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Linear Equations in Linear Algebra Systems of Linear Equations
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Linear Equations in Linear Algebra Systems of Linear Equations

Linear Equations

A linear equation in the variables x1, . . . , xn is an equation that can
be written in the form

a1x1 + a2x2 + · · ·+ anxn = b,

where b and the coefficients a1, . . . , an are real or complex numbers.

Example: The equations

4x1 − 5x2 + 2 = x1 and x2 = 2(
√
6− x1) + x3

are both linear because they can be rearranged algebraically:

3x1 − 5x2 = −2 and 2x1 + x2 − x3 = 2
√
6.

The equations

4x1 − 5x2 = x1x2 and x2 = 2
√
x1 − 6

are not linear because of the presence of x1x2 in the first equation and√
x1 in the second.
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Linear Equations in Linear Algebra Systems of Linear Equations

Linear Systems and Solutions

A system of linear equations (or a linear system) is a collection of
one or more linear equations involving the same variables - say,
x1, . . . , xn.

Example:
2x1 − x2 + 1.5x3 = 8
x1 − 4x3 = −7

A solution of the system is a list (s1, s2, . . . , sn) of numbers that
makes each equation a true statement when the values s1, . . . , sn are
substituted for x1, . . . , xn, respectively.

Example: (5, 6.5, 3) is a solution of the system above because, when
these values are substituted for x1, x2, x3, respectively, the equations
simplify to 8 = 8 and −7 = −7.
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Linear Equations in Linear Algebra Systems of Linear Equations

Solution Sets and Equivalent Systems

The set of all possible solutions is called the solution set of the linear
system.

Two linear systems are called equivalent if they have the same
solution set:

Each solution of the first system is a solution of the second system; and
Each solution of the second system is a solution of the first.
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Linear Equations in Linear Algebra Systems of Linear Equations

Example

Consider the system

{

x1 − 2x2 = −1
−x1 + 3x2 = 3

.

Finding the solution set is easy because it amounts to finding the
intersection of two lines.

A pair of numbers (x1, x2) satisfies both equations in the system if
and only if the point (x1, x2) lies on both lines.

In the system above, the solution is the single point (3, 2).
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Linear Equations in Linear Algebra Systems of Linear Equations

Example

Two lines need not intersect in a single point: they could be parallel,
or they could coincide and hence “intersect” at every point on the
line.

Example: The figures below show the graphs that correspond to the
following systems:

{

x1 − 2x2 = −1
−x1 + 2x2 = 3

{

x1 − 2x2 = −1
−x1 + 2x2 = 1
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Linear Equations in Linear Algebra Systems of Linear Equations

Types of Linear Systems

A system of linear equations has

1. no solution; or
2. exactly one solution; or
3. infinitely many solutions.

A system of linear equations is said to be:

consistent if it has either one solution or infinitely many solutions;
inconsistent if it has no solution.
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Linear Equations in Linear Algebra Systems of Linear Equations

Matrix Representation of a Linear System

The essential information of a linear system can be recorded
compactly in a rectangular array called a matrix.

Consider the system







x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

The matrix





1 −2 1
0 2 −8

−4 5 9



 is called the coefficient matrix (or

matrix of coefficients) of the system.

The matrix





1 −2 1 0
0 2 −8 8

−4 5 9 −9



 is called the augmented matrix

of the system.

An augmented matrix of a system consists of the coefficient matrix
with an added column containing the right side constants.

George Voutsadakis (LSSU) Linear Algebra August 2017 10 / 130



Linear Equations in Linear Algebra Systems of Linear Equations

Size of a Matrix

The size of a matrix tells how many rows and columns it has.

If m and n are positive integers, an m × n matrix is a rectangular
array of numbers with m rows and n columns.

Example: The augmented matrix





1 −2 1 0
0 2 −8 8

−4 5 9 −9





is a 3× 4 (read “3 by 4”) matrix.
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Linear Equations in Linear Algebra Systems of Linear Equations

Elementary Row Operations

Elementary Row Operations

1. (Replacement) Replace one row by the sum of itself and a multiple
of another row.

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

Example:
[

1 5
2 3

]

R2←R2−2R1−→
[

1 5
0 −7

]

;
[

0 5
1 8

]

R1↔R2−→
[

1 8
0 5

]

;
[

3 12
2 3

]

R1←
1
3
R1−→

[

1 4
2 3

]

.

Two matrices A,B are called row equivalent (denoted A ∼ B) if
there is a sequence of elementary row operations that transforms one
matrix into the other.
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Linear Equations in Linear Algebra Systems of Linear Equations

Reversibility

Row operations are reversible.
If two rows are interchanged, they can be returned to their original
positions by another interchange.
If a row is scaled by a nonzero constant c , then multiplying the new
row by 1

c
produces the original row.

Consider a replacement operation involving two rows - say, rows 1 and
2 - and suppose that c times row 1 is added to row 2.
To “reverse” this operation, add −c times row 1 to (new) row 2 and
obtain the original row 2.

Example:
[

0 5
1 8

]

R1↔R2−→
[

1 8
0 5

]

R1↔R2−→
[

0 5
1 8

]

;
[

3 12
2 3

]

R1←
1
3
R1−→

[

1 4
2 3

]

R1←3R1−→
[

3 12
2 3

]

;
[

1 5
2 3

]

R2←R2−2R1−→
[

1 5
0 −7

]

R2←R2+2R1−→
[

1 5
2 3

]

;
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Linear Equations in Linear Algebra Systems of Linear Equations

Row Equivalence and Solutions

We are interested in row operations on the augmented matrix of a
system of linear equations.

Suppose a system is changed to a new one via row operations.

By considering each type of row operation, we can see that any
solution of the original system remains a solution of the new system.

Conversely, since the original system can be produced via row
operations on the new system, each solution of the new system is also
a solution of the original system.

This discussion justifies the following statement.

If the augmented matrices of two linear systems are row
equivalent, then the two systems have the same solution
set.
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Linear Equations in Linear Algebra Systems of Linear Equations

Example

Solve the linear system







x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

Form the augmented matrix and use elementary row operations to
produce a simpler equivalent system:





1 −2 1 0
0 2 −8 8

−4 5 9 −9





R3 ← R3 + 4R1−→





1 −2 1 0
0 2 −8 8
0 −3 13 −9





R2 ←
1
2
R2−→





1 −2 1 0
0 1 −4 4
0 −3 13 −9





R1 ← R1 + 2R2−→
R3 ← R3 + 3R2





1 0 −7 8
0 1 −4 4
0 0 1 3





R1 ← R1 + 7R3−→
R2 ← R2 + 4R3





1 0 0 29
0 1 0 16
0 0 1 3



 . So (x1, x2, x3) = (29, 16, 3).
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Linear Equations in Linear Algebra Systems of Linear Equations

Determining Consistency

Determine whether the linear system






x1 − x2 + x3 = 15
2x1 + x2 − 2x3 = −13
−x1 + 2x2 + x3 = −6

is consistent.

We have




1 −1 1 15
2 1 −2 −13

−1 2 1 −6





R2 ← R2 − 2R1−→
R3 ← R3 + R1





1 −1 1 15
0 3 −4 −43
0 1 2 9





R2 ↔ R3−→




1 −1 1 15
0 1 2 9
0 3 −4 −43





R3 ← R3 − 3R2−→





1 −1 1 15
0 1 2 9
0 0 −10 −70





Thus we get







x1 − x2 + x3 = 15
x2 + 2x3 = 9

− 10x3 = −70
which is consistent.
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Linear Equations in Linear Algebra Systems of Linear Equations

Determining Consistency

Determine whether the linear system






x2 − 4x3 = 8
2x1 − 3x2 + 2x3 = 1
5x1 − 8x2 + 7x3 = 1

is consistent.

We have




0 1 −4 8
2 −3 2 1
5 −8 7 1





R1 ↔ R2−→





2 −3 2 1
0 1 −4 8
5 −8 7 1





R1 ←
1
2
R1−→





1 −3
2 1 1

2
0 1 −4 8
5 −8 7 1





R3 ← R3 − 5R1−→





1 −3
2 1 1

2
0 1 −4 8
0 −1

2 2 −3
2





R3 ← R3 + 1
2
R2−→





1 −3
2 1 1

2
0 1 −4 8
0 0 0 5

2



 , which is inconsistent!
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Subsection 2

Row Reduction and Echelon Forms
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Linear Equations in Linear Algebra Row Reduction and Echelon Forms

Echelon and Reduced Echelon Forms

A nonzero row or column in a matrix means a row or column that
contains at least one nonzero entry.

A leading entry of a row refers to the leftmost nonzero entry.

Definition

A rectangular matrix is in echelon form (or row echelon form) if it has
the following properties:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry
of the row above it.

If a matrix in echelon form satisfies the following additional conditions,
then it is in reduced echelon form (or reduced row echelon form):

3. The leading entry in each nonzero row is 1.

4. Each leading 1 is the only nonzero entry in its column.
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Linear Equations in Linear Algebra Row Reduction and Echelon Forms

Echelon and Reduced Echelon Matrices

An echelon matrix (respectively, reduced echelon matrix) is one
that is in echelon form (respectively, reduced echelon form).

Property 2 says that the leading entries form an echelon (“steplike”)
pattern that moves down and to the right through the matrix.

Example: The matrices





2 −3 2 1
0 1 −4 8
0 0 0 5

2



 and





1 0 0 29
0 1 0 16
0 0 1 3





are in echelon form.

The second matrix is in reduced echelon form, but the first is not.
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Linear Equations in Linear Algebra Row Reduction and Echelon Forms

Example

The following matrices are in echelon form, where the leading entries
(�) may have any nonzero value and the starred entries (∗) may have
any value (including zero).









� ∗ ∗ ∗
0 � ∗ ∗
0 0 0 0
0 0 0 0









,













0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 � ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 � ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 � ∗













The following matrices are in reduced echelon form because the
leading entries are 1’s, and there are 0’s below and above each
leading 1.









1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0









,













0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗













George Voutsadakis (LSSU) Linear Algebra August 2017 21 / 130



Linear Equations in Linear Algebra Row Reduction and Echelon Forms

Reduction and Uniqueness of the Reduced Echelon Form

Any nonzero matrix may be row reduced (that is, transformed by
elementary row operations) into more than one matrix in echelon
form, using different sequences of row operations.

However, the reduced echelon form one obtains from a matrix is
unique:

Theorem (Uniqueness of the Reduced Echelon Form)

Each matrix is row equivalent to one and only one reduced echelon matrix.

If a matrix A is row equivalent to an echelon matrix U, we call U an
echelon form (or row echelon form) of A;

If U is in reduced echelon form, we call U the reduced echelon

form of A.
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Linear Equations in Linear Algebra Row Reduction and Echelon Forms

Pivot Positions and Pivot Columns

When row operations on a matrix produce an echelon form, further
row operations to obtain the reduced echelon form do not change the
positions of the leading entries.

Since the reduced echelon form is unique, the leading entries are
always in the same positions in any echelon form obtained from a
given matrix.

These leading entries correspond to leading 1’s in the reduced echelon
form.

Definition

A pivot position in a matrix A is a location in A that corresponds to a
leading 1 in the reduced echelon form of A.
A pivot column is a column of A that contains a pivot position.
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Linear Equations in Linear Algebra Row Reduction and Echelon Forms

Example (Step 1)

Row reduce the matrix A =









0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
1 4 5 −9 −7









to echelon

form, and locate the pivot columns of A.

The top of the leftmost nonzero column is the first pivot position.

A nonzero entry, or pivot, must be placed in this position.









0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
1 4 5 −9 −7









R1 ↔ R4−→









1 4 5 −9 −7
−1 −2 −1 3 1
−2 −3 0 3 −1
0 −3 −6 4 9








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Example (Step 2)

Create zeros below the pivot, 1, by adding multiples of the first row
to the rows below:









1 4 5 −9 −7
−1 −2 −1 3 1
−2 −3 0 3 −1
0 −3 −6 4 9









R2 ← R2 + R1−→
R3 ← R3 + 2R1









1 4 5 −9 −7
0 2 4 −6 −6
0 5 10 −15 −15
0 −3 −6 4 9









The pivot position in the second row must be as far left as possible -
namely, in the second column.

Choose the 2 in this position as the next pivot.
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Example (Step 3)

Create zeros below the pivot, 2, by adding multiples of the second
row to the rows below:








1 4 5 −9 −7
0 2 4 −6 −6
0 5 10 −15 −15
0 −3 −6 4 9









R3 ← R3 −
5
2
R2−→

R4 ← R4 + 3
2
R2









1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 0 0
0 0 0 −5 0









There is no way to create a leading entry in column 3!

However, if we interchange rows 3 and 4, we can produce a leading
entry in column 4.









1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 0 0
0 0 0 −5 0









R3 ↔ R4−→









1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 −5 0
0 0 0 0 0








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The Row Reduction Algorithm

1. Begin with the leftmost nonzero column. This is a pivot column. The
pivot position is at the top.

2. Select a nonzero entry in the pivot column as a pivot. If necessary,
interchange rows to move this entry into the pivot position.

3. Use row replacement operations to create zeros in all positions below
the pivot.

4. Cover (or ignore) the row containing the pivot position and cover all
rows, if any, above it.

Apply steps 1-3 to the submatrix that remains.

Repeat the process until there are no more nonzero rows to modify.

5. Beginning with the rightmost pivot and working upward and to the
left, create zeros above each pivot.

If a pivot is not 1, make it 1 by a scaling operation.
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Linear Systems: Basic and Free Variables

Suppose that the augmented matrix of a linear system has been

changed into the equivalent reduced echelon form





1 0 −5 1
0 1 1 4
0 0 0 0



.

There are three variables because the augmented matrix has four
columns.

The associated system of equations is







x1 − 5x3 = 1
x2 + x3 = 4

0 = 0
.

The variables x1 and x2 corresponding to pivot columns in the matrix
are called basic variables.

The other variable, x3, is called a free variable.
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Solutions of Linear Systems

Whenever a system is consistent the solution set can be described
explicitly by solving the reduced system of equations for the basic
variables in terms of the free variables.

This operation is possible because the reduced echelon form places
each basic variable in one and only one equation.

In the example above







x1 − 5x3 = 1
x2 + x3 = 4

0 = 0
⇒







x1 = 1 + 5x3
x2 = 4− x3
x3 is free

The statement “x3 is free” means that you are free to choose any
value for x3.
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Example

Find the general solution of the linear system whose augmented

matrix has been reduced to





1 6 2 −5 −2 −4
0 0 2 −8 −1 3
0 0 0 0 1 7



.

The matrix is in echelon form, but we want the reduced echelon form
before solving for the basic variables.





1 6 2 −5 −2 −4
0 0 2 −8 −1 3
0 0 0 0 1 7





R1 ← R1 + 2R3−→
R2 ← R2 + R3





1 6 2 −5 0 10
0 0 2 −8 0 10
0 0 0 0 1 7





R2 ←
1
2
R2−→





1 6 2 −5 0 10
0 0 1 −4 0 5
0 0 0 0 1 7





R1 ← R1 − 2R2−→





1 6 0 3 0 0
0 0 1 −4 0 5
0 0 0 0 1 7




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Example (Cont’d)

There are five variables because the augmented matrix has six
columns.

The associated system now is






x1 + 6x2 + 3x4 = 0
x3 − 4x4 = 5

x5 = 7

The pivot columns of the matrix are 1, 3, and 5, so the basic variables
are x1, x3 and x5.

The remaining variables, x2 and x4, must be free.

Solving for the basic variables, we obtain























x1 = − 6x2 − 3x4
x2 is free
x3 = 5 + 4x4
x4 is free
x5 = 7
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Parametric Descriptions of Solution Sets

The descriptions of the solution set given above is a parametric

description in which the free variables act as parameters.

Solving a system amounts to finding a parametric description of the
solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution set
has many parametric descriptions.
For consistency, we make the (arbitrary) convention of always using the
free variables as the parameters for describing a solution set.
Whenever a system is inconsistent, the solution set is empty, even
when the system has free variables.
In this case, the solution set has no parametric representation.
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Existence and Uniqueness Questions: Example

Determine the existence and uniqueness of the solutions to the system






3x2 − 6x3 + 6x4 + 4x5 = −5
3x1 − 7x2 + 8x3 − 5x4 + 8x5 = 9
3x1 − 9x2 + 12x3 − 9x4 + 6x5 = 15

We reduce the augmented matrix to an echelon form




0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15





R1↔R2−→





3 −7 8 −5 8 9
0 3 −6 6 4 −5
3 −9 12 −9 6 15





R3←R3−R1−→





3 −7 8 −5 8 9
0 3 −6 6 4 −5
0 −2 4 −4 −2 6





R2←R2+R3−→




3 −7 8 −5 8 9
0 1 −2 2 2 1
0 −2 4 −4 −2 6





R3←R3+2R2−→





3 −7 8 −5 8 9
0 1 −2 2 2 1
0 0 0 0 2 8




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Example (Cont’d)

The echelon form is





3 −7 8 −5 8 9
0 1 −2 2 2 1
0 0 0 0 2 8



.

The basic variables are x1, x2 and x5 and the free x3 and x4.

There is no equation such as 0 = 1 that would indicate an inconsistent
system, so we could use back-substitution to find a solution.

The solution is not unique because there are free variables.

Since each different choice of x3 and x4 determines a different
solution, the system has infinitely many solutions.
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Linear Equations in Linear Algebra Row Reduction and Echelon Forms

Existence and Uniqueness Questions

When a system is in echelon form and contains no equation of the
form 0 = b, with b nonzero, every nonzero equation contains a basic
variable with a nonzero coefficient.

If the basic variables are completely determined (with no free
variables), then there is a unique solution;
If one of the basic variables may be expressed in terms of one or more
free variables, there are infinitely many solutions.

Theorem (Existence and Uniqueness Theorem)

A linear system is consistent if and only if the rightmost column of the
augmented matrix is not a pivot column - that is, if and only if an echelon
form of the augmented matrix has no row of the form [0 . . . 0 b], b 6= 0.
If a linear system is consistent, then the solution set contains either:

(i) a unique solution, when there are no free variables, or

(ii) infinitely many solutions, when there is at least one free variable.
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Using Row Reduction to Solve a Linear System

1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented
matrix in echelon form.

Decide whether the system is consistent.

If there is no solution, stop;

otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.

4. Write the system of equations corresponding to the matrix obtained
in step 3.

5. Rewrite each nonzero equation from step 4 so that its one basic
variable is expressed in terms of any free variables appearing in the
equation.
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Subsection 3

Vector Equations
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Vectors in R2 and Equality

A matrix with only one column is called a column vector, or simply a
vector.

Example: The following are vectors with two entries

u =

[

3
−1

]

, v =

[

0.2
0.3

]

, w =

[

w1

w2

]

,

where w1 and w2 are any real numbers.

The set of all vectors with two entries is denoted by R2 (read
“r-two”).

The R stands for the real numbers that appear as entries, and the
exponent 2 for the number of entries.

Two vectors in R2 are equal if and only if their corresponding entries
are equal.

Example:

[

4
7

]

and

[

7
4

]

are not equal, because vectors in R2 are

ordered pairs of real numbers.
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Sum and Scalar Multiplication

Given two vectors u and v in R2, their sum is the vector u + v

obtained by adding corresponding entries of u and v .

Example:

[

1
−2

]

+

[

2
5

]

=

[

1 + 2
−2 + 5

]

=

[

3
3

]

.

Given a vector u and a real number c , the scalar multiple of u by c

is the vector cu obtained by multiplying each entry in u by c .

Example: If u =

[

3
−1

]

and c = 5, then cu = 5

[

3
−1

]

=

[

15
−5

]

.

The number c in cu is called a scalar.

Scalars are written in lightface type to distinguish them from vectors
which are written using boldface.
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Example

Given u =

[

1
−2

]

and v =

[

2
−5

]

, find 4u, (−3)v , and

4u + (−3)v .

We have

4u =

[

4
−8

]

, (−3)v =

[

−6
15

]

.

Moreover

4u + (−3)v =

[

4
−8

]

+

[

−6
15

]

=

[

−2
7

]

.
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Notation

Sometimes, for convenience (and also to save space), we may write a

column vector such as

[

3
−1

]

in the form (3,−1).

In this case, the parentheses and the comma distinguish the vector
(3,−1) from the 1× 2 row matrix [3 − 1], written with brackets and
no comma.

Thus

[

3
−1

]

6=
[

3 −1
]

because the matrices have different

shapes, even though they have the same entries.
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Geometry of Vectors

Consider a rectangular coordinate system in the plane.

We can identify a point (a, b) with the column vector

[

a

b

]

.

So we may regard R2 as the set of all points in the plane.

The geometric visualization of a vector such as (3,−1) is often aided
by including an arrow (directed line segment) from the origin (0, 0) to
the point (3,−1).
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The Parallelogram Rule for Addition

Parallelogram Rule for Addition

If u and v in R2 are represented as points in the plane, then u + v

corresponds to the fourth vertex of the parallelogram whose other vertices
are u,0 and v .
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Example

The vectors u =

[

2
2

]

, v =

[

−6
1

]

and u + v =

[

−4
3

]

are

displayed below:
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Example

Let u =

[

3
−1

]

. Display the vectors u, 2u, and −2
3u on a graph.

The vectors u, 2u =

[

6
−2

]

and −2
3u =

[

−2
2
3

]

are shown below.

The arrow for 2u is twice as long as the arrow for u, and the arrows
point in the same direction.

The arrow for −2
3u is two-thirds the length of the arrow for u, and

the arrows point in opposite directions.
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Vectors in R3

Vectors in R3 are 3× 1 column matrices with three entries.

They are represented geometrically by points in a three-dimensional
coordinate space, with arrows from the origin sometimes included for
visual clarity.

Example: The vectors a =





2
3
4





and 2a are displayed on the right:
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Vectors in Rn

If n is a positive integer, Rn (read “r-n”) denotes the collection of all
lists (or ordered n-tuples) of n real numbers, usually written as n× 1

column matrices, such as u =











u1
u2
...
un











.

The vector whose entries are all zero is called the zero vector and is
denoted by 0.

Equality of vectors in Rn and the operations of scalar multiplication

and vector addition in Rn are defined entry by entry just as in R2.
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Algebraic Properties of Rn

For all u, v ,w in Rn and all scalars c and d :
(i) u + v = v + u;
(ii) (u + v) + w = u + (v + w );
(iii) u + 0 = 0+ u = u;
(iv) u + (−u) = −u + u = 0, where −u denotes (−1)u;
(v) c(u + v) = cu + cv ;
(vi) (c + d)u = cu + du;
(vii) c(du) = (cd)u;
(viii) 1u = u.

We show (v) to give a flavor of a proof:

c(u + v) = c













u1
...
un






+







v1
...
vn












= c







u1 + v1
...

un + vn






=







c(u1 + v1)
...

c(un + vn)






=







cu1 + cv1
...

cun + cvn






=







cu1
...

cun






+







cv1
...

cvn






= cu + cv .
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Subtraction of Vectors

For simplicity of notation, a vector such as u + (−1)v is often written
as u − v .

The figure below shows u − v as the sum of u and −v .
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Linear Combinations

Given vectors v1, v2, . . . , vp in Rn and given scalars c1, c2, . . . , cp ,
the vector y defined by

y = c1v1 + · · · + cpvp

is called a linear combination of v1, . . . , vp with weights c1, . . . , cp .

Property (ii) permits us to omit parentheses when forming such a
linear combination.

The weights in a linear combination can be any real numbers,
including zero.

Example: Some linear combinations of vectors v1 and v2 are

√
3v1 + v2,

1

2
v1 =

1

2
v1 + 0v2, 0 = 0v1 + 0v2.
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Example

Selected linear combinations of v1 =

[

−1
1

]

and v2 =

[

2
1

]

are

shown:

Parallel grid lines are drawn through integer multiples of v1 and v2.
Estimate the linear combinations of v1 and v2 that generate the
vectors u and w .
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Example (Cont’d)

The parallelogram rule shows that u is the sum of 3v1 and −2v2, i.e.,
u = 3v1 − 2v2.

This expression for u can be interpreted as instructions for traveling
from the origin to u along two straight paths:

First, travel 3 units in the v 1 direction to 3v 1;
Then travel −2 units in the v 2 direction (parallel to the line through v 2

and 0).

Next, although the vector w is not on a
grid line, w appears to be about halfway
between two pairs of grid lines, at the ver-
tex of a parallelogram determined by 5

2v1

and −1
2v2.

Thus a reasonable estimate for w is w =
5
2v1 − 1

2v2.
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Example

Let a1 =





1
−2
−5



, a2 =





2
5
6



 and b =





7
4

−3



.

Determine whether b can be generated (or written) as a linear
combination of a1 and a2.

That is, determine whether weights x1 and x2 exist such that

x1a1 + x2a2 = b.

If this vector equation has a solution, find it.
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Example (Cont’d)

Use the definitions of scalar multiplication and vector addition to
rewrite the vector equation

x1





1
−2
−5



+ x2





2
5
6



 =





7
4

−3



 .

We obtain




x1
−2x1
−5x1



+





2x2
5x2
6x2



 =





7
4

−3



 ⇒





x1 + 2x2
−2x1 + 5x2
−5x1 + 6x2



 =





7
4

−3



 .

Therefore, we must have







x1 + 2x2 = 7
−2x1 + 5x2 = 4
−5x1 + 6x2 = −3

.
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Example (Cont’d)

To solve this system, we row reduce the augmented matrix of the
system:





1 2 7
−2 5 4
−5 6 −3





R2 ← R2 + 2R1−→
R3 ← R3 + 5R1





1 2 7
0 9 18
0 16 32





R2 ←
1
9
R2−→





1 2 7
0 1 2
0 16 32





R1 ← R1 − 2R2−→
R3 ← R3 − 16R2





1 0 3
0 1 2
0 0 0



 .

Thus the solution is x1 = 3 and x2 = 2.

Hence b is a linear combination of a1 and a2, with weights x1 = 3
and x2 = 2, i.e., 3a1 + 2a2 = b.
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Vector Equations and Linear Systems

The original vectors a1, a2 and b are the columns of the augmented
matrix that we row reduced.

For brevity, we write this matrix in a way that identifies its columns -
namely,

[

a1 a2 b
]

.

It is clear how to write this augmented matrix immediately from the
vector equation

x1a1 + x2a2 = b

without going through any intermediate steps:

Take the vectors in the order in which they appear in this equation
and put them into the columns of a matrix.
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Vector Equations and Linear Systems

The discussion above is easily modified to establish the following
fundamental fact:

A vector equation

x1a1 + x2a2 + · · ·+ xnan = b

has the same solution set as the linear system whose augmented
matrix is

[

a1 a2 · · · an b
]

.

In particular, b can be generated by a linear combination of
a1, . . . , an if and only if there exists a solution to the linear
system corresponding to the matrix above.
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Spanned or Generated Sets

Definition

If v1, . . . , vp are in Rn, then the set of all linear combinations of
v1, . . . , vp is denoted by Span{v 1, . . . , vp} and is called the subset of Rn

spanned (or generated) by v1, . . . , vp.
That is, Span{v1, . . . , vp} is the collection of all vectors that can be
written in the form

c1v1 + c2v2 + · · ·+ cpvp

with c1, . . . , cp scalars.

Asking whether a vector b is in Span{v1, . . . , v p} amounts to asking
whether the vector equation x1v1 + · · ·+ xpvp = b has a solution.

Equivalently, asking whether the linear system with augmented matrix
[v1 v2 · · · vp b] has a solution.
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Geometry of Span{v}

Let v be a nonzero vector in R3.

Then Span{v} is the set of all scalar multiples of v .

This is the set of points on the line in R3 through v and 0.
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Geometry of Span{u, v}

If u and v are nonzero vectors in R3, with v not a multiple of u, then
Span{u, v} is the plane in R3 that contains u, v and 0.

In particular, Span{u, v} contains the line in R3 through u and 0 and
the line through v and 0.
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Example

Let a1 =





1
−2
3



, a2 =





5
−13
−3



 and b =





−3
8
1



.

Then Span{a1, a2} is a plane through the origin in R3.

Is b in that plane?

We must find whether the equation x1a1 + x2a2 = b has a solution.

To answer this, row reduce the augmented matrix [a1 a2 b].
We have





1 5 −3
−2 −13 8
3 −3 1





R2 ← R2 + 2R1
−→

R3 ← R3 − 3R1





1 5 −3
0 −3 2
0 −18 10





R3 ← R3 − 6R2
−→





1 5 −3
0 −3 2
0 0 −2





The third equation is 0 = −2, which shows that the system has no
solution.

Since the vector equation x1a1 + x2a2 = b has no solution, b is not in
Span{a1, a2}.
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Subsection 4

The Matrix Equation Ax = b
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Product of a Matrix and a Vector

Definition

If A is an m × n matrix, with columns a1, . . . , an, and if x is in Rn, then
the product of A and x , denoted by Ax , is the linear combination of

the columns of A using the corresponding entries in x as weights;
that is,

Ax =
[

a1 a2 · · · an

]







x1
...
xn






= x1a1 + x2a2 + · · ·+ xnan.

Note that Ax is defined only if the number of columns of A equals
the number of entries in x .
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Example

(a)

[

1 2 −1
0 −5 3

]





4
3
7



 = 4

[

1
0

]

+ 3

[

2
−5

]

+ 7

[

−1
3

]

=

[

4
0

]

+

[

6
−15

]

+

[

−7
21

]

=

[

3
6

]

;

(b)





2 −3
8 0

−5 2





[

4
7

]

= 4





2
8

−5



+ 7





−3
0
2





=





8
32

−20



+





−21
0
14



 =





−13
32
−6



 .
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Example

For v1, v2, v3 in Rm, write the linear combination 3v1 − 5v2 +7v3 as
a matrix times a vector.

Place v1, v2, v3 into the columns of a matrix A and place the weights
3,−5, 7 into a vector x .

That is,

3v 1 − 5v2 + 7v3 =
[

v1 v2 v3

]





3
−5
7



 = Ax ,

where A = [v1 v2 v3].
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The Matrix Equation of a Linear System

We saw how to write a system of linear equations as a vector
equation involving a linear combination of vectors.

For example, the system

{

x1 + 2x2 − x3 = 4
−5x2 + 3x3 = 1

is equivalent to

x1

[

1
0

]

+ x2

[

2
−5

]

+ x3

[

−1
3

]

=

[

4
1

]

.

The linear combination on the left side is a matrix times a vector, so
it becomes

[

1 2 −1
0 −5 3

]





x1
x2
x3



 =

[

4
1

]

.

This equation has the form Ax = b and is called a matrix equation,
to distinguish it from a vector equation.

Notice the matrix in A is just the matrix of coefficients of the system.
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Linear Systems, Vector Equations and Matrix Equations

Theorem

If A is an m × n matrix, with columns a1, . . . , an, and if b is in Rm, the
matrix equation

Ax = b

has the same solution set as the vector equation

x1a1 + x2a2 + · · ·+ xnan = b

which, in turn, has the same solution set as the system of linear equations
whose augmented matrix is

[

a1 a2 · · · an b
]

.

Thus, a system of linear equations may now be viewed in three
different but equivalent ways:

as a matrix equation;
as a vector equation;
as a system of linear equations.
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Consistency of a Linear System

The definition of Ax leads directly to the following useful fact.

The equation Ax = b has a solution if and only if b is a linear
combination of the columns of A.

We previously considered the existence question, “Is b in
Span{a1, . . . , an}?”
Equivalently, “Is Ax = b consistent?”

A harder existence problem is to determine whether the equation
Ax = b is consistent for all possible b.
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Example

Let A =





1 3 4
−4 2 −6
−3 −2 −7



 and b =





b1
b2
b3



.

Is the equation Ax = b consistent for all possible b1, b2, b3?

Row reduce the augmented matrix for Ax = b:




1 3 4 b1
−4 2 −6 b2
−3 −2 −7 b3





R2←R2+4R1−→
R3←R3+3R1





1 3 4 b1
0 14 10 b2 + 4b1
0 7 5 b3 + 3b1





R3←R3−
1
2
R2−→





1 3 4 b1
0 14 10 b2 + 4b1
0 0 0 b3 + 3b1 − 1

2(b2 + 4b1)





The third entry in column 4 equals b1 − 1
2b2 + b3. The equation

Ax = b is not consistent for every b because some choices of b can
make b1 − 1

2b2 + b3 nonzero.

George Voutsadakis (LSSU) Linear Algebra August 2017 69 / 130



Linear Equations in Linear Algebra The Matrix Equation Ax = b

Characterization Theorem

A set of vectors {v1, v2, . . . , vp} in Rm spans (or generates) Rm if
every vector in Rm is a linear combination of v1, . . . , vp , that is, if
Span{v1, . . . , vp} = Rm.

Theorem

Let A be an m × n matrix. Then the following statements are logically
equivalent.

(a) For each b in Rm, the equation Ax = b has a solution.

(b) Each b in Rm is a linear combination of the columns of A.

(c) The columns of A span Rm.

(d) A has a pivot position in every row.
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Computing Ax Using the Definition

Compute Ax , where A =





2 3 4
−1 5 −3
6 −2 8



 and x =





x1
x2
x3



.

We have from the definition:




2 3 4
−1 5 −3
6 −2 8









x1
x2
x3



 = x1





2
−1
6



+ x2





3
5

−2



+ x3





4
−3
8





=





2x1
−x1
6x1



+





3x2
5x2

−2x2



+





4x3
−3x3
8x3



 =





2x1 + 3x2 + 4x3
−x1 + 5x2 − 3x3
6x1 − 2x2 + 8x3



 .
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The Row-Vector Rule for Computing Ax

If the product Ax is defined, then the i -th entry in Ax is the
sum of the products of corresponding entries from row i of A
and from the vector x .

Example: We have





2 3 4
−1 5 −3
6 −2 8









x1
x2
x3



 =





2x1 + 3x2 + 4x3
−x1 + 5x2 − 3x3
6x1 − 2x2 + 8x3



 ;





2 3 4
−1 5 −3
6 −2 8









x1
x2
x3



 =





2x1 + 3x2 + 4x3
−x1 + 5x2 − 3x3
6x1 − 2x2 + 8x3



 .
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Computing Ax Using the Row-Vector Rule

(a)

[

1 2 −1
0 −5 3

]





4
3
7



 =

[

1 · 4 + 2 · 3 + (−1) · 7
0 · 4 + (−5) · 3 + 3 · 7

]

=

[

3
6

]

.

(b)




2 −3
8 0

−5 2





[

4
7

]

=





2 · 4 + (−3) · 7
8 · 4 + 0 · 7

(−5) · 4 + 2 · 7



 =





−13
32
−6



 .
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The Identity Matrix

The matrix with 1’s on the diagonal and 0’s elsewhere is called an
identity matrix and is denoted by I .

Note that we have

Ix =





1 0 0
0 1 0
0 0 1









x1
x2
x3



 =





1 · x1 + 0 · x2 + 0 · x3
0 · x1 + 1 · x2 + 0 · x3
0 · x1 + 0 · x2 + 1 · x3





=





x1
x2
x3



 = x .

There is an analogous n × n identity matrix, sometimes written as In.

As above, Inx = x , for every x in Rn.
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Properties of the Matrix-Vector Product Ax

Theorem

If A is an m× n matrix, u and v are vectors in Rn, and c is a scalar, then:

a. A(u + v) = Au + Av ;

b. A(cu) = c(Au).

We deal with the case n = 3. Consider A = [a1 a2 a3], and u, v in
R

3. For i = 1, 2, 3, let ui and vi be the ith entries in u and v .

(a) We compute A(u + v) as a linear combination of the columns of A
using the entries in u + v as weights.

A(u + v) =
[

a1 a2 a3

]





u1 + v1
u2 + v2
u3 + v3





= (u1 + v1)a1 + (u2 + v2)a2 + (u3 + v3)a3

= (u1a1 + u2a2 + u3a3) + (v1a1 + v2a2 + v3a3)
= Au + Av .
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Properties of the Matrix-Vector Product Ax (Part (b)

(b) Compute A(cu) as a linear combination of the columns of A using
the entries in cu as weights.

A(cu) =
[

a1 a2 a3

]





cu1
cu2
cu3





= (cu1)a1 + (cu2)a2 + (cu3)a3

= c(u1a1) + c(u2a2) + c(u3a3)
= c(u1a1 + u2a2 + u3a3)
= c(Au).
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Subsection 5

Solution Sets of Linear Systems
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Homogeneous Linear Systems

A system of linear equations is said to be homogeneous if it can be
written in the form Ax = 0, where A is an m × n matrix and 0 is the
zero vector in Rm.

Such a system Ax = 0 always has at least one solution, namely,
x = 0 (the zero vector in Rn).

This zero solution is usually called the trivial solution.

The important question is whether Ax = 0 has a nontrivial solution.

The Existence and Uniqueness Theorem of a previous section leads
immediately to the following fact:

The homogeneous equation Ax = 0 has a nontrivial solution if
and only if the equation has at least one free variable.
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Example

Determine if the following homogeneous system has a nontrivial
solution and describe the solution set.







3x1 + 5x2 − 4x3 = 0
−3x1 − 2x2 + 4x3 = 0

6x1 + x2 − 8x3 = 0

We row reduce the augmented matrix to echelon form:




3 5 −4 0
−3 −2 4 0
6 1 −8 0





R2←R2+R1−→
R3←R3−2R1





3 5 −4 0
0 3 0 0
0 −9 0 0





R3←R3+3R2−→





3 5 −4 0
0 3 0 0
0 0 0 0



 .

Since x3 is a free variable, Ax = 0 has nontrivial solutions (one for
each choice of x3).
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Example (Cont’d)

To describe the solution set, continue the row reduction to reduced
echelon form:

R1←R1−
5
3
R2−→





1 0 −4
3 0

0 1 0 0
0 0 0 0



 ⇒







x1 − 4
3x3 = 0
x2 = 0
0 = 0

Solve for the basic variables x1 and x2 and obtain x1 =
4
3x3, x2 = 0,

with x3 free.

As a vector, the general solution has the form

x =





x1
x2
x3



 =





4
3x3
0
x3



 = x3





4
3
0
1



 = x3v , where v =





4
3
0
1



 .

Thus, every solution in this case is a scalar multiple of v , i.e., the
solution set is a line through 0 in R3.
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Example

Describe all solutions of the homogeneous “system”
10x1 − 3x2 − 2x3 = 0.

We solve for the basic variable x1 in terms of the free variables.

The general solution is x1 = 0.3x2 + 0.2x3, with x2 and x3 free.

As a vector, the general solution is

x =





x1
x2
x3



 =





0.3x2 + 0.3x3
x2
x3



 =





0.3x2
x2
0



+





0.2x3
0
x3





= x2





0.3
1
0



+ x3





0.2
0
1



 = x2u + x3v .

Thus, every solution is a linear combination of the vectors u and v .

Since neither u nor v is a scalar multiple of the other, the solution set
is a plane through the origin.
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Parametric Vector Form of Solution Set

The equation 10x1 − 3x2 − 2x3 = 0 is an implicit description of the
solution plane.

Solving this equation amounts to finding an explicit description of the
plane as the set spanned by u and v .

The equation x = x2u + x3v is called a parametric vector equation

of the plane.

Sometimes such an equation is written as

x = su + tv , s, t in R,

to emphasize that the parameters vary over all real numbers.

In a previous example, the equation x = x3v (with x3 free), or x = tv

(with t in R), is a parametric vector equation of a line.

Whenever a solution set is described explicitly with vectors, we say
that the solution is in parametric vector form.
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Solving a Nonhomogeneous System

Describe all solutions of Ax = b, where

A =





3 5 −4
−3 −2 4
6 1 −8



 and b =





7
−1
−4



 .

We produce the reduced echelon form of the augmented matrix:




3 5 −4 7
−3 −2 4 −1
6 1 −8 −4





done∼





1 0 − 4
3 −1

0 1 0 2
0 0 0 0



 ⇒







x1 − 4
3x3 = −1
x2 = 2
0 = 0

Thus x1 = − 1 + 4
3x3, x2 = 2 and x3 is free.

As a vector, the general solution as the form

x =





x1
x2
x3



 =





−1 + 4
3x3

2
x3



 =





−1
2
0



+ x3





4
3
0
1



 .
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Solving a Nonhomogeneous System (Cont’d)

The equation x = p + x3v , or, writing t as a general parameter,
x = p + tv (t in R) describes the solution set in parametric vector
form.

Recall from the previous example that the solution set of Ax = 0 has
the parametric vector equation x = tv (t in R) [with the same v ].

Thus the solutions of Ax = b are obtained by adding the vector p to
the solutions of Ax = 0.

The vector p itself is just one particular solution of Ax = b

[corresponding to t = 0].
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Geometry: Translations

To describe the solution set of Ax = b geometrically, we can think of
vector addition as a translation.

Given v and p in R2 or R3, the effect of adding p to v is to move v

in a direction parallel to the line through p and 0.

We say that v is translated by p to v + p.

If each point on a line L in R2 or R3 is translated by a vector p, the
result is a line parallel to L.
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Geometry and Solution Sets

Suppose L is the line through 0 and v , described by x = tv .

Adding p to each point on L produces the translated line described by
x = p + tv .

Note that p is on the line described by the latter equation.

We call the line x = p + tv the equation of the line through p

parallel to v .

Thus the solution set of Ax = b is a line through p parallel to the
solution set of Ax = 0.
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Homogeneous and Nonhomogeneous Systems

Theorem

Suppose the equation Ax = b is consistent for some given b, and let p be
a solution. Then the solution set of Ax = b is the set of all vectors of the
form w = p + vh, where vh is any solution of the homogeneous equation
Ax = 0.

In case there are two free variables, we have the following picture:
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Writing a Solution Set in Parametric Vector Form

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in
an equation.

3. Write a typical solution x as a vector whose entries depend on the
free variables, if any.

4. Decompose x into a linear combination of vectors (with numeric
entries) using the free variables as parameters.
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Linear Independence
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Linear Independence

Definition

An indexed set of vectors {v1, . . . , vp} in Rn is said to be linearly

independent if the vector equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution.
The set {v1, . . . , vp} is said to be linearly dependent if there exist
weights c1, . . . , cp , not all zero, such that

c1v1 + c2v2 + · · ·+ cpvp = 0.

The last equation is called a linear dependence relation among
v1, . . . , vp when the weights are not all zero.

An indexed set is linearly dependent if and only if it is not linearly
independent.
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Example

Let v1 =





1
2
3



, v2 =





4
5
6



 and v3 =





2
1
0



.

(a) Determine if the set {v1, v 2, v 3} is linearly independent.
(b) If possible, find a linear dependence relation among v 1, v 2 and v 3.

(a) We must determine if there is a nontrivial solution of
x1v1 + x2v2 + x3v3 = 0. We reduce the augmented matrix:





1 4 2 0
2 5 1 0
3 6 0 0





R2 ← R2 − 2R1−→
R3 ← R3 − 3R1





1 4 2 0
0 −3 −3 0
0 −6 −6 0





R3 ← R3 − 2R2−→





1 4 2 0
0 −3 −3 0
0 0 0 0



 .

Clearly, x1 and x2 are basic variables and x3 is free. Each nonzero
value of x3 determines a nontrivial solution of the equation. Hence
v1, v2, v 3 are linearly dependent.
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Example (Part (b))

(b) To find a linear dependence relation among v1, v2 and v3, completely
row reduce the augmented matrix and write the new system:





1 4 2 0
0 −3 −3 0
0 0 0 0





R2←−
1
3
R2−→





1 4 2 0
0 1 1 0
0 0 0 0





R1←R1−4R2−→





1 0 −2 0
0 1 1 0
0 0 0 0



 ⇒







x1 − 2x3 = 0
x2 + x3 = 0

0 = 0

Thus x1 = 2x3, x2 = −x3, and x3 is free.

Choose any nonzero value for x3, say x3 = 5.

Then x1 = 10 and x2 = −5.

Substitute these values into the original equation to obtain

10v1 − 5v2 + 5v3 = 0.
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Linear Independence of Matrix Columns

Suppose that we begin with a matrix A =
[

a1 · · · an

]

instead of
a set of vectors.

The matrix equation Ax = 0 can be written as

x1a1 + x2a2 + · · ·+ xnan = 0.

Each linear dependence relation among the columns of A corresponds
to a nontrivial solution of Ax = 0.

Thus we have the following important fact:

The columns of a matrix A are linearly independent if and only
if the equation Ax = 0 has only the trivial solution.
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Example

Determine if the columns of the matrix A =





0 1 4
1 2 −1
5 8 0



 are

linearly independent.

To study Ax = 0, row reduce the augmented matrix:




0 1 4 0
1 2 −1 0
5 8 0 0





R1↔R2−→





1 2 −1 0
0 1 4 0
5 8 0 0





R3←R3−5R1−→





1 2 −1 0
0 1 4 0
0 −2 5 0





R3←R3+2R2−→





1 2 −1 0
0 1 4 0
0 0 13 0



 .

At this point, it is clear that there are three basic variables and no
free variables.

So the equation Ax = 0 has only the trivial solution, and the columns
of A are linearly independent.
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The Case of a Single Vector

A set containing only one vector - say, v - is linearly independent if
and only if v is not the zero vector.

This is because the vector equation x1v = 0 has only the trivial
solution when v 6= 0.

The zero vector is linearly dependent because x10 = 0 has many
nontrivial solutions.
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The Case of Two Vectors

Determine if the following sets of vectors are linearly independent.

(a) v1 =

[

3
1

]

, v 2 =

[

6
2

]

; (b) v1 =

[

3
2

]

, v2 =

[

6
2

]

.

(a) Notice that v2 is a multiple of v1: v2 = 2v1. Hence −2v1 + v2 = 0.
This shows that {v1, v2} is linearly dependent.

(b) The vectors v1 and v2 are certainly not multiples of one another.
Suppose c and d satisfy cv1 + dv2 = 0. If c 6= 0, then we can solve
for v1 in terms of v2: v1 = − d

c
v2. This result is impossible because

v1 is not a multiple of v2. So c must be zero. Similarly, d must also
be zero. Thus {v1, v2} is a linearly independent set.
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The Case of Two Vectors (Geometry)

The arguments in the preceding example show that you can always
decide by inspection when a set of two vectors is linearly dependent.

Simply check whether at least one of the vectors is a scalar times the
other.

A set of two vectors {v1, v2} is linearly dependent if at least one of
the vectors is a multiple of the other. The set is linearly independent
if and only if neither of the vectors is a multiple of the other.
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A Characterization of Linear Dependence

Theorem (Characterization of Linearly Dependent Sets)

An indexed set S = {v1, . . . , vp} of two or more vectors is linearly
dependent if and only if at least one of the vectors in S is a linear
combination of the others.
In fact, if S is linearly dependent and v1 6= 0, then some v j (with j > 1) is
a linear combination of the preceding vectors, v1, . . . , v j−1.

Suppose that v j in S equals a linear combination of the other vectors:

v j = x1v1 + · · · + xj−1v j−1 + xj+1v j+1 + · · ·+ xpvp.

Then subtracting v j from both sides of the equation, we get

x1v1 + · · · + xj−1v j−1 − 1 · v j + xj+1v j+1 + · · ·+ xpvp = 0.

This is a linear dependence relation with a nonzero weight (−1) for
v j . Thus S is linearly dependent.
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A Characterization of Linear Dependence (Converse)

Conversely, suppose S is linearly dependent. If v1 is zero, then it is a
(trivial) linear combination of the other vectors in S . Otherwise,
v1 6= 0, and there exist weights c1, . . . , cp , not all zero, such that

c1v1 + c2v2 + · · ·+ cpvp = 0.

Let j be the largest subscript for which cj 6= 0. If j = 1, then
c1v1 = 0, which is impossible because v1 6= 0. So j > 1, and

c1v1 + · · · + cjv j + 0v j+1 + · · · + 0vp = 0

⇒ cjv j = −c1v1 − · · · − cj−1v j−1

⇒ v j = (− c1
cj
)v1 + · · ·+ (− cj−1

cj
)v j−1.
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Example

Let u =





3
1
0



 and v =





1
6
0



. Describe the set spanned by u and

v , and explain why a vector w is in Span{u, v} if and only if
{u, v ,w} is linearly dependent.

The vectors u and v are linearly independent because neither vector
is a multiple of the other. So they span a plane in R3. In fact,
Span{u, v} is the x1x2-plane (with x3 = 0).

If w is a linear combination of u and v , then {u, v ,w} is linearly
dependent, by the preceding theorem.

Conversely, suppose that {u, v ,w} is linearly dependent. By the
same theorem, some vector in {u, v ,w} is a linear combination of the
preceding vectors (since u 6= 0). That vector must be w , since v is
not a multiple of u. So w is in Span{u, v}.
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A Sufficient Condition for Dependence

Theorem

If a set contains more vectors than there are entries in each vector, then
the set is linearly dependent. That is, any set {v1, . . . , vp} in Rn is
linearly dependent if p > n.

Let A =
[

v1 · · · vp

]

. Then A is n × p, and the equation Ax = 0

corresponds to a system of n equations in p unknowns. If p > n, there
are more variables than equations, so there must be a free variable.

n

p




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗





Hence Ax = 0 has a nontrivial solution. So the columns of A are
linearly dependent.
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Example

The vectors
[

2
1

]

,

[

4
−1

]

,

[

−2
2

]

are linearly dependent by the preceding theorem, because there are
three vectors in the set and there are only two entries in each vector.

Indeed we have
[

2
1

]

−
[

4
−1

]

−
[

−2
2

]

= 0.

Notice, however, that none of the vectors is a multiple of one of the
other vectors.
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Another Sufficient Condition for Dependence

Theorem

If a set S = {v1, . . . , vp} in Rn contains the zero vector, then the set is
linearly dependent.

By renumbering the vectors, we may suppose v1 = 0.

Then the equation

1v1 + 0v2 + · · ·+ 0vp = 0

shows that S is linearly dependent.
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Example

Determine by inspection if the given set is linearly dependent.

(a)





1
7
6





,





2
0
9





,





3
1
5





,





4
1
8



 (b)





2
3
5





,





0
0
0





,





1
1
8



 (c)









−2
4
6

10









,









3
−6
−9
15









.

(a) The set contains four vectors, each of which has only three entries.
So the set is linearly dependent.

(b) The same theorem does not apply here because the number of vectors
does not exceed the number of entries in each vector. Since the zero
vector is in the set, the set is linearly dependent by the preceding
theorem.

(c) Compare the corresponding entries of the two vectors. The second
vector seems to be −3

2 times the first vector. This relation holds for
the first three pairs of entries, but fails for the fourth pair. Thus
neither of the vectors is a multiple of the other. Hence they are
linearly independent.
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Introduction to Linear Transformations
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Transformations

A transformation (or function or mapping) T from R
n to Rm is a

rule that assigns to each vector x in Rn a vector T (x) in Rm.

The set Rn is called the domain of T , and Rm is called the
codomain of T .

The notation T : Rn → R
m indicates that the domain of T is Rn and

the codomain is Rm.

For x in Rn, the vector T (x)
in Rm is called the image of x

(under the action of T ).

The set of all images T (x) is
called the range of T .

George Voutsadakis (LSSU) Linear Algebra August 2017 106 / 130



Linear Equations in Linear Algebra Introduction to Linear Transformations

Matrix Transformations

We focus on mappings associated with matrix multiplication.

For each x in Rn, T (x) is computed as Ax, where A is an m × n

matrix.

For simplicity, we sometimes denote such a matrix transformation by
x 7→ Ax .

Observe that the domain of T is Rn when A has n columns.

The codomain of T is Rm when each column of A has m entries.

The range of T is the set of all linear combinations of the columns of
A, because each image T (x) is of the form Ax .
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Example

Let A =





1 −3
3 5

−1 7



, u =

[

2
−1

]

, b =





3
2

−5



, c =





3
2
5



.

Define a transformation T : R2 → R
3 by T (x) = Ax , so that

T (x) = Ax =





1 −3
3 5

−1 7





[

x1
x2

]

=





x1 − 3x2
3x1 + 5x2
−x1 + 7x2



 .

(a) Find T (u), the image of u under the transformation T .
(b) Find an x in R2 whose image under T is b.
(c) Is there more than one x whose image under T is b?
(d) Determine if c is in the range of the transformation T .
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Example (Cont’d)

(a) T (u) = Au =





1 −3
3 5

−1 7





[

2
−1

]

=





5
1

−9



 .

(b) We need to solve T (x) = b for x , i.e., we must solve the equation




1 −3
3 5

−1 7





[

x1
x2

]

=





3
2

−5



. We row reduce the augmented

matrix:




1 −3 3
3 5 2

−1 7 −5





R2←R2−3R1−→
R3←R3+R1





1 −3 3
0 14 −7
0 4 −2





R2←
1
14
R2−→





1 −3 3

0 1 −1
2

0 4 −2





R1←R1+3R2−→
R3←R3−4R2





1 0 3
2

0 1 −1
2

0 0 0



 .

Hence x1 =
3
2 , x2 = −1

2 .
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Example (Cont’d)

(c) Any x whose image under T is b must satisfy the equation in (b).
From the row reduced echelon form, it is clear that the equation has a
unique solution. So there is exactly one x whose image is b.

(d) The vector c is in the range of T if c is the image of some x in R2,
that is, if c = T (x) for some x . This is just another way of asking if
the system Ax = c is consistent. To find the answer, row reduce the
augmented matrix:





1 −3 3
3 5 2

−1 7 5





R2←R2−3R1−→
R3←R3+R1





1 −3 3
0 14 −7
0 4 8





R2↔R3−→





1 −3 3
0 4 8
0 14 −7





R2←
1
4
R2−→





1 −3 3
0 1 2
0 14 −7





R3←R3−14R2−→





1 −3 3
0 1 2
0 0 −35



 .

The third equation, 0 = −35, shows that the system is inconsistent.
So c is not in the range of T .
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Projections

Let A =





1 0 0
0 1 0
0 0 0



.

Then, we have for x 7→ Ax:




x1
x2
x3



 7→





1 0 0
0 1 0
0 0 0









x1
x2
x3



 =





x1
x2
0



 .

So the transformation x 7→ Ax

projects points in R
3 onto the

x1x2-plane.
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Shear Transformations

Let A =

[

1 3
0 1

]

.

The transformation T : R2 → R
2 defined by T (x) = Ax is called a

shear transformation.

It can be shown that if T acts on each point in the 2× 2 square, then
the set of images forms the shaded parallelogram.

For instance,
[

1 3
0 1

] [

0
2

]

=

[

6
2

]

,

[

1 3
0 1

] [

2
2

]

=

[

8
2

]

.
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Linear Transformations

We have seen that if A is m× n, then the transformation x 7→ Ax has
the properties

A(u + v) = Au + Av and A(cu) = cAu,

for all u, v in Rn and all scalars c .

These properties, written in function notation, identify the most
important class of transformations in linear algebra.

Definition

A transformation (or mapping) T is linear if:

(i) T (u + v) = T (u) + T (v), for all u, v in the domain of T ;

(ii) T (cu) = cT (u), for all scalars c and all u in the domain of T .

Every matrix transformation is a linear transformation.
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Preservation of Sums and Scalar Products

Linear transformations preserve the operations of vector addition and
scalar multiplication.

Property (i) says that the result T (u + v) of first adding u and v in
R

n and then applying T is the same as first applying T to u and to v

and then adding T (u) and T (v) in Rm.

R
n ×Rn +

✲ R
n (u, v)

+
✲ u + v

R
m ×Rm

T × T
❄

+
✲ R

m

T
❄

(T (u),T (v ))

T × T
❄

+
✲

T (u + v) =
T (u) + T (v )

T❄
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Properties of Linear Transformations

These two properties lead easily to the following useful facts for a
linear transformation T :

T (0) = 0;
T (cu + dv) = cT (u) + dT (v), for all vectors u, v in the domain of T
and all scalars c , d .

These are proven as follows:
T (cu + dv) = T (cu) + T (dv) = cT (u) + dT (v).
T (0) = T (0u) = 0T (u) = 0.

Observe that if a transformation satisfies the second property for all
u, v and c , d , it must be linear.

Repeated application of the second property produces a useful
generalization:

T (c1v1 + · · ·+ cpvp) = c1T (v1) + · · ·+ cpT (vp).

George Voutsadakis (LSSU) Linear Algebra August 2017 115 / 130



Linear Equations in Linear Algebra Introduction to Linear Transformations

Dilations

Given a scalar r , define T : R2 → R
2 by T (x) = rx .

T is called a contraction when 0 ≤ r ≤ 1 and a dilation when r > 1.

Let r = 3, and show that T is a linear transformation.

Let u, v be in R2 and let c , d be scalars. Then

T (cu + dv) = 3(cu + dv) = 3cu + 3dv

= c(3u) + d(3v) = cT (u) + dT (v ).
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Rotations

Define a linear transformation T : R2 → R
2 by

T (x) =

[

0 −1
1 0

] [

x1
x2

]

=

[

−x2
x1

]

.

Find the images of u =

[

4
1

]

, v =

[

2
3

]

and u + v =

[

6
4

]

.

We compute

T (u) =

[

0 −1
1 0

] [

4
1

]

=

[

−1
4

]

,

T (v ) =

[

0 −1
1 0

] [

2
3

]

=

[

−3
2

]

,

T (u + v) =

[

0 −1
1 0

] [

6
4

]

=

[

−4
6

]

.

T rotates u, v and u + v counterclockwise about the origin through
90◦.
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Subsection 8

The Matrix of a Linear Transformation
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Example

The columns of I2 =

[

1 0
0 1

]

are e1 =

[

1
0

]

and e2 =

[

0
1

]

.

Suppose T is a linear transformation from R
2 into R3 such that

T (e1) =





5
−7
2



 and T (e2) =





−3
8
0



.

With no additional information, find a formula for the image of an
arbitrary x in R2.

Write x =

[

x1
x2

]

= x1

[

1
0

]

+ x2

[

0
1

]

= x1e1 + x2e2.

Since T is a linear transformation,

T (x) = x1T (e1) + x2T (e2)

= x1





5
−7
2



+ x2





−3
8
0



 =





5x1 − 3x2
−7x1 + 8x2

2x1 + 0



 .
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Matrix of a Linear Transformation

Theorem

Let T : Rn → R
m be a linear transformation. Then there exists a unique

matrix A such that
T (x) = Ax for all x in Rn.

In fact, A is the m × n matrix whose jth column is the vector T (e j),
where e j is the jth column of the identity matrix in Rn:
A =

[

T (e1) · · · T (en)
]

.

Write x = Inx =
[

e1 · · · en

]

x = x1e1 + · · ·+ xnen.

Use the linearity of T to compute

T (x) = T (x1e1 + · · ·+ xnen) = x1T (e1) + · · ·+ xnT (en)

=
[

T (e1) · · · T (en)
]







x1
...
xn






= Ax .
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Matrix of a Linear Transformation (Cont’d)

For the uniqueness of A, assume that

T (x) = Ax = Bx, for all x in Rn.

Let
A =

[

a1 · · · an

]

, B =
[

b1 · · · bn

]

.

Plugging in x = e1, we get

T (e1) = Ae1 = Be1 ⇒ a1 = b1.

Plugging in x = e2, we get a2 = b2.

Continuing, we get that ai = bi , for all i = 1, . . . , n.

This shows that A =
[

a1 · · · an

]

=
[

b1 · · · bn

]

= B .

The matrix A is called the standard matrix for the linear

transformation T .
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Example

Find the standard matrix A for the dilation transformation
T (x) = 3x , for x in R2.

Write

T (e1) = 3e1 =

[

3
0

]

and T (e2) = 3e2 =

[

0
3

]

.

Thus, we get

A =
[

T (e1) T (e2)
]

=

[

3 0
0 3

]

.
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Example

Let T : R2 → R
2 be the transformation that rotates each point in R2

about the origin through an angle ϕ, with counterclockwise rotation
for a positive angle.

We could show geometrically that such a transformation is linear.

Find the standard matrix A of this transformation.

We have that:
[

1
0

]

rotates into

[

cosϕ
sinϕ

]

;

[

0
1

]

rotates into

[

− sinϕ
cosϕ

]

.

Thus, we get

A =

[

cosϕ − sinϕ
sinϕ cosϕ

]

.
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Onto Mappings

Definition

A mapping T : Rn → R
m is said to be onto Rm if each b in Rm is the

image of at least one x in Rn.

Equivalently, T is onto Rm when the range of T is all of the
codomain Rm.

That is, T maps Rn onto Rm if, for each b in the codomain Rm,
there exists at least one solution of T (x) = b.
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One-to-One Mappings

Definition

A mapping T : Rn → R
m is said to be one-to-one Rm if each b in Rm is

the image of at most one x in Rn.

Equivalently, T is one-to-one if, for each b in the codomain Rm,
there exists at most one solution of T (x) = b.
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Example

Let T be the linear transformation whose standard matrix is

A =





1 −4 8 1
0 2 −1 3
0 0 0 5



 .

Does T map R4 onto R3?
Is T a one-to-one mapping?

Since A happens to be in echelon form, we can see at once that A has
a pivot position in each row.

By a previous theorem, for each b in R3, the equation Ax = b is
consistent. In other words, the linear transformation T maps R4 (its
domain) onto R3.

However, since the equation Ax = b has a free variable (because
there are four variables and only three basic variables), each b is the
image of more than one x . That is, T is not one-to-one.
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Characterization of One-to-One Transformations

Theorem

Let T : Rn → R
m be a linear transformation. Then T is one-to-one if and

only if the equation T (x) = 0 has only the trivial solution.

Since T is linear, T (0) = 0.

If T is one-to-one, then the equation T (x) = 0 has at most one
solution. Hence it has only the trivial solution.

If T is not one-to-one, then there is a b that is the image of at least
two different vectors in Rn - say, u and v . That is, T (u) = b and
T (v) = b. But then, since T is linear,

T (u − v) = T (u)− T (v) = b − b = 0.

The vector u − v is not zero, since u 6= v . Hence the equation
T (x) = 0 has more than one solution.
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Onto and One-to-one in Terms of Matrix

Theorem

Let T : Rn → R
m be a linear transformation and let A be the standard

matrix for T . Then:

(a) T maps Rn onto Rm if and only if the columns of A span Rm;

(b) T is one-to-one if and only if the columns of A are linearly
independent.

(a) By a previous theorem, the columns of A span Rm if and only if for
each b in Rm the equation Ax = b is consistent. In other words, if
and only if for every b, the equation T (x) = b has at least one
solution. This is true if and only if T maps Rn onto Rm.

(b) The equations T (x) = 0 and Ax = 0 are the same except for
notation. So, by the preceding theorem, T is one-to-one if and only if
Ax = 0 has only the trivial solution. This happens if and only if the
columns of A are linearly independent, as remarked previously.
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Example

In this example column vectors are written in rows, such as
x = (x1 x2), and T (x) is written as T (x1, x2) instead of the more
formal T ((x1, x2)).

Let T (x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2).

Show that T is a one-to-one linear transformation.

Does T map R2 onto R3?

We have

T (x) =





3x1 + x2
5x1 + 7x2
x1 + 3x2



 =





3 1
5 7
1 3





[

x1
x2

]

.

So T is indeed a linear transformation, with its standard matrix being
the one shown above.

The columns of A are linearly independent because they are not
multiples. By a previous theorem T is one-to-one.
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Example (Cont’d)

We obtained T (x) =





3 1
5 7
1 3





[

x1
x2

]

.

To decide if T is onto R3, examine the span of the columns of A.
Since A is 3× 2, the columns of A span R3 if and only if A has 3
pivot positions, by a previous theorem.
This is impossible, since A has only 2 columns.
So the columns of A do not span R3.
Hence, the associated linear transformation is not onto R3.
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