$,
$a \equiv b(\bmod \theta) \Rightarrow a \vee c \equiv b \vee c(\bmod \theta)$ and $a \wedge c \equiv b \wedge c \quad(\bmod \theta)$.
(ii) Let θ be a congruence on L and let $a, b, c \in L$.
(a) If $a \equiv b(\bmod \theta)$ and $a \leq c \leq b$, then $a \equiv c(\bmod \theta)$.
(b) $a \equiv b(\bmod \theta)$ if and only if $a \wedge b \equiv a \vee b(\bmod \theta)$.
(i) Assume that θ is a congruence on L. Suppose $a \equiv b(\bmod \theta)$. But $c \equiv c(\bmod \theta)$. Hence, $a \vee c \equiv b \vee c(\bmod \theta)$ and $a \wedge c \equiv b \wedge c$ $(\bmod \theta)$. Suppose, conversely, that the given conditions hold. Let $a, b, c, d \in L$, such that $a \equiv c(\bmod \theta)$ and $b \equiv d(\bmod \theta)$. Then $a \vee b \equiv c \vee b \equiv c \vee d$. Similarly, $a \wedge b \equiv c \wedge d(\bmod \theta)$. Thus, θ is a congruence on L.

Properties of Congruences (Cont'd)

(ii) Let θ be a congruence on L.
(a) Note $a \leq c \leq b$ implies $a=a \wedge c$ and $c=b \wedge c$. Assume $a \equiv b(\bmod \theta)$. Then $a \wedge c \equiv b \wedge c(\bmod \theta)$. So $a \equiv c(\bmod \theta)$.
(b) Suppose $a \equiv b(\bmod \theta)$. Then $a \vee a \equiv b \vee a(\bmod \theta)$ and $a \wedge a \equiv b \wedge a$ $(\bmod \theta)$. By the lattice identities, $a \equiv a \vee b(\bmod \theta)$ and $a \equiv a \wedge b$ $(\bmod \theta)$. Since θ is transitive and symmetric, we deduce $a \wedge b \equiv a \vee b$ $(\bmod \theta)$.
Conversely, assume $a \wedge b \equiv a \vee b(\bmod \theta)$. We have $a \wedge b \leq a \leq a \vee b$. So, by Part $(a), a \wedge b \equiv a(\bmod \theta)$, and similarly $a \wedge b \equiv b(\bmod \theta)$. Because θ is symmetric and transitive, it follows that $a \equiv b(\bmod \theta)$.

Quotient Lattices

- Given an equivalence relation θ on a lattice L, we try to define operations \vee and \wedge on the set of blocks $L / \theta:=\left\{[a]_{\theta}: a \in L\right\}$. For all $a, b \in L$, we "define"

$$
[a]_{\theta} \vee[b]_{\theta}:=[a \vee b]_{\theta} \quad \text { and } \quad[a]_{\theta} \wedge[b]_{\theta}:=[a \wedge b]_{\theta}
$$

These operations are well-defined when they are independent of the elements chosen to represent the equivalence classes:
imply

$$
\left[a_{1}\right]_{\theta}=\left[a_{2}\right]_{\theta} \quad \text { and } \quad\left[b_{1}\right]_{\theta}=\left[b_{2}\right]_{\theta}
$$

$$
\left[a_{1} \vee b_{1}\right]_{\theta}=\left[a_{2} \vee b_{2}\right]_{\theta} \text { and }\left[a_{1} \wedge b_{1}\right]_{\theta}=\left[a_{2} \wedge b_{2}\right]_{\theta}
$$

for all $a_{1}, a_{2}, b_{1}, b_{2} \in L$. But, for all $a_{1}, a_{2} \in L$,

$$
\left[a_{1}\right]_{\theta}=\left[a_{2}\right]_{\theta} \Leftrightarrow a_{1} \in\left[a_{2}\right]_{\theta} \Leftrightarrow a_{1} \equiv a_{2} \quad(\bmod \theta) .
$$

Hence, \vee and \wedge are well defined on L / θ if and only if θ is a congruence.

- When θ is a congruence on L, we call $\langle L / \theta ; \vee, \wedge\rangle$ the quotient lattice of L modulo θ.

Natural Quotient Map and Homomorphism Theorem

Lemma

Let θ be a congruence on the lattice L. Then $\langle L / \theta ; \vee, \wedge\rangle$ is a lattice and the natural quotient map $q: L \rightarrow L / \theta$, defined by $q(a):=[a]_{\theta}$, is a homomorphism.

Theorem

Let L and K be lattices, let f be a homomorphism of L onto K and define $\theta=\operatorname{ker} f$. Then the map $g: L / \theta \rightarrow$ K, given by $g\left([a]_{\theta}\right)=f(a)$, for all $[a]_{\theta} \in L / \theta$, is well defined, i.e., $(\forall a, b \in L)[a]_{\theta}=[b]_{\theta}$ implies $g\left([a]_{\theta}\right)=$ $g\left([b]_{\theta}\right)$. Moreover g is an isomorphism between L / θ and K. Furthermore, if q denotes the quotient map,
 then $\operatorname{ker} q=\theta$ and the diagram commutes.

Boolean Congruences and Boolean Homomorphisms

- For the Boolean algebra version of the Homomorphism Theorem, define an equivalence relation θ on a Boolean algebra B to be a Boolean congruence if it is a lattice congruence such that $a \equiv b$ $(\bmod \theta)$ implies $a^{\prime} \equiv b^{\prime}(\bmod \theta)$, for all $a, b \in B$.

Theorem

Let B and C be Boolean algebras, let f be a Boolean homomorphism of B onto C. Define $\theta=\operatorname{kerf}$. Then θ is a Boolean congruence and the map $g: B / \theta \rightarrow C$, given by

$$
g\left([a]_{\theta}\right)=f(a), \text { for all }[a]_{\theta} \in B / \theta
$$

is a well-defined isomorphism between B / θ and C.

Subsection 2

Congruences and Diagrams

Examples of Congruences and Quotient Lattices

Blocks of Congruences

- When considering the blocks of a congruence θ on L, it is best to think of each block X as an entity in its own right rather than as the block $[a]_{\theta}$ associated with some $a \in L$, as the latter gives undue emphasis to the element a.
Intuitively, the quotient lattice L / θ is obtained by collapsing each block to a point.
- Assume we are given a diagram of a finite lattice L and loops are drawn on the diagram representing a partition of L.
We try to look at the two natural geometric questions:
(a) How can we tell if the equivalence relation corresponding to the partition is a congruence?
(b) If we know that the loops define the blocks of a congruence θ, how do we go about drawing L / θ ?

Drawing L / θ

- By providing a description of the order and the covering relation on L / θ, the following lemma provides an answer on the drawing question:

Lemma

Let θ be a congruence on a lattice L and let X and Y be blocks of θ.
(i) $X \leq Y$ in L / θ if and only if there exist $a \in X$ and $b \in Y$, such that $a \leq b$.
(ii) $X<Y$ in L / θ if and only if $X<Y$ in L / θ and $a \leq c \leq b$ implies $c \in X$ or $c \in Y$, for all $a \in X$, all $b \in Y$ and all $c \in L$.
(iii) If $a \in X$ and $b \in Y$, then $a \vee b \in X \vee Y$ and $a \wedge b \in X \wedge Y$.

Quadrilaterals in Lattice Diagrams

- Let L be a lattice and suppose that $\{a, b, c, d\}$ is a 4-element subset of L.
- Then a, b and c, d are said to be opposite sides of the quadrilateral $\langle a, b ; c, d\rangle$ if:
- $a<b$ and $c<d$ and
- either

$$
(a \vee d=b \text { and } a \wedge d=c) \quad \text { or } \quad(b \vee c=d \text { and } b \wedge c=a) .
$$

Quadrilateral-Closed Block of a Partition

- Let L be a lattice.
- We say that the blocks of a partition of L are quadrilateral-closed if whenever a, b and c, d are opposite sides of a quadrilateral and $a, b \in A$ for some block A then $c, d \in B$ for some block B.

(for a covering pair $a<b$, we indicate $a \equiv b(\bmod \theta)$ on a diagram by drawing a wavy line from a to b).

Properties of the Blocks

- The blocks of a congruence:
- are sublattices;
- are convex (a subset Q of an ordered set P is convex if $x \leq z \leq y$ implies $z \in Q$ whenever $x, y \in Q$ and $z \in P$);
- are quadrilateral closed.
- Moreover, as we shall see in the next slide, these properties characterize blocks of lattice congruences.

Characterization of Lattice Congruences

Theorem

Let L be a lattice and let θ be an equivalence relation on L. Then θ is a congruence if and only if:
(i) each block of θ is a sublattice of L,
(ii) each block of θ is convex,
(iii) the blocks of θ are quadrilateral-closed.

- Assume that θ is a congruence on L and let X and Y be blocks of θ.
(i) If $a, b \in X$, then $a \vee b \in X \vee X=X$ and $a \wedge b \in X \wedge X=X$. Hence X is a sublattice of L.
(ii) Let $a, b \in X$, let $c \in L$, with $a \leq c \leq b$ and assume that c belongs to the block Z of θ. Then, we have $X \leq Z \leq X$ in L / θ and hence $X=Z$. Thus $c \in Z=X$ and hence X is convex.
(iii) Let a, b and c, d be opposite sides of a quadrilateral, with $a \vee d=b$ and $a \wedge d=c$. We assume that $a, b \in X$ and $d \in Y$. We must prove that $c \in Y$. Since $d \leq b$ we have $Y \leq X$. Thus, $c=a \wedge d \in X \wedge Y=Y$.

Characterization of Lattice Congruences (Converse)

- Assume that (i), (ii) and (iii) hold. We know θ is a congruence provided that, for all $a, b, c \in L, a \equiv b(\bmod \theta)$ implies $a \vee c \equiv b \vee c$ $(\bmod \theta)$ and $a \wedge c \equiv b \wedge c(\bmod \theta)$.
Let $a, b, c \in L$ with $a \equiv b(\bmod \theta)$. By duality it is enough to show that $a \vee c \equiv b \vee c(\bmod \theta)$. Define $X:=[a]_{\theta}=[b]_{\theta}$. Since X is a sublattice of L, we have $x:=a \wedge b \in X$ and $y:=a \vee b \in X$.
Claim: $x \vee c \equiv y \vee c(\bmod \theta)$.
We distinguish two cases:
- $c \leq y$: We have $x \leq x \vee c \leq y \vee c=y$ (the second inequality holds because $x \leq y$). Since the block X contains both x and y and is convex, we get $x \vee c \equiv y \vee c(\bmod \theta)$.

Characterization of Lattice Congruences (Cont'd)

- Goal: Show that, for $a, b, c \in L$ with $a \equiv b(\bmod \theta), a \vee c \equiv b \vee c$ $(\bmod \theta)$.
We set $X:=[a]_{\theta}=[b]_{\theta}, x:=a \wedge b \in X$ and $y:=a \vee b \in X$.
Claim: $x \vee c \equiv y \vee c(\bmod \theta)$.
We are left with the second case:
- $c \nless y$: Since $x \leq y$, we have $x \vee c \leq y \vee c$. If $x \vee c=y \vee c$, then $x \vee c \equiv y \vee c(\bmod \theta)$ as θ is reflexive. Thus, we may assume that $x \vee c<y \vee c$. Since x is a lower bound of $\{y, x \vee c\}$ we have $x \leq z:=y \wedge(x \vee c) \leq y$.

Now $x \leq z \leq x \vee c$ implies $z \vee c=x \vee c$ and hence $z \neq y$ as $y \vee c>x \vee c$. Consequently, z, y and $x \vee c, y \vee c$ are opposite sides of a quadrilateral. Since the block X is convex and $x, y \in X$, it follows that $z \in X$. Since $z, y \in X$ and θ is quadrilateral-closed it follows that $x \vee c$ and $y \vee c$ belong to the same block, say Y. Thus $x \vee c \equiv y \vee c(\bmod \theta)$, as claimed.

Characterization of Lattice Congruences (Conclusion)

- We show $a \vee c \equiv b \vee c(\bmod \theta)$ by showing that $a \vee c$ and $b \vee c$ both belong to the block Y.
Since $a \wedge b \leq a \leq a \vee b$ and $a \wedge b \leq b \leq a \vee b$ we have

$$
x \vee c=(a \wedge b) \vee c \leq a \vee c \leq a \vee b \vee c=y \vee c
$$

and

$$
x \vee c=(a \wedge b) \vee c \leq b \vee c \leq a \vee b \vee c=y \vee c .
$$

But $x \vee c, y \vee c \in Y$ and Y is convex.
Therefore, $a \vee c, b \vee c \in Y$.

Subsection 3

The Lattice of Congruences of a Lattice

The Complete Lattice of Congruences of a Lattice

- An equivalence relation θ on a lattice L is a subset of L^{2}.
- We can rewrite the compatibility conditions in the form

$$
\begin{aligned}
& (a, b) \in \theta \text { and }(c, d) \in \theta \\
& \quad \text { imply }(a \vee c, b \vee d) \in \theta \text { and }(a \wedge c, b \wedge d) \in \theta .
\end{aligned}
$$

This says precisely that θ is a sublattice of L^{2}.

- Thus, we could define congruences to be those subsets of L^{2} which are both equivalence relations and sublattices of L^{2}.
- With this viewpoint, the set Con L of congruences on a lattice L is a family of sets, and is ordered by inclusion.
It is easily seen to be a topped \cap-structure on L^{2}.
- Hence, Con L, when ordered by inclusion, is a complete lattice, with least element, $\mathbf{0}$, and greatest element, $\mathbf{1}$, given by $\mathbf{0}=\{(a, a): a \in L\}$ and $\mathbf{1}=L^{2}$.

Principal Congruences

- The smallest congruence collapsing a given pair of elements a and b is denoted by $\theta(a, b)$ and called the principal congruence generated by (a, b).
- Since Con L is a topped \cap-structure, $\theta(a, b)$ exists for all $(a, b) \in L^{2}$:

$$
\theta(a, b)=\bigwedge\{\theta \in \operatorname{Con} L:(a, b) \in \theta\}
$$

Example: The diagrams of \mathbf{N}_{5} with the partition corresponding to the principal congruence $\theta(a, 1)$ and \mathbf{M}_{3}

with that corresponding to $\theta(0, c)$.

The Case of \mathbf{N}_{5}

- To find the blocks of the principal congruence $\theta(a, 1)$ on \mathbf{N}_{5} :

- We first use the quadrilateral $\langle a, 1 ; 0, b\rangle$ to show that $a \equiv 1$ implies $0 \equiv b$ (here \equiv denotes equivalence with respect to $\theta(a, 1)$).
- The quadrilateral $\langle 0, b ; c, 1\rangle$ yields $c \equiv 1(\bmod \theta)$.
- Since blocks of $\theta(a, 1)$ are convex, we deduce that $a, c, 1$ lie in the same block.
- It is clear that $\{0, b\}$ and $\{a, c, 1\}$ are convex sublattices and together are quadrilateral-closed. Thus they form the blocks of $\theta(a, 1)$ on \mathbf{N}_{5}.

The Case of \mathbf{M}_{3}

- To find the blocks of the principal congruence $\theta(0, c)$ on \mathbf{M}_{3} :

- Start with the pair $(0, c)$.
- After two applications of quadrilateral closure, we deduce that $a, c, 0$ lie in the same block, say A.
- Since the blocks of a congruence are sublattices, we have $1=a \vee c \in A$ and $0=a \wedge c \in A$.
- Thus, since blocks are convex, A is the only block. Hence $\theta(0, c)=\mathbf{1}$.

Join Density of Set of Principal Congruences

Lemma

Let L be a lattice and let $\theta \in \operatorname{Con} L$. Then $\theta=\bigvee\{\theta(a, b):(a, b) \in \theta\}$. Consequently the set of principal congruences is join-dense in Con L.

- We verify that θ is the least upper bound in \langle Con $L ; \subseteq\rangle$ of the set $S=\{\theta(a, b):(a, b) \in \theta\}$.
- First, note that the definition of $\theta(a, b)$ implies that $\theta(a, b) \subseteq \theta$, whenever $(a, b) \in \theta$. Therefore θ is an upper bound for S.
- Now assume that ψ is any upper bound for S. This means that $\theta(a, b) \subseteq \psi$, for any pair $(a, b) \in \theta$. But $(a, b) \in \theta(a, b)$ always. So $(a, b) \in \theta$ implies $(a, b) \in \psi$, as required.

The Join of Two Congruences

- The join in Con L is not generally given by set union, since the union of two equivalence relations is often not an equivalence relation due to failure of transitivity.
- Let L be a lattice and let $\alpha, \beta \in \operatorname{Con} L$. We say that a sequence $z_{0}, z_{1}, \ldots, z_{n}$ witnesses $a(\alpha \vee \beta) b$ if $a=z_{0}, z_{n}=b$ and $z_{k-1} \alpha z_{k}$ or $z_{k-1} \beta \quad z_{k}$, for $1 \leq k \leq n$.
Claim: $a(\alpha \vee \beta) b$ if and only if for some $n \in \mathbb{N}$, there exists a sequence $z_{0}, z_{1}, \ldots, z_{n}$, which witnesses $a(\alpha \vee \beta) b$.
To prove the claim, define a relation θ on L by $a b$ if and only if for some $n \in \mathbb{N}$, there exists a sequence $z_{0}, z_{1}, \ldots, z_{n}$ which witnesses $a(\alpha \vee \beta) b$. We shall check:
(i) $\theta \in \operatorname{Con} L$;
(ii) $\alpha \subseteq \theta$ and $\beta \subseteq \theta$;
(iii) if $\alpha \subseteq \gamma$ and $\beta \subseteq \gamma$, for some $\gamma \in \operatorname{Con} L$, then $\theta \subseteq \gamma$.

Consequently θ is indeed the least upper bound of α and β in Con L.

The Join of Two Congruences: $\theta \in$ Con L

- We show θ is a congruence relation on L.
- If $a \in L$, then, by reflexivity of $\alpha, a \alpha$ a. Hence $\operatorname{a} \theta$ and θ is reflexive;
- If $a \theta b$, then, there exist $a=z_{0}, z_{1}, \ldots, z_{n-1}, z_{n}=b$, such that

- Suppose $a \theta$ and $b \theta c$. Then, there exist $a=z_{0}, z_{1}, \ldots, z_{n-1}, z_{n}=b$,

Thus, we have

Hence, a θ c and θ is also transitive.

The Join of Two Congruences: $\theta \in \operatorname{Con} L \& \theta=\alpha \vee \beta$

- Suppose a θ b and $c \in L$. Then there exist $a=z_{0}, z_{1}, \ldots, z_{n-1}, z_{n}=b$, such that $a=z_{0} \underset{\beta}{\text { or }} \underset{\beta}{\alpha} z_{1} \underset{\beta}{\alpha} \underset{\beta}{\alpha} \cdots \underset{\beta}{\alpha}{\underset{\beta}{n-1}}_{\alpha}^{\underset{\beta}{\alpha}} z_{n}=b$. Since both α and β are congruences,

Hence, $a \vee c \theta b \vee c$ and, dually, $a \wedge c \theta b \wedge c$. Hence, θ is a congruence relation.

- Clearly, by definition, if a αb, then $a \theta b$. Similarly, if $a \beta b$, then a θ b. Hence, $\alpha \subseteq \theta$ and $\beta \subseteq \theta$, i.e., θ is an upper bound of $\{\alpha, \beta\}$.
- To show that it is a least upper bound, suppose $\alpha \subseteq \gamma$ and $\beta \subseteq \gamma$, for some $\gamma \in \operatorname{Con} L$. To show $\theta \subseteq \gamma$, let a θb. Then, there exist $a=z_{0}, z_{1}$, $\ldots, z_{n-1}, z_{n}=b$, such that $a=z_{0}{ }_{\beta}^{\alpha} z_{1}^{\alpha} z_{1} \underset{\beta}{\text { or }} \ldots \underset{\beta}{\alpha} \ldots{ }_{\text {or }}^{\alpha} z_{n-1} \underset{\beta}{\text { or }} z_{n}=b$. Thus, by hypothesis, $a=z_{0} \gamma z_{1} \gamma \cdots \gamma z_{n-1} \gamma z_{n}=b$. By transitivity of γ, $a \gamma b$. Thus, $\theta \subseteq \gamma$ and, therefore, $\theta=\alpha \vee \beta$.

Congruence Lattices of Lattices are Distributive

- Consider the median term, $m(x, y, z):=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$. It satisfies the identities $m(x, x, y)=m(x, y, x)=m(y, x, x)=x$.

Theorem

The lattice Con L is distributive for any lattice L.

- Let $\alpha, \beta, \gamma \in \operatorname{Con} L$. It suffices to show $\alpha \wedge(\beta \vee \gamma) \leq(\alpha \wedge \beta) \vee(\alpha \wedge \gamma)$. Assume that $a(\alpha \wedge(\beta \vee \gamma)) b$. Then $a \alpha b$. And there is a sequence $a=z_{0}, z_{1}, \ldots, z_{n}=b$ which witnesses $a(\alpha \vee \gamma) b$. By the median identities $a=m\left(a, b, z_{0}\right)$ and $b=m\left(a, b, z_{n}\right)$. Furthermore, since a αb, for $i=0, \ldots, n-1$, we have $m\left(a, b, z_{i}\right) \alpha m\left(a, a, z_{i}\right)=a$ $=m\left(a, a, z_{i+1}\right) \alpha m\left(a, b, z_{i+1}\right)$. So $m\left(a, b, z_{i}\right) \alpha m\left(a, b, z_{i+1}\right)$.
Observe also that, if $c \theta d$, then $m(a, b, c) \theta m(a, b, d)$, for all $c, d \in L$ and all $\theta \in \operatorname{Con} L$. For $i=0, \ldots, n-1$, we can apply this with $c=z_{i}, d=z_{i+1}$ and θ as either β or γ. Thus, $a=m\left(a, b, z_{0}\right)$, $m\left(a, b, z_{1}\right), \ldots, m\left(a, b, z_{n}\right)=b$ witnesses $a((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) b$.

Groups Revisited

- Let G be a group.
- We showed that there is a correspondence between normal subgroups of G and equivalence relations compatible with the group structure, that is, group congruences.
- Denote the set of all such congruences by Con G.
- Each congruence is regarded as a subset of $G \times G$ and Con G is given the inclusion order inherited from $\mathcal{P}(G \times G)$.
This makes Con G into a topped \cap-structure, and so a complete lattice, in just the same way that Con L is, for L a lattice.
- It is then easy to see that $\operatorname{Con} G \cong \mathcal{N}$-Sub G.
- We have already seen that $\mathcal{N}-\operatorname{Sub} G$ is modular.
- Consequently, Con G is modular.
- However, even for very small groups it may not be distributive.

Example: For $G=\mathbf{V}_{4}$, the Klein 4-group, we have \mathcal{N}-Sub $G \cong \mathbf{M}_{3}$.

