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Closure Operators

Let P be an ordered set. A map c ∶ P → P is called a closure
operator (on P) if, for all x , y ∈ P :

(clo1) x ≤ c(x);
(clo2) x ≤ y ⇒ c(x) ≤ c(y);
(clo3) c(c(x)) = c(x).

An element x ∈ P is called closed if c(x) = x .

The set of all closed elements of P is denoted by Pc .

If P = ⟨P(X );⊆⟩, for some set X , we customarily use the symbol C
rather than c and shall refer to a closure operator C ∶ P(X ) → P(X )
on X .
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Complete Lattice of Closed Sets

Proposition

Let c be a closure operator on an ordered set P .

(i) Pc = {c(x) ∶ x ∈ P} and Pc contains the top element of P when it
exists.

(ii) Assume P is a complete lattice.

(a) For any x ∈ P , c(x) = ⋀P{y ∈ Pc ∶ x ≤ y}.
(b) Pc is a complete lattice, under the order inherited from P , such that,

for every subset S of Pc , ⋀Pc
S = ⋀P S and ⋁Pc

S = c(⋁P S).

(i) Let y ∈ P . If y ∈ Pc , then y = c(y). If y = c(x), for some x ∈ P , then
c(y) = c(c(x)) = c(x) = y . Hence, y ∈ Pc .

If ⊺ exists in P , then ⊺ = c(⊺).

(ii) (a) Note c(x) ∈ {y ∈ Pc ∶ x ≤ y}ℓ. Since c(x) belongs to
{y ∈ Pc ∶ x ≤ y}, it is the greatest lower bound.
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Meets and Joins of Closed Sets

(ii) (b). To show Pc is a complete lattice it suffices to show that ⋀Pc
S

exists for every S ⊆ Pc . This happens provided ⋀P S ∈ Pc , and in that
case ⋀P S serves as ⋀Pc

S . But, for all s ∈ S , c(⋀P S) ≤ c(s) = s. So
c(⋀P S) ≤ ⋀P S . Finally, note that

⋁Pc
S = ⋀Pc

{y ∈ Pc ∶ (∀s ∈ S) s ≤ y} (by join in Pc)
= ⋀P{y ∈ Pc ∶ (∀s ∈ S) s ≤ y} (from above)
= ⋀P{y ∈ Pc ∶ ⋁P S ≤ y}
= c(⋁P S). (by (ii)(a))
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Topped ⋂-Structures and Closure Operators

The next result says that every topped ⋂-structure gives rise to a
closure operator and conversely.

Theorem

Let C be a closure operator on a set X . Then the family

LC ∶= {A ⊆ X ∶ C(A) = A}

of closed subsets of X is a topped ⋂-structure and so forms a complete
lattice, when ordered by inclusion, in which

⋀
i∈I

Ai = ⋂
i∈I

Ai , ⋁
i∈I

Ai = C(⋃
i∈I

Ai).

Conversely, given a topped ⋂-structure L on X , the formula

CL(A) ∶=⋂{B ∈ L ∶ A ⊆ B}

defines a closure operator CL on X .
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Proof of the Theorem

Suppose C ∶ P(X ) → P(X ) is a closure operator.
Clearly, C(X) = X . Hence, X ∈ LC .
Suppose Ai ∈ LC , i ∈ I . Then C(⋂i∈I Ai) ⊆ ⋂i∈I C(Ai) = ⋂i∈I Ai . Hence,

⋂i∈I Ai ∈ LC .

Thus, LC is a topped ⋂-structure on X .

Suppose, conversely, that L is a topped ⋂-structure on X .
A ⊆ ⋂{B ∈ L ∶ A ⊆ B} = CL(A);
Suppose A ⊆ A′. Then {B ∈ L ∶ A′ ⊆ B} ⊆ {B ∈ L ∶ A ⊆ B}. Now, we
have

CL(A) = ⋂{B ∈ L ∶ A ⊆ B}
⊆ ⋂{B ∈ L ∶ A′ ⊆ B}
= CL(A′).

Taking into account that CL(A) ∈ L, for every set A ⊆ X , we get

CL(CL(A)) = ⋂{B ∈ L ∶ CL(A) ⊆ B} = CL(A).

Thus, CL ∶ P(X ) → P(X ) is a closure operator on X .
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Bijection: Topped ⋂-Structures and Closure Operators

The relationship between closure operators and topped ⋂-structures
on a given set is a bijective one:

The closure operator induced by the topped ⋂-structure LC is C itself;
The topped ⋂-structure induced by the closure operator CL is L.

Summarizing in symbols,

C(LC ) = C and L(CL) = L.

In practice this means that whether we work with a topped

⋂-structure or the corresponding closure operator is a matter of
convenience.

Every complete lattice arises (up to order isomorphism) as a topped

⋂-structure on some set. Thus, equivalently, every complete lattice is
isomorphic to the lattice of closed sets with respect to some closure
operator.
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Examples

(1) Let G be a group. Then the closure operator corresponding to the
topped ⋂-structure SubG maps a subset A of G to the subgroup ⟨A⟩
generated by A.

(2) Let V be a vector space over a field F and let SubV be the complete
lattice of linear subspaces of V . The corresponding closure operator
on V maps a subset A of V to its linear span.

(3) Let L be a lattice and, for all X ⊆ L, [X ] ∶= ⋂{K ∈ Sub0L ∶ X ⊆ K}.
Then [−] ∶ P(L) → P(L) is the closure operator corresponding to the
topped ⋂-structure Sub0L.

(4) Let L be a lattice with 0. Then the closure operator corresponding to
the topped ⋂-structure I(L) consisting of all ideals of L is
(−] ∶ P(L) → P(L).

(5) Let P be an ordered set. The map ↓ ∶ P(P) → P(P) is easily seen to
be a closure operator. The corresponding topped ⋂-structure is the
down-set lattice O(P).
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Subsection 2

Complete Lattices From Algebra: Algebraic Lattices
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An Example from Groups

We explore the circumstances under which joins are given by union.

Example: Let G be a group and H ∶= {Hi}i∈I be a non-empty family
of subgroups of G with the property that, for each i1, i2 ∈ I , there
exists k ∈ I , such that Hi1 ∪Hi2 ⊆ Hk .

Claim: H ∶= ⋃i∈I Hi is a subgroup.

Choose g1,g2 ∈ H. It suffices to show that g1g
−1
2 ∈ H. For j = 1,2,

there exists ij ∈ I , such that gj ∈ Hij . By hypothesis we can find
Hk ∈H so that Hi1 ⊆ Hk and Hi2 ⊆ Hk . Then g1,g2 both belong to a
common subgroup Hk , so g1g

−1
2 ∈ Hk . Hence g1g

−1
2 ∈ H, as required.

As a special case, note that if H1 ⊆ H2 ⊆ ⋯ is a non-empty chain of
subgroups, then ⋃n≥1Hn is a subgroup.

Crucial to the argument above is not that it concerns groups, but the
existence, for a given pair H1,H2 of members of H, of a member H of
H which contains both H1 and H2, so that we can exploit the closure
properties of the group operations in H.
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Directed Sets and CPOs

Let S be a non-empty subset of an ordered set P . Then S is said to
be directed if, for every pair of elements x , y ∈ S , there exists z ∈ S ,
such that z ∈ {x , y}u .

An easy induction shows that S is directed if and only if, for every
finite subset F of S , there exists z ∈ S , such that z ∈ F u.

When D is a directed set for which ⋁D exists, then we often write

⊔D in place of ⋁D as a reminder that D is directed.

Directed joins arise very naturally in computer science in the context
of CPOs:

A CPO is an ordered set P with � in which ⊔D exists, for every
directed subset D of P .
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Examples

(1) In any ordered set P , any non-empty chain is directed and any subset
of P with a greatest element is directed.

(2) The only directed subsets of an antichain are the singletons.

More generally, in an ordered set with (ACC) a set is directed if and
only if it has a greatest element.

(3) Let X be a set. Then any non-empty family D of subsets of X which
is closed under finite unions is directed: for A,B ⊆ D, we have
A ∪ B ∈ {A,B}u in D.
Hence, for example, the family of finite subsets of N is directed.

(4) The finitely generated subgroups of a group G form a directed subset
L of SubG . To check this claim, let H and K be subgroups of G
generated, respectively, by {a1, . . . ,am} and {b1, . . . ,bn}. Let M be
the subgroup generated by {a1, . . . ,am,b1, . . . ,bn}. Then
M ∈ {H,K}u in L.
By contrast with the preceding example, the exhibited upper bound is
not given by set union: in general H ∪K is not a subgroup.
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Directed Families of Sets

The union of a directed family of sets will be called a directed union.

Recall that if {Ai}i∈I is a subset of a family L of subsets of a set X ,
then

⋃
i∈I

Ai ∈ L ⇒ ⋁
L

{Ai ∶ i ∈ I} exists and equals ⋃
i∈I

Ai .

We deduce that if the family L is closed under directed unions, we
have

⊔
i∈I

Ai =⋁
i∈I

Ai =⋃
i∈I

Ai ,

whenever {Ai}i∈I ⊆ L is directed.

A subset D = {Ai}i∈I of P(X ) is directed if and only if, given
Ai1, . . . ,Ain in D, there exists k ∈ I , such that Aij ⊆ Ak , for i = 1, . . . ,n
(equivalently, ⋃{Aij ∶ j = 1, . . . ,n} ⊆ Ak). It follows that if D is
directed and Y = {y1, . . . , yn} is a finite subset of ⋃Ai , then there
exists Ak ∈ D, such that Y ⊆ Ak .
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Algebraic ⋂-Intersection Structures

A non-empty family L in P(X ) is said to be closed under directed

unions if ⋃i∈I Ai ∈ L, for any directed family D = {Ai}i∈I in L.
A non-empty family L of subsets of a set X is said to be an algebraic

⋂-structure if

(i) ⋂i∈I Ai ∈ L, for any non-empty family {Ai}i∈I in L;
(ii) ⋃i∈I Ai ∈ L, for any directed family {Ai}i∈I in L.

Thus an algebraic ⋂-structure is an ⋂-structure which is closed under
directed unions.

In such a structure the join of any directed family is given by set
union.

Example: The ⋂-structure SubG is algebraic.

Each of the ⋂-structures presented previously can be shown to be
algebraic.

The congruence lattice ConL, for any lattice L, is another example.
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Algebraic Closure Operators

We extend the correspondence between topped ⋂-structures and
closure operators to the algebraic case.

A closure operator C on a set X is called algebraic if, for all A ⊆ X ,

C(A) =⋃{C(B) ∶ B ⊆ A and B is finite}.

For any closure operator C , C(A) ⊇ ⋃{C(B) ∶ B ⊆ A and B is finite},
so to prove that a closure operator C is algebraic it is only necessary
to prove the reverse inclusion.

Example: The closure operator corresponding to the ⋂-structure
SubG maps a subset A of G to the subgroup ⟨A⟩ generated by A.

Claim: This closure operator is algebraic.

It suffices to show that ⟨A⟩ ⊆ {⟨B⟩ ∶ B ⊆ A and B is finite}. Let
g ∈ ⟨A⟩. Then, there exist a1,a2, . . . ,an ∈ A, such that g = a′1a

′
2⋯a

′
n,

where a′i ∈ {ai ,a
−1
i }, for each i . Thus g ∈ ⟨{a1, . . . ,an}⟩, and this

gives the required containment.
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Algebraic Closure Operators and Algebraic ⋂-Structures

Theorem

Let C be a closure operator on a set X and let LC be the associated
topped ⋂-structure. Then the following are equivalent:

(i) C is an algebraic closure operator;

(ii) for every directed family {Ai}i∈I of subsets of X ,
C(⋃i∈I Ai) = ⋃i∈I C(Ai);

(iii) LC is an algebraic ⋂-structure.

(i)⇒(ii) Let {Ai}i∈I be a directed family of subsets of X . First observe
that if B is finite and B ⊆ ⋃i∈I Ai , then B ⊆ Ak , for some k ∈ I .
Consequently, C(⋃i∈I Ai) = ⋃{C(B) ∶ B ⊆ ⋃i∈I Ai and B is finite} =

⋃{C(B) ∶ B ⊆ Ak , for some k ∈ I and B is finite} ⊆ ⋃i∈I C(Ai). The
reverse inclusion is always valid.

(ii)⇒(iii) Trivial, since LC = {C(A) ∶ A ⊆ X}.
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Algebraic Closure Operators and ⋂-Structures (Cont’d)

(iii)⇒(i) Let A ⊆ X . The family D ∶= {C(B) ∶ B ⊆ A and B is finite}
is directed. Hence ⋃D ∈ LC . For each x ∈ A, we have

x ∈ {x} ⊆ C({x}) ⊆⋃D.

So, A ⊆ ⋃D. Hence

C(A) ⊆ C(⋃D) = ⋃D = ⋃{C(B) ∶ B ⊆ A and B is finite}.

Since the reverse inclusion always holds, C is algebraic.
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Finite and Compact Elements

We aim to characterize, in a lattice-theoretic way, the closures, with
respect to an algebraic closure operator on X , of the finite subsets of
X .

Let L be a complete lattice and let k ∈ L.

(i) k is called finite (in L) if, for every directed set D in L,

k ≤⊔D ⇒ k ≤ d , for some d ∈ D.

The set of finite elements of L is denoted F(L).
(ii) k is said to be compact if, for every subset S of L,

k ≤⋁S ⇒ k ≤⋁T , for some finite subset T of S .

The set of compact elements of L is denoted K(L).
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Finite and Compact Elements in a Complete Lattice

Unlike compactness, finiteness makes sense in ordered sets in which
joins exist for directed subsets, but not necessarily for all subsets.

Lemma

Let L be a complete lattice. Then F (L) = K(L). Further, k1 ∨ k2 ∈ F (L)
whenever k1,k2 ∈ F (L).

Assume first that k ∈ K(L) and that k ≤ ⊔D, where D is directed.
Then there exists a finite subset F of D, such that k ≤ ⋁F . Because
D is directed, we can find d ∈ D with d ∈ F u. Then k ≤ d , so
k ∈ F (L).

Conversely, assume that k ∈ F (L) and that k ≤ ⋁S . The set
D = {⋁T ∶ T ⊆ S and T is finite} is directed. Moreover, ⊔D = ⋁S .
Applying the finiteness condition, we find a finite subset T of S with
k ≤ ⋁T .
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Finite and Compact Elements (Cont’d)

For the second part, assume k1,k2 ∈ F (L).

Suppose, there exists directed D ⊆ L, such that k1 ∨ k2 ≤ ⊔D.

Then k1 ≤ ⊔D and k2 ≤ ⊔D.

Since k1,k2 ∈ F (K), there exist d1,d2 ∈ D, such that k1 ≤ d1 and
k2 ≤ d2.

Since D is directed, there exists d ∈ D, such that d1 ≤ d and d2 ≤ d .

Now we get k1 ∨ k2 ≤ d1 ∨ d2 ≤ d .

Therefore, k1 ∨ k2 ∈ F (L).
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Examples of Finite Elements in Complete Lattices

In P(X ) (X a set): the finite elements are all finite subsets of X .

In O(P) (P an ordered set): the finite elements are all down-sets of
the form ↓F , with F finite.

In SubG (G a group): the finite elements are all finitely generated
subgroups.

In SubV (V a vector space): the finite elements are all
finite-dimensional subspaces.

In a complete lattice satisfying the (ACC): all elements are finite.

In [0,1]: the only finite element is 0.

Note that � in a complete lattice is always finite.

As a simple example of a non-finite element we have the top element
of N⊕ 1.
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Natural Numbers under Divisibility

Consider ⟨N0;≼⟩.

Claim: No element other than 1 (= �) is compact.

0 (= ⊺) is the join of the set of all primes. But 0 not the join of any
finite set of primes. Thus, 0 is not compact.

Now let n ∈N0 with n ∉ {0,1}. Let S be the set of primes which do
not divide n. Then S is infinite. So ⋁S = ⊺ (= 0), because any
non-zero element of N0 has only finitely many prime divisors. Hence
n ≼ ⋁S but n ⋠ ⋁T , for any finite subset T of S . Thus, n is not
compact.
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Algebraic Lattices

A complete lattice L is said to be algebraic if, for each a ∈ L,
a = ⋁{k ∈ K(L) ∶ k ≤ a}.

Lemma

Let C be an algebraic closure operator on X and LC the associated
topped algebraic ⋂-structure. Then LC is an algebraic lattice in which an
element A is finite (equivalently, compact) if and only if A = C(Y ), for
some finite set Y ⊆ X .

We show that the finite elements are the closures of the finite sets:
Let Y be a finite subset of X and let A = C(Y ). Take a directed set
D in LC with A ⊆ ⊔D. Then, since ⊔ coincides with ⋃ in LC ,
Y ⊆ C(Y ) = A ⊆ ⊔D = ⋃D. As Y is finite and D directed, there
exists B ∈ D, such that Y ⊆ B . Then A = C(Y ) ⊆ C(B) = B .

If A ∈ LC is a finite element, A = ⊔{C(Y ) ∶ Y ⊆ A and Y is finite}.
Since A is finite in LC , there exists a finite set Y ⊆ A such that
A ⊆ C(Y ). For the reverse, note Y ⊆ A implies C(Y ) ⊆ C(A) = A.
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Algebraic Lattices and Topped ⋂-Structures

Theorem

(i) Let L be a topped algebraic ⋂-structure. Then L is an algebraic
lattice.

(ii) Let L be an algebraic lattice and define Da ∶= {k ∈ K(L) ∶ k ≤ a}, for
each a ∈ L. Then L ∶= {Da ∶ a ∈ L} is a topped algebraic ⋂-structure
isomorphic to L.

(i) This has already been shown.

(ii) We omit the proof that L is a topped ⋂-structure and prove that the
map ϕ ∶ a ↦ Da is an isomorphism of L onto L and that L is algebraic.

Because L is algebraic, Da ⊆ Db in L implies a = ⋁Da ≤ ⋁Db = b in L.
The reverse implication holds always. Therefore ϕ is an
order-isomorphism.
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Algebraic Lattices and Topped ⋂-Structures (Cont’d)

Take a directed subset D = {Dc ∶ c ∈ C} of L. As ϕ is an order
isomorphism, the indexing set C is a directed subset of L. Define

a =⊔C .

Claim: ⋃D = Da and so it belongs to L.

Indeed,

k ∈ Da ⇔ k ∈ K(L) = F (L) and k ≤ a = ⊔C

⇔ k ∈ F (L) and k ≤ c , for some c ∈ C

⇔ k ∈ Dc for some c ∈ C

⇔ k ∈ ⋃D.

Hence L is closed under directed unions and so is algebraic.
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Examples of Algebraic Topped ⋂-Structures

P(X ), for any set X ;

Any complete lattice of sets and, in particular, the down-set lattice
O(P), for any ordered set P ;

SubG , for any group G ;

SubV , for any vector space V ;

I(L), the ideal lattice of any lattice L with 0;

ConL, for any lattice L.

The chains n, for n ≥ 1, and N⊕ 1 are algebraic lattices.

Any lattice L with a bottom element and satisfying (ACC) is an
algebraic lattice:

L is a complete lattice;
every element x ∈ L is compact, and so is the join of ↓x ∩K(L).

An example of an infinite algebraic lattice of this type is ⟨N0;≼⟩
∂ .

On the other hand, ⟨N0;≼⟩ is not algebraic, since its only compact
element is �.
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Subsection 3

Galois Connections
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Galois Connections

Let P and Q be ordered sets. A pair (⊳,⊲ ) of maps ⊳ ∶ P → Q and
⊲ ∶ Q → P (called right and left, respectively) is a Galois connection

between P and Q if, for all p ∈ P and q ∈ Q,

(Gal) p⊳ ≤ q ⇐⇒ p ≤ q⊲.

The map ⊳ is called the lower adjoint of ⊲ and the map ⊲ the upper

adjoint of ⊳;

The terms “lower” and “upper” refer to the side of ≤ on which the
map appears.
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Order-Theoretic Examples

(1) Suppose that sets P and Q are ordered by the discrete order, =.

Then ⊳ ∶ P → Q and ⊲ ∶ Q → P set up a Galois connection between P

and Q if and only if they are set-theoretic inverses of each other.

(2) Let P be an ordered set. For A ⊆ P , we have previously defined the
sets of upper and lower bounds of A as

Au = {y ∈ P ∶ (∀x ∈ A) x ≤ y}, Aℓ = {y ∈ P ∶ (∀x ∈ A) y ≤ x}.

It is easy to see that (u ,ℓ ) is a Galois connection between P(P) and
P(P)∂ : Au ⊇ B ⇔ (∀y ∈ B)((∀x ∈ A) x ≤ y)

⇔ (∀x ∈ A)((∀y ∈ B) y ≥ x)

⇔ A ⊆ Bℓ.

(4) Let P be an ordered set. For A ⊆ P , define

A⊳ ∶= P/↓A and A⊲ ∶= P/↑A.

Then (⊳,⊲ ) forms a Galois connection between P(P)∂ and P(P).
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Properties of Galois Connections

Lemma

Assume (⊳,⊲ ) is a Galois connection between ordered sets P and Q. Let
p,p1,p2 ∈ P and q,q1,q2 ∈ Q. Then:

(Gal1) p ≤ p⊳⊲ and q⊲⊳ ≤ q; Cancelation Rule

(Gal2) p1 ≤ p2⇒ p⊳1 ≤ p
⊳
2 and q1 ≤ q2 ⇒ q⊲1 ≤ q

⊲
2 ;

(Gal3) p⊳ = p⊳⊲⊳ and q⊲ = q⊲⊳⊲. Semi-inverse Rule

Conversely, a pair of maps ⊳ ∶ P → Q and ⊲ ∶ Q → P satisfying (Gal1) and
(Gal2) for all p,p1,p2 ∈ P and for all q,q1,q2 ∈ Q sets up a Galois
connection between P and Q.

Gal1: For p ∈ P , we have p⊳ ≤ p⊳ from which we obtain p ≤ p⊳⊲ by putting
q = p⊳ in (Gal). Hence (Gal) implies (Gal1).

Gal2: For (Gal2), p1 ≤ p2 implies, by (Gal1) and transitivity, p1 ≤ p
⊳⊲
2 ,

whence, by (Gal), p⊳1 ≤ p
⊳
2 .
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Properties of Galois Connections (Cont’d)

q1 ≤ q2 implies, by (Gal1) and transitivity, q⊲⊳1 ≤ q2, whence, by (Gal),
q⊲1 ≤ q

⊲
2 .

Gal3: We now prove (Gal3). Applying ⊳ to the inequality p ≤ p⊳⊲ in (Gal1)
we have, by (Gal2), p⊳ ≤ p⊳⊲⊳. Also, by (Gal) with p⊳⊲ in place of p
and p⊳ in place of q, p⊳⊲ ≤ p⊳⊲ implies p⊳⊲⊳ ≤ p⊳.

Lastly, assume that (Gal1) and (Gal2) hold universally.

Let p⊳ ≤ q. By (Gal2), p⊳⊲ ≤ q⊲. Also, (Gal1) gives p ≤ p⊳⊲. Hence
p ≤ q⊲ by transitivity.
Let p ≤ q⊲. By (Gal2), p⊳ ≤ q⊲⊳. Also, (Gal1) gives q⊲⊳ ≤ q. Hence
p⊳ ≤ q by transitivity.
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From a Galois Connection to a Closure Operator

Let (⊳,⊲ ) be a Galois connection between ordered sets P and Q∂

(note that we have Q∂ instead of Q here). Then:

(i) c =⊳⊲∶ P → P and k =⊲⊳∶ Q → Q are closure operators. (In this
notation, the left-hand map in each composition is performed first.)

(ii) Let Pc ∶= {p ∈ P ∶ p⊳⊲ = p} and Qk ∶= {q ∈ Q ∶ q⊲⊳ = q}. Then
⊳ ∶ Pc → Q∂

k and ⊲ ∶ Q∂

k → Pc are mutually inverse order isomorphisms.

Note that, indeed, for all p,p′ ∈ P :

p ≤ p⊳⊲;
p ≤ p′ implies p⊳⊲ ≤ p′⊳⊲;
p⊳⊲⊳⊲ = p⊳⊲.

To check (ii), use (Gal3) to get that:
⊳ maps Pc onto Q∂

k ;
⊲ maps Q∂

k onto Pc ;
these maps are inverse to each other.

Since they are also order-preserving (by (Gal2)), they are
order-isomorphisms.
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From a Closure Operator to a Galois Connection

Every closure operator arises as the composite of the left and right
maps of a Galois connection:

Let c ∶ P → P be a closure operator;
Define Q ∶= Pc ;
Let ⊳ ∶ P → Pc be given by p⊳ ∶= c(p);
Let ⊲ ∶ Pc → P be the inclusion map.

Then c =⊳⊲.

Correspondences which provide alternative ways in which complete
lattices arise:

Every topped ⋂-structure is a complete lattice. Up to isomorphism,
every complete lattice arises this way.
There is a bijective correspondence between closure operators on a set
X and topped ⋂-structures on X .
Every Galois connection (⊳,⊲ ) gives rise to a pair of closure operators,
⊳⊲ and ⊲⊳, and thence to an isomorphic pair of complete lattices.
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Galois Connections and Preservation of Joins and Meets

Proposition

Let (⊳,⊲ ) be a Galois connection between ordered sets P and Q. Then ⊳

preserves existing joins and ⊲ preserves existing meets.

We first define z ∶= ⋁P S and show that z⊳ is an upper bound for S⊳.
By (Gal2),

(∀s ∈ S) s ≤ z ⇒ (∀s ∈ S) s⊳ ≤ z⊳.

Now let q be any upper bound for S⊳. Then

(∀s ∈ S) s⊳ ≤ q ⇔ (∀s ∈ S) s ≤ q⊲ (by (Gal))
⇒ ⋁P S ≤ q⊲ (by definition of ⋁P S)
⇔ (⋁P S)⊳ ≤ q. (by (Gal))

We conclude that z⊳ is the least upper bound of S⊳.
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Order Preserving Maps and Galois Connections

Lemma

Let P and Q be ordered sets and ϕ ∶ P → Q an order preserving map.
Then the following are equivalent:

(i) There exists an order-preserving map ϕ# ∶ Q → P , such that both
ϕ# ○ϕ ≥ idP and ϕ ○ ϕ# ≤ idQ ;

(ii) For each q ∈ Q, there exists a (necessarily unique) s ∈ P , such that
ϕ−1(↓q) = ↓s.

[(i)⇒(ii)] Claim: ϕ−1(↓q) = ↓ϕ#(q).

We have

p ∈ ϕ−1(↓q) ⇔ ϕ(p) ≤ q

⇒ (ϕ# ○ϕ)(p) ≤ ϕ#(q) (since ϕ#

is order-preserving)

⇒ p ≤ ϕ#(q) (from ϕ# ○ ϕ ≥ idP & transitivity)

⇒ p ∈ ↓ϕ#(q).
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Order Preserving Maps and Galois Connections (Converse)

For the other direction, let p ∈ ↓ϕ#(q). This yields
ϕ(p) ≤ (ϕ ○ϕ#)(q) from which we can deduce that ϕ(p) ≤ q, so that
p ∈ ϕ−1(↓q).

[(ii)⇒(i)] For each q ∈ Q, we have a unique element s ∈ P , depending
on q, such that ϕ−1(↓q) = ↓s. Define ϕ#(q) ∶= s. Restated, this
means that

(∀q ∈ Q)(∀p ∈ P)ϕ(p) ≤ q ⇔ p ≤ ϕ#(q).

We now see that the pair (ϕ,ϕ#) is a Galois connection between P

and Q, so that the properties in (i) follow.

The proof says that, in a Galois connection (⊳,⊲ ), each of ⊳ and ⊲

uniquely determines the other:

p⊳ = min {q ∈ Q ∶ p ≤ q⊲};
q⊲ = max {p ∈ P ∶ p⊳ ≤ q}.
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Preservation of Joins and Meets

Proposition

Let P and Q be ordered sets and ϕ ∶ P → Q be a map.

(i) Assume P is a complete lattice. Then ϕ preserves arbitrary joins if
and only if ϕ possesses an upper adjoint ϕ# (that is, (ϕ,ϕ#) is a
Galois connection).

(ii) Assume Q is a complete lattice. Then ϕ preserves arbitrary meets if
and only if ϕ possesses a lower adjoint ϕ♭ (that is, (ϕ♭, ϕ) is a Galois
connection).

(i) The backward implication has been shown.

For the forward implication, assume that ϕ preserves arbitrary joins.
Note first that ϕ is order-preserving. It therefore suffices to show that
condition (ii) in the preceding lemma is satisfied.

George Voutsadakis (LSSU) Lattices and Order April 2020 39 / 50



Complete Lattices and Galois Connections Galois Connections

Preservation of Joins and Meets (Cont’d)

Let q ∈ Q.

Claim: s ∶= ⋁P{p ∈ P ∶ ϕ(p) ≤ q}(= ⋁P ϕ−1(↓q)) is such that
ϕ−1(↓q) = ↓s.

It follows immediately that ϕ−1(↓q) ⊆ ↓s.

Since ϕ preserves arbitrary joins,

ϕ(s) = ⋁
Q

{ϕ(p) ∶ p ∈ P with ϕ(p) ≤ q}.

Hence, ϕ(s) ≤ q. For any p ∈ ↓s, we have ϕ(p) ≤ q, because ϕ is
order-preserving and ≤ is transitive. Therefore ↓s ⊆ ϕ−1(↓q).
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Subsection 4

Completions
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Completion

Let P be an ordered set. If ϕ ∶ P ↪ L and L is a complete lattice, then
we say that L is a completion of P (via the order embedding ϕ).

We saw that the map ϕ ∶ x ↦ ↓x is an order embedding of P into
O(P).

We also saw that O(P) is a complete lattice.

Thus, O(P) is a completion of P .

This completion is unnecessarily large. For example, if P is a
complete lattice, then P is a completion of itself (via the identity
map) while O(P) is much larger.

Another completion of an ordered set is the ideal completion.
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Review of u, ℓ and their Properties

Let A ⊆ P . Then A “upper” and A “lower” are defined by

Au ∶= {x ∈ P ∶ (∀a ∈ A) a ≤ x} and Aℓ ∶= {x ∈ P ∶ (∀a ∈ A) a ≥ x}.

For subsets A and B of P , we have:

(i) A ⊆ Auℓ and A ⊆ Aℓu ;
(ii) if A ⊆ B, then Au ⊇ Bu and Aℓ ⊇ Bℓ;
(iii) Au = Auℓu and Aℓ = Aℓuℓ.

Further, Au is an up-set and Aℓ is a down-set.
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The Dedekind-MacNeille Completion

Let P be an ordered set. We define

DM(P) ∶= {A ⊆ P ∶ Auℓ = A}.

This is the topped ⋂-structure on P corresponding to the closure
operator

C(A) ∶= Auℓ

on P .

Therefore the ordered set ⟨DM(P);⊆⟩ is a complete lattice.

It is known as the Dedekind-MacNeille completion of P .

It is also referred to as the completion by cuts or the normal

completion of P .
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Dedekind-McNeill Completion and Down-Sets

Lemma

Let P be an ordered set.

(i) For all x ∈ P , we have (↓x)uℓ = ↓x and hence ↓x ∈ DM(P).

(ii) If A ⊆ P and ⋁A exists in P , then Auℓ = ↓(⋁A).

(i) Let y ∈ (↓x)u . Then z ≤ y , for all z ∈ ↓x . In particular, x ≤ y (as
x ∈ ↓x) and, hence, y ∈ ↑x . Thus, (↓x)u ⊆ ↑x .
If y ∈ ↑x , then y ≥ x . So, by transitivity, y ≥ z , for all z ∈ ↓x , that is,
y ∈ (↓x)u . Thus ↑x ⊆ (↓x)u .
Therefore, (↓x)u = ↑x and, by duality, (↑x)ℓ = ↓x .
Thus, (↓x)uℓ = (↑x)ℓ = ↓x .

(ii) Let A ⊆ P . Assume that A exists in P . Of course ⋁A ∈ Au. Thus
x ∈ Auℓ implies that x ≤ ⋁A and hence x ∈ ↓(⋁A). Consequently,
Auℓ ⊆ ↓(⋁A). Since ⋁A is the least upper bound of A we have

⋁A ≤ y , for all y ∈ Au and hence ⋁A ∈ Auℓ. Since Auℓ is a down-set
this gives ↓(⋁A) ⊆ Auℓ. Hence, Auℓ = ↓(⋁A), as required.
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The Dedekind-MacNeille Completion Theorem

Theorem

Let P be an ordered set and define ϕ ∶ P → DM(P) by ϕ(x) = ↓x , for all
x ∈ P .

(i) DM(P) is a completion of P via the map ϕ.

(ii) ϕ preserves all joins and meets which exist in P .

(i) As we saw above, ⟨DM(P);⊆⟩ is a complete lattice and the
order-embedding ϕ maps P into DM(P).

(ii) Let A ⊆ P and assume that ⋁A exists in P . We must show that
ϕ(⋁A) = ⋁ϕ(A), that is, ↓(⋁A) = ⋁{↓a ∶ a ∈ A} in DM(P).

Clearly, ↓(⋁A) is an upper bound for {↓a ∶ a ∈ A}.
Now choose any B ∈ DM(P) which is an upper bound for {↓a ∶ a ∈ A}.
Since a ∈ ↓a ⊆ B, for all a ∈ A, we have A ⊆ B. Hence,
↓(⋁A) = Auℓ ⊆ Buℓ = B.
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The Dedekind-MacNeille Completion Theorem (Cont’d)

Now assume that ⋀A exists in P . We must show that

↓(⋀A) =⋀{↓a ∶ a ∈ A}.

Since DM(P) is a topped ⋂-structure, we have in DM(P)

⋀{↓a ∶ a ∈ A} = ⋂{↓a ∶ a ∈ A}.

This yields the result.
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Characterization of the Dedekind-MacNeille Completion

Theorem

Let P be an ordered set and let ϕ ∶ P → DM(P) be the order-embedding
of P into its Dedekind-MacNeille completion given by ϕ(x) = ↓x .

(i) ϕ(P) is both join-dense and meet-dense in DM(P).

(ii) Let L be a complete lattice and assume that P is a subset of L which
is both join-dense and meet-dense in L. Then L ≅ DM(P) via an
order-isomorphism which agrees with ϕ on P .

Theorem

Let L be a lattice with no infinite chains. Then L ≅ DM(J (L) ∪M(L)).
Moreover, J (L) ∪M(L) is the smallest subset of L which is both
join-dense and meet-dense in L.
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Examples I

(1) Every real number x ∈ R satisfies ⋁R(↓x ∩Q) = x = ⋀R(↑x ∩Q).
Hence Q is both join-dense and meet-dense in R ∪ {−∞,∞}.
Consequently R ∪ {−∞,∞} is (order-isomorphic to) the
Dedekind-MacNeille completion of Q.

(2) DM(N) ≅N⊕ 1.

(3) For any set X , the complete lattice P(X ) ≅ DM(P), where
P = {{x} ∶ x ∈ X} ∪ {X /{x} ∶ x ∈ X}.

(4) The Dedekind-MacNeille completion of an n-element antichain (for
n ≥ 1) is order-isomorphic to the lattice Mn.
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Examples II

(5) Each pair of diagrams consists of an ordered set Pi along with its
Dedekind-MacNeille completion Li ≅ DM(Pi) or, alternatively, as a
lattice Li with a distinguished subset Pi such that Li ≅ DM(Pi):
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