Introduction to Lattices and Order

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

Complete Lattices and Galois Connections

- Closure Operators
- Complete Lattices From Algebra: Algebraic Lattices
- Galois Connections
- Completions

Subsection 1

Closure Operators

Closure Operators

Let P be an ordered set. A map c: P → P is called a closure operator (on P) if, for all x, y ∈ P:

(clo1)
$$x \le c(x)$$
;
(clo2) $x \le y \Rightarrow c(x) \le c(y)$;

$$(clo3) c(c(x)) = c(x).$$

- An element $x \in P$ is called **closed** if c(x) = x.
- The set of all closed elements of P is denoted by P_c .
- If P = ⟨P(X);⊆⟩, for some set X, we customarily use the symbol C rather than c and shall refer to a closure operator C: P(X) → P(X) on X.

Complete Lattice of Closed Sets

Proposition

Let c be a closure operator on an ordered set P.

- (i) $P_c = \{c(x) : x \in P\}$ and P_c contains the top element of P when it exists.
- (ii) Assume P is a complete lattice.
 - (a) For any $x \in P$, $c(x) = \bigwedge_P \{y \in P_c : x \le y\}$.
 - (b) P_c is a complete lattice, under the order inherited from P, such that, for every subset S of P_c , $\bigwedge_{P_c} S = \bigwedge_P S$ and $\bigvee_{P_c} S = c(\bigvee_P S)$.
- (i) Let y ∈ P. If y ∈ P_c, then y = c(y). If y = c(x), for some x ∈ P, then c(y) = c(c(x)) = c(x) = y. Hence, y ∈ P_c.
 If ⊤ exists in P, then ⊤ = c(⊤).
- (ii) (a) Note $c(x) \in \{y \in P_c : x \le y\}^{\ell}$. Since c(x) belongs to $\{y \in P_c : x \le y\}$, it is the greatest lower bound.

Meets and Joins of Closed Sets

(ii) (b). To show P_c is a complete lattice it suffices to show that ∧_{P_c} S exists for every S ⊆ P_c. This happens provided ∧_P S ∈ P_c, and in that case ∧_P S serves as ∧_{P_c} S. But, for all s ∈ S, c(∧_P S) ≤ c(s) = s. So c(∧_P S) ≤ ∧_P S. Finally, note that

$$\bigvee_{P_c} S = \bigwedge_{P_c} \{ y \in P_c : (\forall s \in S) \ s \le y \} \text{ (by join in } P_c) \\ = \bigwedge_{P} \{ y \in P_c : (\forall s \in S) \ s \le y \} \text{ (from above)} \\ = \bigwedge_{P} \{ y \in P_c : \bigvee_{P} S \le y \} \\ = c(\bigvee_{P} S). \text{ (by (ii)(a))}$$

Topped ∩-Structures and Closure Operators

• The next result says that every topped ∩-structure gives rise to a closure operator and conversely.

Theorem

Let C be a closure operator on a set X. Then the family

$$\mathcal{L}_{\mathcal{C}} \coloneqq \{A \subseteq X : \mathcal{C}(A) = A\}$$

of closed subsets of X is a topped \cap -structure and so forms a complete lattice, when ordered by inclusion, in which

$$\bigwedge_{i\in I} A_i = \bigcap_{i\in I} A_i, \quad \bigvee_{i\in I} A_i = C(\bigcup_{i\in I} A_i).$$

Conversely, given a topped \cap -structure \mathcal{L} on X, the formula

$$\mathcal{C}_{\mathcal{L}}(A) \coloneqq \bigcap \{ B \in \mathcal{L} : A \subseteq B \}$$

defines a closure operator $C_{\mathcal{L}}$ on X.

Proof of the Theorem

- Suppose $C : \mathcal{P}(X) \to \mathcal{P}(X)$ is a closure operator.
 - Clearly, C(X) = X. Hence, $X \in \mathcal{L}_C$.
 - Suppose $A_i \in \mathcal{L}_C$, $i \in I$. Then $C(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} C(A_i) = \bigcap_{i \in I} A_i$. Hence, $\bigcap_{i \in I} A_i \in \mathcal{L}_C$.

Thus, \mathcal{L}_C is a topped \cap -structure on X.

- Suppose, conversely, that \mathcal{L} is a topped \cap -structure on X.
 - $A \subseteq \bigcap \{B \in \mathcal{L} : A \subseteq B\} = C_{\mathcal{L}}(A);$
 - Suppose $A \subseteq A'$. Then $\{B \in \mathcal{L} : A' \subseteq B\} \subseteq \{B \in \mathcal{L} : A \subseteq B\}$. Now, we have

$$\mathcal{L}_{\mathcal{L}}(A) = \bigcap \{ B \in \mathcal{L} : A \subseteq B \} \\ \subseteq \bigcap \{ B \in \mathcal{L} : A' \subseteq B \} \\ = C_{\mathcal{L}}(A').$$

• Taking into account that $C_{\mathcal{L}}(A) \in \mathcal{L}$, for every set $A \subseteq X$, we get

$$C_{\mathcal{L}}(C_{\mathcal{L}}(A)) = \bigcap \{B \in \mathcal{L} : C_{\mathcal{L}}(A) \subseteq B\} = C_{\mathcal{L}}(A).$$

Thus, $C_{\mathcal{L}}: \mathcal{P}(X) \to \mathcal{P}(X)$ is a closure operator on X.

Bijection: Topped ∩-Structures and Closure Operators

- The relationship between closure operators and topped ∩-structures on a given set is a bijective one:
 - The closure operator induced by the topped \cap -structure \mathcal{L}_C is C itself;
 - The topped \cap -structure induced by the closure operator $C_{\mathcal{L}}$ is \mathcal{L} .

Summarizing in symbols,

$$C_{(\mathcal{L}_C)} = C$$
 and $\mathcal{L}_{(C_{\mathcal{L}})} = \mathcal{L}$.

- In practice this means that whether we work with a topped ∩-structure or the corresponding closure operator is a matter of convenience.
- Every complete lattice arises (up to order isomorphism) as a topped ∩-structure on some set. Thus, equivalently, every complete lattice is isomorphic to the lattice of closed sets with respect to some closure operator.

Examples

- Let G be a group. Then the closure operator corresponding to the topped ∩-structure SubG maps a subset A of G to the subgroup (A) generated by A.
- (2) Let V be a vector space over a field F and let SubV be the complete lattice of linear subspaces of V. The corresponding closure operator on V maps a subset A of V to its linear span.
- (3) Let L be a lattice and, for all X ⊆ L, [X] := ∩{K ∈ Sub₀L : X ⊆ K}. Then [-] : P(L) → P(L) is the closure operator corresponding to the topped ∩-structure Sub₀L.
- (4) Let L be a lattice with 0. Then the closure operator corresponding to the topped ∩-structure I(L) consisting of all ideals of L is
 (-]: P(L) → P(L).
- (5) Let P be an ordered set. The map ↓: P(P) → P(P) is easily seen to be a closure operator. The corresponding topped ∩-structure is the down-set lattice O(P).

Subsection 2

Complete Lattices From Algebra: Algebraic Lattices

An Example from Groups

We explore the circumstances under which joins are given by union.
 Example: Let G be a group and H := {H_i}_{i∈I} be a non-empty family of subgroups of G with the property that, for each i₁, i₂ ∈ I, there exists k ∈ I, such that H_{i1} ∪ H_{i2} ⊆ H_k.

Claim:
$$H := \bigcup_{i \in I} H_i$$
 is a subgroup

Choose $g_1, g_2 \in H$. It suffices to show that $g_1g_2^{-1} \in H$. For j = 1, 2, there exists $i_j \in I$, such that $g_j \in H_{i_j}$. By hypothesis we can find $H_k \in \mathcal{H}$ so that $H_{i_1} \subseteq H_k$ and $H_{i_2} \subseteq H_k$. Then g_1, g_2 both belong to a common subgroup H_k , so $g_1g_2^{-1} \in H_k$. Hence $g_1g_2^{-1} \in H$, as required. As a special case, note that if $H_1 \subseteq H_2 \subseteq \cdots$ is a non-empty chain of subgroups, then $\bigcup_{n>1} H_n$ is a subgroup.

• Crucial to the argument above is not that it concerns groups, but the existence, for a given pair H_1 , H_2 of members of \mathcal{H} , of a member H of \mathcal{H} which contains both H_1 and H_2 , so that we can exploit the closure properties of the group operations in H.

George Voutsadakis (LSSU)

Directed Sets and CPOs

- Let S be a non-empty subset of an ordered set P. Then S is said to be directed if, for every pair of elements x, y ∈ S, there exists z ∈ S, such that z ∈ {x, y}^u.
- An easy induction shows that S is directed if and only if, for every finite subset F of S, there exists z ∈ S, such that z ∈ F^u.
- When D is a directed set for which ∨ D exists, then we often write
 □ D in place of ∨ D as a reminder that D is directed.
- Directed joins arise very naturally in computer science in the context of CPOs:

A **CPO** is an ordered set P with \perp in which $\bigsqcup D$ exists, for every directed subset D of P.

Examples

- (1) In any ordered set *P*, any non-empty chain is directed and any subset of *P* with a greatest element is directed.
- (2) The only directed subsets of an antichain are the singletons. More generally, in an ordered set with (ACC) a set is directed if and only if it has a greatest element.
- (3) Let X be a set. Then any non-empty family D of subsets of X which is closed under finite unions is directed: for A, B ⊆ D, we have A ∪ B ∈ {A, B}^u in D.

Hence, for example, the family of finite subsets of $\ensuremath{\mathbb{N}}$ is directed.

(4) The finitely generated subgroups of a group G form a directed subset L of SubG. To check this claim, let H and K be subgroups of G generated, respectively, by {a₁,..., a_m} and {b₁,..., b_n}. Let M be the subgroup generated by {a₁,..., a_m, b₁,..., b_n}. Then M ∈ {H, K}^u in L.

By contrast with the preceding example, the exhibited upper bound is not given by set union: in general $H \cup K$ is not a subgroup.

Directed Families of Sets

- The union of a directed family of sets will be called a directed union.
- Recall that if {A_i}_{i∈I} is a subset of a family L of subsets of a set X, then

$$\bigcup_{i\in I} A_i \in \mathcal{L} \implies \bigvee_{\mathcal{L}} \{A_i : i \in I\} \text{ exists and equals } \bigcup_{i\in I} A_i.$$

We deduce that if the family $\boldsymbol{\mathcal{L}}$ is closed under directed unions, we have

$$\bigsqcup_{i\in I}A_i=\bigvee_{i\in I}A_i=\bigcup_{i\in I}A_i,$$

whenever $\{A_i\}_{i \in I} \subseteq \mathcal{L}$ is directed.

A subset D = {A_i}_{i∈I} of P(X) is directed if and only if, given A_{i1},..., A_{in} in D, there exists k ∈ I, such that A_{ij} ⊆ A_k, for i = 1,..., n (equivalently, ∪{A_{ij} : j = 1,..., n} ⊆ A_k). It follows that if D is directed and Y = {y₁,..., y_n} is a finite subset of ∪A_i, then there exists A_k ∈ D, such that Y ⊆ A_k.

Algebraic ∩-Intersection Structures

- A non-empty family L in P(X) is said to be closed under directed unions if ∪_{i∈I} A_i ∈ L, for any directed family D = {A_i}_{i∈I} in L.
- A non-empty family *L* of subsets of a set X is said to be an algebraic ∩-structure if
 - (i) $\bigcap_{i \in I} A_i \in \mathcal{L}$, for any non-empty family $\{A_i\}_{i \in I}$ in \mathcal{L} ;
 - (ii) $\bigcup_{i \in I} A_i \in \mathcal{L}$, for any directed family $\{A_i\}_{i \in I}$ in \mathcal{L} .
- Thus an algebraic ∩-structure is an ∩-structure which is closed under directed unions.

In such a structure the join of any directed family is given by set union.

Example: The \cap -structure Sub*G* is algebraic.

Each of the \cap -structures presented previously can be shown to be algebraic.

The congruence lattice ConL, for any lattice L, is another example.

Algebraic Closure Operators

- We extend the correspondence between topped ∩-structures and closure operators to the algebraic case.
- A closure operator C on a set X is called **algebraic** if, for all $A \subseteq X$,

 $C(A) = \bigcup \{C(B) : B \subseteq A \text{ and } B \text{ is finite} \}.$

For any closure operator C, C(A) ⊇ ∪{C(B) : B ⊆ A and B is finite}, so to prove that a closure operator C is algebraic it is only necessary to prove the reverse inclusion.

Example: The closure operator corresponding to the \cap -structure SubG maps a subset A of G to the subgroup $\langle A \rangle$ generated by A. Claim: This closure operator is algebraic.

It suffices to show that $\langle A \rangle \subseteq \{\langle B \rangle : B \subseteq A \text{ and } B \text{ is finite}\}$. Let $g \in \langle A \rangle$. Then, there exist $a_1, a_2, \ldots, a_n \in A$, such that $g = a'_1 a'_2 \cdots a'_n$, where $a'_i \in \{a_i, a_i^{-1}\}$, for each *i*. Thus $g \in \langle \{a_1, \ldots, a_n\} \rangle$, and this gives the required containment.

George Voutsadakis (LSSU)

Algebraic Closure Operators and Algebraic ∩-Structures

Theorem

Let *C* be a closure operator on a set *X* and let \mathcal{L}_C be the associated topped \cap -structure. Then the following are equivalent:

- (i) C is an algebraic closure operator;
- (ii) for every directed family $\{A_i\}_{i \in I}$ of subsets of X, $C(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} C(A_i);$
- (iii) \mathcal{L}_C is an algebraic \cap -structure.

(i) \Rightarrow (ii) Let $\{A_i\}_{i \in I}$ be a directed family of subsets of X. First observe that if B is finite and $B \subseteq \bigcup_{i \in I} A_i$, then $B \subseteq A_k$, for some $k \in I$. Consequently, $C(\bigcup_{i \in I} A_i) = \bigcup \{C(B) : B \subseteq \bigcup_{i \in I} A_i \text{ and } B \text{ is finite}\} = \bigcup \{C(B) : B \subseteq A_k, \text{ for some } k \in I \text{ and } B \text{ is finite}\} \subseteq \bigcup_{i \in I} C(A_i)$. The reverse inclusion is always valid.

(ii)
$$\Rightarrow$$
(iii) Trivial, since $\mathcal{L}_C = \{C(A) : A \subseteq X\}.$

Algebraic Closure Operators and ∩-Structures (Cont'd)

(iii) \Rightarrow (i) Let $A \subseteq X$. The family $\mathcal{D} := \{C(B) : B \subseteq A \text{ and } B \text{ is finite}\}$ is directed. Hence $\bigcup \mathcal{D} \in \mathcal{L}_C$. For each $x \in A$, we have

 $x \in \{x\} \subseteq C(\{x\}) \subseteq \bigcup \mathcal{D}.$

So, $A \subseteq \bigcup \mathcal{D}$. Hence

 $C(A) \subseteq C(\bigcup D) = \bigcup D = \bigcup \{C(B) : B \subseteq A \text{ and } B \text{ is finite} \}.$

Since the reverse inclusion always holds, *C* is algebraic.

Finite and Compact Elements

- We aim to characterize, in a lattice-theoretic way, the closures, with respect to an algebraic closure operator on X, of the finite subsets of X.
- Let L be a complete lattice and let $k \in L$.
 - i) k is called **finite** (in L) if, for every directed set D in L,

$$k \leq \bigsqcup D \implies k \leq d$$
, for some $d \in D$.

The set of finite elements of *L* is denoted F(L). (ii) *k* is said to be **compact** if, for every subset *S* of *L*,

 $k \leq \bigvee S \implies k \leq \bigvee T$, for some finite subset T of S.

The set of compact elements of *L* is denoted K(L).

Finite and Compact Elements in a Complete Lattice

• Unlike compactness, finiteness makes sense in ordered sets in which joins exist for directed subsets, but not necessarily for all subsets.

Lemma

Let L be a complete lattice. Then F(L) = K(L). Further, $k_1 \lor k_2 \in F(L)$ whenever $k_1, k_2 \in F(L)$.

 Assume first that k ∈ K(L) and that k ≤ □D, where D is directed. Then there exists a finite subset F of D, such that k ≤ ∨ F. Because D is directed, we can find d ∈ D with d ∈ F^u. Then k ≤ d, so k ∈ F(L).

Conversely, assume that $k \in F(L)$ and that $k \leq \bigvee S$. The set $D = \{ \bigvee T : T \subseteq S \text{ and } T \text{ is finite} \}$ is directed. Moreover, $\bigsqcup D = \bigvee S$. Applying the finiteness condition, we find a finite subset T of S with $k \leq \bigvee T$.

Finite and Compact Elements (Cont'd)

- For the second part, assume k₁, k₂ ∈ F(L).
 Suppose, there exists directed D ⊆ L, such that k₁ ∨ k₂ ≤ ∐ D.
 Then k₁ ≤ ∐ D and k₂ ≤ ∐ D.
 Since k₁, k₂ ∈ F(K), there exist d₁, d₂ ∈ D, such that k₁ ≤ d₁ and k₂ ≤ d₂.
 Since D is directed, there exists d ∈ D, such that d₁ ≤ d and d₂ ≤ d.
 - Now we get $k_1 \vee k_2 \leq d_1 \vee d_2 \leq d$.
 - Therefore, $k_1 \lor k_2 \in F(L)$.

Examples of Finite Elements in Complete Lattices

- In $\mathcal{P}(X)$ (X a set): the finite elements are all finite subsets of X.
- In O(P) (P an ordered set): the finite elements are all down-sets of the form ↓F, with F finite.
- In SubG (G a group): the finite elements are all finitely generated subgroups.
- In SubV (V a vector space): the finite elements are all finite-dimensional subspaces.
- In a complete lattice satisfying the (ACC): all elements are finite.
- In [0,1]: the only finite element is 0.
- Note that \perp in a complete lattice is always finite.
- As a simple example of a non-finite element we have the top element of $\mathbb{N}\oplus 1.$

Natural Numbers under Divisibility

• Consider $\langle \mathbb{N}_0; \preccurlyeq \rangle$.

Claim: No element other than $1 (= \bot)$ is compact.

0 (= T) is the join of the set of all primes. But 0 not the join of any finite set of primes. Thus, 0 is not compact.

Now let $n \in \mathbb{N}_0$ with $n \notin \{0, 1\}$. Let S be the set of primes which do not divide n. Then S is infinite. So $\bigvee S = \top$ (= 0), because any non-zero element of \mathbb{N}_0 has only finitely many prime divisors. Hence $n \leq \bigvee S$ but $n \notin \bigvee T$, for any finite subset T of S. Thus, n is not compact.

Algebraic Lattices

 A complete lattice L is said to be algebraic if, for each a ∈ L, a = ∨{k ∈ K(L) : k ≤ a}.

Lemma

Let *C* be an algebraic closure operator on *X* and \mathcal{L}_C the associated topped algebraic \cap -structure. Then \mathcal{L}_C is an algebraic lattice in which an element *A* is finite (equivalently, compact) if and only if A = C(Y), for some finite set $Y \subseteq X$.

We show that the finite elements are the closures of the finite sets: Let Y be a finite subset of X and let A = C(Y). Take a directed set D in L_C with A ⊆ □D. Then, since □ coincides with ∪ in L_C, Y ⊆ C(Y) = A ⊆ □D = ∪D. As Y is finite and D directed, there exists B ∈ D, such that Y ⊆ B. Then A = C(Y) ⊆ C(B) = B. If A ∈ L_C is a finite element, A = □{C(Y) : Y ⊆ A and Y is finite}. Since A is finite in L_C, there exists a finite set Y ⊆ A such that A ⊆ C(Y). For the reverse, note Y ⊆ A implies C(Y) ⊆ C(A) = A.

Algebraic Lattices and Topped ∩-Structures

Theorem

- (i) Let L be a topped algebraic ∩-structure. Then L is an algebraic lattice.
- (ii) Let L be an algebraic lattice and define D_a := {k ∈ K(L) : k ≤ a}, for each a ∈ L. Then L := {D_a : a ∈ L} is a topped algebraic ∩-structure isomorphic to L.
- (i) This has already been shown.
- (ii) We omit the proof that L is a topped ∩-structure and prove that the map φ : a ↦ D_a is an isomorphism of L onto L and that L is algebraic. Because L is algebraic, D_a ⊆ D_b in L implies a = ∨ D_a ≤ ∨ D_b = b in L. The reverse implication holds always. Therefore φ is an order-isomorphism.

Algebraic Lattices and Topped ∩-Structures (Cont'd)

Take a directed subset D = {D_c : c ∈ C} of L. As φ is an order isomorphism, the indexing set C is a directed subset of L. Define

$$a = \bigsqcup C$$
.

Claim: $\bigcup \mathcal{D} = D_a$ and so it belongs to *L*. Indeed,

$$k \in D_a \iff k \in K(L) = F(L) \text{ and } k \le a = \bigsqcup C$$

$$\Leftrightarrow k \in F(L) \text{ and } k \le c, \text{ for some } c \in C$$

$$\Leftrightarrow k \in D_c \text{ for some } c \in C$$

$$\Leftrightarrow k \in \bigcup D.$$

Hence L is closed under directed unions and so is algebraic.

Examples of Algebraic Topped ∩-Structures

- $\mathcal{P}(X)$, for any set X;
- Any complete lattice of sets and, in particular, the down-set lattice $\mathcal{O}(P)$, for any ordered set P;
- SubG, for any group G;
- SubV, for any vector space V;
- $\mathcal{I}(L)$, the ideal lattice of any lattice L with 0;
- ConL, for any lattice L.
- The chains \boldsymbol{n} , for $n \geq 1$, and $\mathbb{N} \oplus \boldsymbol{1}$ are algebraic lattices.
- Any lattice *L* with a bottom element and satisfying (ACC) is an algebraic lattice:
 - *L* is a complete lattice;
 - every element $x \in L$ is compact, and so is the join of $\downarrow x \cap K(L)$.

An example of an infinite algebraic lattice of this type is $\langle \mathbb{N}_0; \leq \rangle^{\partial}$. On the other hand, $\langle \mathbb{N}_0; \leq \rangle$ is not algebraic, since its only compact element is \perp .

Subsection 3

Galois Connections

Galois Connections

Let P and Q be ordered sets. A pair (▷, <) of maps ▷: P → Q and
 Q → P (called right and left, respectively) is a Galois connection between P and Q if, for all p ∈ P and q ∈ Q,

$$(\mathsf{Gal}) \qquad p^{\triangleright} \leq q \quad \Longleftrightarrow \quad p \leq q^{\triangleleft}.$$

The map [▷] is called the lower adjoint of [⊲] and the map [⊲] the upper adjoint of [▷];
 The terms "lower" and "upper" refer to the side of ≤ on which the

map appears.

Order-Theoretic Examples

 Suppose that sets P and Q are ordered by the discrete order, =. Then ▷: P → Q and ⊲: Q → P set up a Galois connection between P and Q if and only if they are set-theoretic inverses of each other.
 Let P be an ordered set. For A ⊆ P, we have previously defined the sets of upper and lower bounds of A as

$$A^{u} = \{y \in P : (\forall x \in A) \ x \leq y\}, \quad A^{\ell} = \{y \in P : (\forall x \in A) \ y \leq x\}.$$

It is easy to see that $\binom{u,\ell}{}$ is a Galois connection between $\mathcal{P}(P)$ and $\mathcal{P}(P)^{\partial}$: $A^{u} \supseteq B \iff (\forall y \in B)((\forall x \in A) \ x \le y)$ $\Leftrightarrow (\forall x \in A)((\forall y \in B) \ y \ge x)$ $\Leftrightarrow A \subseteq B^{\ell}.$

(4) Let P be an ordered set. For $A \subseteq P$, define

$$A^{\triangleright} := P \setminus \downarrow A$$
 and $A^{\triangleleft} := P \setminus \uparrow A$.

Then $({}^{\triangleright},{}^{\triangleleft})$ forms a Galois connection between $\mathcal{P}(P)^{\partial}$ and $\mathcal{P}(P)$.

Properties of Galois Connections

Lemma

Assume $({}^{\triangleright},{}^{\triangleleft})$ is a Galois connection between ordered sets P and Q. Let $p, p_1, p_2 \in P$ and $q, q_1, q_2 \in Q$. Then: (Gal1) $p \leq p^{\triangleright \triangleleft}$ and $q^{\triangleleft \triangleright} \leq q$; **Cancelation Rule** (Gal2) $p_1 \leq p_2 \Rightarrow p_1^{\triangleright} \leq p_2^{\triangleright}$ and $q_1 \leq q_2 \Rightarrow q_1^{\triangleleft} \leq q_2^{\triangleleft}$; (Gal3) $p^{\triangleright} = p^{\triangleright \triangleleft \triangleright}$ and $q^{\triangleleft} = q^{\triangleleft \triangleright \triangleleft}$. **Semi-inverse Rule** Conversely, a pair of maps ${}^{\triangleright} : P \to Q$ and ${}^{\triangleleft} : Q \to P$ satisfying (Gal1) and (Gal2) for all $p, p_1, p_2 \in P$ and for all $q, q_1, q_2 \in Q$ sets up a Galois connection between P and Q.

- Gal1: For $p \in P$, we have $p^{\triangleright} \leq p^{\triangleright}$ from which we obtain $p \leq p^{\triangleright \triangleleft}$ by putting $q = p^{\triangleright}$ in (Gal). Hence (Gal) implies (Gal1).
- Gal2: For (Gal2), $p_1 \le p_2$ implies, by (Gal1) and transitivity, $p_1 \le p_2^{\triangleright\triangleleft}$, whence, by (Gal), $p_1^{\triangleright} \le p_2^{\triangleright}$.

Properties of Galois Connections (Cont'd)

 $q_1 \leq q_2$ implies, by (Gal1) and transitivity, $q_1^{\triangleleft \triangleright} \leq q_2$, whence, by (Gal), $q_1^{\triangleleft} \leq q_2^{\triangleleft}$.

Gal3: We now prove (Gal3). Applying $^{\triangleright}$ to the inequality $p \le p^{\triangleright \triangleleft}$ in (Gal1) we have, by (Gal2), $p^{\triangleright} \le p^{\triangleright \triangleleft \triangleright}$. Also, by (Gal) with $p^{\triangleright \triangleleft}$ in place of p and p^{\triangleright} in place of q, $p^{\triangleright \triangleleft} \le p^{\triangleright \triangleleft}$ implies $p^{\triangleright \triangleleft \triangleright} \le p^{\triangleright}$.

Lastly, assume that (Gal1) and (Gal2) hold universally.

- Let $p^{\triangleright} \leq q$. By (Gal2), $p^{\triangleright \triangleleft} \leq q^{\triangleleft}$. Also, (Gal1) gives $p \leq p^{\triangleright \triangleleft}$. Hence $p \leq q^{\triangleleft}$ by transitivity.
- Let $p \le q^{\triangleleft}$. By (Gal2), $p^{\triangleright} \le q^{\triangleleft \triangleright}$. Also, (Gal1) gives $q^{\triangleleft \triangleright} \le q$. Hence $p^{\triangleright} \le q$ by transitivity.

From a Galois Connection to a Closure Operator

- Let ([▷],[¬]) be a Galois connection between ordered sets P and Q[∂] (note that we have Q[∂] instead of Q here). Then:
 - (i) c =^{▷⊲}: P → P and k =^{⊲⊳}: Q → Q are closure operators. (In this notation, the left-hand map in each composition is performed first.)
 (ii) Let P_c := {p ∈ P : p^{▷⊲} = p} and Q_k := {q ∈ Q : q^{⊲⊳} = q}. Then
 ▷ : P_c → Q[∂]_μ and [⊲] : Q[∂]_μ → P_c are mutually inverse order isomorphisms.

• Note that, indeed, for all $p, p' \in P$:

• $p \le p^{\triangleright \triangleleft}$; • $p \le p'$ implies $p^{\triangleright \triangleleft} \le p'^{\triangleright \triangleleft}$; • $p^{\triangleright \triangleleft \triangleright \triangleleft} = p^{\triangleright \triangleleft}$.

• To check (ii), use (Gal3) to get that:

- $\stackrel{\scriptstyle \triangleright}{}$ maps P_c onto Q_k^∂ ;
- \triangleleft maps Q_k^∂ onto P_c ;
- these maps are inverse to each other.

Since they are also order-preserving (by (Gal2)), they are order-isomorphisms.

From a Closure Operator to a Galois Connection

- Every closure operator arises as the composite of the left and right maps of a Galois connection:
 - Let $c: P \rightarrow P$ be a closure operator;
 - Define $Q := P_c$;
 - Let ${}^{\triangleright}: P \to P_c$ be given by $p^{\triangleright} \coloneqq c(p)$;
 - Let $\triangleleft : P_c \rightarrow P$ be the inclusion map.

Then $c = {}^{\triangleright \triangleleft}$.

- Correspondences which provide alternative ways in which complete lattices arise:
 - Every topped ∩-structure is a complete lattice. Up to isomorphism, every complete lattice arises this way.
 - There is a bijective correspondence between closure operators on a set *X* and topped ∩-structures on *X*.
 - Every Galois connection ([▷],[¬]) gives rise to a pair of closure operators,
 ^{▷¬} and ^{¬▷}, and thence to an isomorphic pair of complete lattices.

Galois Connections and Preservation of Joins and Meets

Proposition

Let $({}^{\triangleright},{}^{\triangleleft})$ be a Galois connection between ordered sets P and Q. Then ${}^{\triangleright}$ preserves existing joins and ${}^{\triangleleft}$ preserves existing meets.

 We first define z := ∨_P S and show that z[▷] is an upper bound for S[▷]. By (Gal2),

$$(\forall s \in S) \ s \leq z \implies (\forall s \in S) \ s^{\triangleright} \leq z^{\triangleright}.$$

Now let q be any upper bound for S^{\triangleright} . Then

$$\begin{array}{ll} (\forall s \in S) \ s^{\triangleright} \leq q & \Leftrightarrow & (\forall s \in S) \ s \leq q^{\triangleleft} & (\text{by (Gal)}) \\ \Rightarrow & \bigvee_{P} S \leq q^{\triangleleft} & (\text{by definition of } \bigvee_{P} S) \\ \Leftrightarrow & (\bigvee_{P} S)^{\triangleright} \leq q. & (\text{by (Gal)}) \end{array}$$

We conclude that z^{\triangleright} is the least upper bound of S^{\triangleright} .

Order Preserving Maps and Galois Connections

Lemma

Let P and Q be ordered sets and $\varphi: P \to Q$ an order preserving map. Then the following are equivalent:

- (i) There exists an order-preserving map $\varphi^{\#} : Q \to P$, such that both $\varphi^{\#} \circ \varphi \ge id_P$ and $\varphi \circ \varphi^{\#} \le id_Q$;
- (ii) For each $q \in Q$, there exists a (necessarily unique) $s \in P$, such that $\varphi^{-1}(\downarrow q) = \downarrow s$.

[(i)⇒(ii)] Claim:
$$\varphi^{-1}(\downarrow q) = \downarrow \varphi^{\#}(q)$$
.
We have

$$p \in \varphi^{-1}(\downarrow q) \iff \varphi(p) \le q$$

$$\Rightarrow (\varphi^{\#} \circ \varphi)(p) \le \varphi^{\#}(q) \text{ (since } \varphi^{\#} \text{ is order-preserving)}$$

$$\Rightarrow p \le \varphi^{\#}(q) \text{ (from } \varphi^{\#} \circ \varphi \ge \mathrm{id}_{P} \& \text{ transitivity)}$$

$$\Rightarrow p \in \downarrow \varphi^{\#}(q).$$

Order Preserving Maps and Galois Connections (Converse)

For the other direction, let $p \in \downarrow \varphi^{\#}(q)$. This yields $\varphi(p) \leq (\varphi \circ \varphi^{\#})(q)$ from which we can deduce that $\varphi(p) \leq q$, so that $p \in \varphi^{-1}(\downarrow q)$. [(ii) \Rightarrow (i)] For each $q \in Q$, we have a unique element $s \in P$, depending

on q, such that $\varphi^{-1}(\downarrow q) = \downarrow s$. Define $\varphi^{\#}(q) \coloneqq s$. Restated, this means that

$$(\forall q \in Q)(\forall p \in P)\varphi(p) \leq q \iff p \leq \varphi^{\#}(q).$$

We now see that the pair $(\varphi, \varphi^{\#})$ is a Galois connection between P and Q, so that the properties in (i) follow.

The proof says that, in a Galois connection ([▷],[⊲]), each of [▷] and [⊲] uniquely determines the other:

$$p^{\triangleright} = \min \{ q \in Q : p \le q^{\triangleleft} \}; q^{\triangleleft} = \max \{ p \in P : p^{\triangleright} \le q \}.$$

Preservation of Joins and Meets

Proposition

- Let *P* and *Q* be ordered sets and $\varphi : P \rightarrow Q$ be a map.
 - (i) Assume P is a complete lattice. Then φ preserves arbitrary joins if and only if φ possesses an upper adjoint $\varphi^{\#}$ (that is, $(\varphi, \varphi^{\#})$ is a Galois connection).
- (ii) Assume Q is a complete lattice. Then φ preserves arbitrary meets if and only if φ possesses a lower adjoint φ^{\flat} (that is, $(\varphi^{\flat}, \varphi)$ is a Galois connection).
- (i) The backward implication has been shown.

For the forward implication, assume that φ preserves arbitrary joins. Note first that φ is order-preserving. It therefore suffices to show that condition (ii) in the preceding lemma is satisfied.

Preservation of Joins and Meets (Cont'd)

Let q ∈ Q.
 Claim: s := V_P{p ∈ P : φ(p) ≤ q}(= V_P φ⁻¹(↓q)) is such that φ⁻¹(↓q) = ↓s.
 It follows immediately that φ⁻¹(↓q) ⊆ ↓s.
 Since φ preserves arbitrary joins,

$$\varphi(s) = \bigvee_{Q} \{ \varphi(p) : p \in P \text{ with } \varphi(p) \leq q \}.$$

Hence, $\varphi(s) \leq q$. For any $p \in \downarrow s$, we have $\varphi(p) \leq q$, because φ is order-preserving and \leq is transitive. Therefore $\downarrow s \subseteq \varphi^{-1}(\downarrow q)$.

George Voutsadakis (LSSU)

Subsection 4

Completions

Completion

- Let P be an ordered set. If φ : P → L and L is a complete lattice, then we say that L is a completion of P (via the order embedding φ).
- We saw that the map φ : x ↦ ↓x is an order embedding of P into O(P).
 - We also saw that $\mathcal{O}(P)$ is a complete lattice.
 - Thus, $\mathcal{O}(P)$ is a completion of P.
 - This completion is unnecessarily large. For example, if P is a complete lattice, then P is a completion of itself (via the identity map) while $\mathcal{O}(P)$ is much larger.
- Another completion of an ordered set is the ideal completion.

Review of u , $^{\ell}$ and their Properties

• Let $A \subseteq P$. Then A "upper" and A "lower" are defined by

$$A^{u} := \{x \in P : (\forall a \in A) \ a \le x\} \text{ and } A^{\ell} := \{x \in P : (\forall a \in A) \ a \ge x\}.$$

For subsets A and B of P, we have:

(i)
$$A \subseteq A^{u\ell}$$
 and $A \subseteq A^{\ell u}$;
(ii) if $A \subseteq B$, then $A^u \supseteq B^u$ and $A^\ell \supseteq B^\ell$;
(iii) $A^u = A^{u\ell u}$ and $A^\ell = A^{\ell u\ell}$.

Further, A^u is an up-set and A^ℓ is a down-set.

The Dedekind-MacNeille Completion

• Let P be an ordered set. We define

$$\mathsf{DM}(P) \coloneqq \{A \subseteq P : A^{u\ell} = A\}.$$

 This is the topped ∩-structure on P corresponding to the closure operator

$$C(A) \coloneqq A^{u\ell}$$

on P.

Therefore the ordered set $(DM(P); \subseteq)$ is a complete lattice.

It is known as the Dedekind-MacNeille completion of *P*.
 It is also referred to as the completion by cuts or the normal completion of *P*.

Dedekind-McNeill Completion and Down-Sets

Lemma

Let P be an ordered set.

- (i) For all $x \in P$, we have $(\downarrow x)^{u\ell} = \downarrow x$ and hence $\downarrow x \in DM(P)$.
- (ii) If $A \subseteq P$ and $\bigvee A$ exists in P, then $A^{u\ell} = \downarrow (\lor A)$.
- (i) Let y ∈ (↓x)^u. Then z ≤ y, for all z ∈ ↓x. In particular, x ≤ y (as x ∈ ↓x) and, hence, y ∈ ↑x. Thus, (↓x)^u ⊆ ↑x.
 If y ∈ ↑x, then y ≥ x. So, by transitivity, y ≥ z, for all z ∈ ↓x, that is, y ∈ (↓x)^u. Thus ↑x ⊆ (↓x)^u.
 Therefore, (↓x)^u = ↑x and, by duality, (↑x)^ℓ = ↓x.
 Thus, (↓x)^{uℓ} = (↑x)^ℓ = ↓x.
- (ii) Let A ⊆ P. Assume that A exists in P. Of course ∨ A ∈ A^u. Thus x ∈ A^{uℓ} implies that x ≤ ∨ A and hence x ∈ ↓(∨ A). Consequently, A^{uℓ} ⊆ ↓(∨ A). Since ∨ A is the least upper bound of A we have ∨ A ≤ y, for all y ∈ A^u and hence ∨ A ∈ A^{uℓ}. Since A^{uℓ} is a down-set this gives ↓(∨ A) ⊆ A^{uℓ}. Hence, A^{uℓ} = ↓(∨ A), as required.

The Dedekind-MacNeille Completion Theorem

Theorem

Let P be an ordered set and define $\varphi : P \to DM(P)$ by $\varphi(x) = \downarrow x$, for all $x \in P$.

(i) DM(P) is a completion of P via the map φ .

ii) φ preserves all joins and meets which exist in *P*.

- (i) As we saw above, (DM(P); ⊆) is a complete lattice and the order-embedding φ maps P into DM(P).
- (ii) Let $A \subseteq P$ and assume that $\forall A$ exists in P. We must show that $\varphi(\forall A) = \forall \varphi(A)$, that is, $\downarrow(\forall A) = \forall \{\downarrow a : a \in A\}$ in DM(P).
 - Clearly, $\downarrow(\lor A)$ is an upper bound for $\{\downarrow a : a \in A\}$.
 - Now choose any B ∈ DM(P) which is an upper bound for {↓a: a ∈ A}.
 Since a ∈ ↓a ⊆ B, for all a ∈ A, we have A ⊆ B. Hence, ↓(∨ A) = A^{uℓ} ⊆ B^{uℓ} = B.

The Dedekind-MacNeille Completion Theorem (Cont'd)

• Now assume that $\bigwedge A$ exists in P. We must show that

$$\downarrow (\bigwedge A) = \bigwedge \{ \downarrow a : a \in A \}.$$

Since DM(P) is a topped \cap -structure, we have in DM(P)

$$\bigwedge \{ \downarrow a : a \in A \} = \bigcap \{ \downarrow a : a \in A \}.$$

This yields the result.

Characterization of the Dedekind-MacNeille Completion

Theorem

Let P be an ordered set and let $\varphi : P \to DM(P)$ be the order-embedding of P into its Dedekind-MacNeille completion given by $\varphi(x) = \downarrow x$.

- (i) $\varphi(P)$ is both join-dense and meet-dense in DM(P).
- (ii) Let L be a complete lattice and assume that P is a subset of L which is both join-dense and meet-dense in L. Then $L \cong DM(P)$ via an order-isomorphism which agrees with φ on P.

Theorem

Let *L* be a lattice with no infinite chains. Then $L \cong DM(\mathcal{J}(L) \cup \mathcal{M}(L))$. Moreover, $\mathcal{J}(L) \cup \mathcal{M}(L)$ is the smallest subset of *L* which is both join-dense and meet-dense in *L*.

Examples I

- Every real number x ∈ R satisfies V_R(↓x ∩ Q) = x = ∧_R(↑x ∩ Q). Hence Q is both join-dense and meet-dense in R ∪ {-∞,∞}. Consequently R ∪ {-∞,∞} is (order-isomorphic to) the Dedekind-MacNeille completion of Q.
- (2) $\mathsf{DM}(\mathbb{N}) \cong \mathbb{N} \oplus \mathbf{1}$.
- (3) For any set X, the complete lattice $\mathcal{P}(X) \cong \mathsf{DM}(P)$, where $P = \{\{x\} : x \in X\} \cup \{X \setminus \{x\} : x \in X\}.$
- (4) The Dedekind-MacNeille completion of an *n*-element antichain (for $n \ge 1$) is order-isomorphic to the lattice M_n .

Examples II

(5) Each pair of diagrams consists of an ordered set P_i along with its Dedekind-MacNeille completion L_i ≅ DM(P_i) or, alternatively, as a lattice L_i with a distinguished subset P_i such that L_i ≅ DM(P_i):

