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Matrix Algebra Matrix Operations

Subsection 1

Matrix Operations
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Matrix Algebra Matrix Operations

Entries of a Matrix

If A is an m × n matrix, then the scalar entry in the ith row and jth
column of A is denoted by aij and is called the (i , j)-entry of A.

For instance, the (3, 2)-entry is the number a32 in the third row,
second column.

Each column of A is a list of m real numbers, which identifies a
vector in Rm.

Often, these columns are denoted by a1, a2, . . . , an, and the matrix A

is written as A =
[

a1 a2 · · · an

]
.

Observe that the number aij is the ith entry (from the top) of the jth
column vector aj .
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Matrix Algebra Matrix Operations

Diagonal and Zero Matrices

The diagonal entries in an m × n matrix A = [aij ] are
a11, a22, a33, . . ..

They form the main diagonal of A.

A diagonal matrix is a square n× n matrix whose nondiagonal
entries are zero.

An example is the n× n identity matrix, In.

An m × n matrix whose entries are all zero is a zero matrix and is
written as 0.

The size of a zero matrix is usually clear from the context.
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Matrix Algebra Matrix Operations

Addition of Matrices

We say that two matrices are equal if they have the same size (i.e.,
the same number of rows and the same number of columns) and if
their corresponding columns are equal, which amounts to saying that
their corresponding entries are equal.

If A and B are m × n matrices, then the sum A+ B is the m × n

matrix whose columns are the sums of the corresponding columns in
A and B .

Since vector addition of the columns is done entrywise, each entry in
A+ B is the sum of the corresponding entries in A and B .

The sum A+ B is defined only when A and B are the same size.
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Matrix Algebra Matrix Operations

Example

Let

A =

[
4 0 5
−1 3 2

]

,B =

[
1 1 1
3 5 7

]

,C =

[
2 −3
0 1

]

.

Then

A+ B =

[
4 0 5
−1 3 2

]

+

[
1 1 1
3 5 7

]

=

[
5 1 6
2 8 9

]

.

A+ C is not defined because A and C have different sizes.
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Matrix Algebra Matrix Operations

Scalar Multiplication

If r is a scalar and A is a matrix, then the scalar multiple rA is the
matrix whose columns are r times the corresponding columns in A.

As with vectors, −A stands for (−1)A, and A− B is the same as
A+ (−1)B .

Example: If A =

[
4 0 5
−1 3 2

]

, B =

[
1 1 1
3 5 7

]

, then

2B = 2

[
1 1 1
3 5 7

]

=

[
2 2 2
6 10 14

]

,

A− 2B =

[
4 0 5
−1 3 2

]

−

[
2 2 2
6 10 14

]

=

[
2 −2 3
−7 −7 −12

]

.
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Matrix Algebra Matrix Operations

Properties of Addition and Scalar Multiplication

Theorem

Let A,B and C be matrices of the same size, and let r and s be scalars.

(a) A+ B = B + A;

(b) (A+ B) + C = A+ (B + C );

(c) A+ 0 = A;

(d) r(A+ B) = rA+ rB ;

(e) (r + s)A = rA+ sA;

(f) r(sA) = (rs)A.

(b) If for a matrix A, we denote Aij = aij , then

[(A + B) + C ]ij = [A+ B ]ij + cij = (aij + bij) + cij
= aij + (bij + cij) = aij + [B + C ]ij
= [A+ (B + C )]ij .

(d) Similarly, we have

[r(A+ B)]ij = r [A+ B ]ij = r(aij + bij)
= raij + rbij = [rA]ij + [rB ]ij = [rA+ rB ]ij .
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Matrix Algebra Matrix Operations

Associativity

Because of the associative property of addition, we can simply write

A+ B + C

for the sum, which can be computed either as (A+ B) + C or as
A+ (B + C ).

The same applies to sums of four or more matrices.
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Matrix Algebra Matrix Operations

Composition of Transformations

When a matrix B multiplies a vector x , it transforms x into the
vector Bx.

If this vector is then multiplied in turn by a matrix A, the resulting
vector is A(Bx).

Thus A(Bx) is produced from x by a composition of mappings.

Our goal is to represent this composite mapping as multiplication by
a single matrix, denoted by AB , so that

A(Bx) = (AB)x.
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Matrix Algebra Matrix Operations

The Matrix Corresponding to Composition

If A is m × n, B is n× p, and x is in Rp, denote the columns of B by
b1, . . . ,bp and the entries in x by x1, . . . , xp.

Then Bx = x1b1 + · · ·+ xpbp.

By the linearity of multiplication by A,

A(Bx) = A(x1b1) + · · ·+ A(xpbp)
= x1Ab1 + · · · + xpAbp .

The vector A(Bx) is a linear combination of the vectors
Ab1, . . . ,Abp , using the entries in x as weights.

In matrix notation, this linear combination is written as

A(Bx) =
[
Ab1 Ab2 · · · Abp

]
x .
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Matrix Algebra Matrix Operations

Multiplication of Matrices

Definition

If A is an m × n matrix, and if B is an n × p matrix with columns
b1, . . . ,bp , then the product AB is the m × p matrix whose columns are
Ab1, . . . ,Abp. That is,

AB = A
[

b1 b2 · · · bp

]
=

[
Ab1 Ab2 · · · Abp

]
.
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Matrix Algebra Matrix Operations

Example

Compute AB , where A =

[
2 3
1 −5

]

and B =

[
4 3 6
1 −2 3

]

.

Write B =
[

b1 b2 b3

]
and compute:

Ab1 =

[
2 3
1 −5

] [
4
1

]

=

[
11
−1

]

;

Ab2 =

[
2 3
1 −5

] [
3
−2

]

=

[
0

13

]

;

Ab3 =

[
2 3
1 −5

] [
6
3

]

=

[
21
−9

]

;

AB = A
[

b1 b2 b3

]
=

[
11 0 21
−1 13 −9

]

.
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Matrix Algebra Matrix Operations

Example

If A is a 3× 5 matrix and B is a 5× 2 matrix, what are the sizes of
AB and BA, if they are defined?

Since A has 5 columns and B has 5 rows, the product AB is defined
and is a 3× 2 matrix.

The product BA is not defined because the 2 columns of B do not
match the 3 rows of A.
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Matrix Algebra Matrix Operations

The Row-Column Rule for Multiplication

Row-Column Rule for Computing AB

If the product AB is defined, then the entry in row i and column j of AB
is the sum of the products of corresponding entries from row i of A and
column j of B .
If (AB)ij denotes the (i , j)-entry in AB , and if A is an m × n matrix, then

(AB)ij = ai1b1j + ai2b2j + · · · + ainbnj .

To verify this rule, let B =
[

b1 · · · bp

]
.

Column j of AB is Abj . We can compute Abj by the row-vector rule
for computing Ax. The ith entry in Abj is the sum of the products of
corresponding entries from row i of A and the vector bj . This is
precisely the computation described in the rule for computing the
(i , j)-entry of AB .
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Matrix Algebra Matrix Operations

Example

Calculate the (1, 3)-entry of the product

AB =

[
2 3
1 −5

] [
4 3 6
1 −2 3

]

.

We compute
[
2 3
1 −5

] [
4 3 6
1 −2 3

]

(AB)13 = a11b13 + a12b23
= 2 · 6 + 3 · 3
= 12 + 9 = 21.
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Matrix Algebra Matrix Operations

Example

Find the entries in the second row of AB , where

A =







2 −5 0
−1 3 −4
6 −8 −7
−3 0 9






, B =





4 −6
7 1
3 2




.

We compute






2 −5 0
−1 3 −4
6 −8 −7
−3 0 9











4 −6
7 1
3 2





=







� �

−4 + 21− 12 6 + 3− 8
� �

� �






=







� �

5 1
� �

� �






.
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Matrix Algebra Matrix Operations

Properties of Matrix Multiplication

Theorem

Let A be an m × n matrix, and let B and C have sizes for which the
indicated sums and products are defined.

(a) A(BC ) = (AB)C (associative law of multiplication);

(b) A(B + C ) = AB + AC (left distributive law);

(c) (B + C )A = BA+ CA (right distributive law);

(d) r(AB) = (rA)B = A(rB), for any scalar r ;

(e) ImA = A = AIn (identity for matrix multiplication).

(a) Suppose C =
[

c1 · · · cp

]
. By the definition of matrix

multiplication, we get BC =
[
Bc1 · · · Bcp

]
and

A(BC ) =
[
A(Bc1) · · · A(Bcp)

]
.

But the definition of AB makes A(Bx) = (AB)x, for all x . So we get

A(BC ) =
[
(AB)c1 · · · (AB)cp

]
= (AB)C .
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Matrix Algebra Matrix Operations

Remarks: Associativity and Commutativity

The associative and distributive laws say essentially that pairs of
parentheses in matrix expressions can be inserted and deleted in the
same way as in the algebra of real numbers.

In particular, we can write ABC for the product, which can be
computed either as A(BC ) or as (AB)C .

Similarly, a product ABCD of four matrices can be computed as
A(BCD) or (ABC )D or A(BC )D, and so on.

It does not matter how we group the matrices when computing the
product, so long as the left-to-right order of the matrices is preserved.

The left-to-right order in products is critical because AB and BA are
usually not the same.

If AB = BA, we say that A and B commute with one another.
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Matrix Algebra Matrix Operations

Example

Let A =

[
5 1
3 −2

]

and B =

[
2 0
4 3

]

.

Show that these matrices do not commute, i.e., verify that AB 6= BA.

We have

AB =

[
5 1
3 −2

] [
2 0
4 3

]

=

[
14 3
−2 −6

]

;

BA =

[
2 0
4 3

] [
5 1
3 −2

]

=

[
10 2
29 −2

]

.

So AB 6= BA.
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Matrix Algebra Matrix Operations

Warnings

1. In general, AB 6= BA.

2. The cancelation laws do not hold for matrix multiplication.

That is, if AB = AC , then it is not true in general that B = C .

AB = AC 6⇒ B = C .

3. If a product AB is the zero matrix, you cannot conclude in general
that either A = 0 or B = 0.

AB = 0 6⇒ A = 0 or B = 0.
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Matrix Algebra Matrix Operations

Powers of a Matrix

If A is an n × n matrix and if k is a positive integer, then Ak denotes
the product of k copies of A:

Ak = A · · ·A
︸ ︷︷ ︸

k

.

If A is nonzero and if x is in Rn, then Akx is the result of
left-multiplying x by A repeatedly k times.

If k = 0, then A0x should be x itself.

Thus A0 is interpreted as the identity matrix:

A0 = In.
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Matrix Algebra Matrix Operations

The Transpose of a Matrix

Given an m × n matrix A, the transpose of A is the n ×m matrix,
denoted by AT , whose columns are formed from the corresponding
rows of A.

Example: Let

A =

[
a b

c d

]

, B =





−5 2
1 −3
0 4




, C =

[
1 1 1 1
−3 5 −2 7

]

.

Then

AT =

[
a c

b d

]

, BT =

[
−5 1 0
2 −3 4

]

, CT =







1 −3
1 5
1 −2
1 7






.
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Matrix Algebra Matrix Operations

Properties of the Transpose

Theorem

Let A and B denote matrices whose sizes are appropriate for the following
sums and products.

(a) (AT )T = A;

(b) (A+ B)T = AT + BT ;

(c) For any scalar r , (rA)T = rAT ;

(d) (AB)T = BTAT .

The generalization of Part (d) to products of more than two factors
can be stated in words as follows:

The transpose of a product of matrices equals the product of their
transposes in the reverse order.
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Matrix Algebra Matrix Operations

Proof of Property (d)

Given a matrix A, we denote its (i , j)-entry by Aij .

Let A be m × n and B be n × p.

Then, we have

(AB)Tij = (AB)ji

= Aj1B1i + Aj2B2i + · · ·+ AjnBni

= AT
1jB

T
i1 + AT

2jB
T
i2 + · · ·+ AT

njB
T
in

= BT
i1A

T
1j + BT

i2A
T
2j + · · ·+ BT

inA
T
nj

= (BTAT )ij .

We conclude that (AB)T = BTAT .
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Matrix Algebra The Inverse of a Matrix

Subsection 2

The Inverse of a Matrix
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Matrix Algebra The Inverse of a Matrix

Invertible Matrices

An n× n matrix A is said to be invertible if there is an n× n matrix
C such that

CA = I and AC = I ,

where I = In, the n× n identity matrix.

In this case, C is an inverse of A.

In fact, C is uniquely determined by A, because if B were another
inverse of A, then B = BI = B(AC ) = (BA)C = IC = C .

This unique inverse is denoted by A−1, so that

A−1A = I and AA−1 = I .

A matrix that is not invertible is sometimes called a singular matrix,
and an invertible matrix is called a nonsingular matrix.
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Matrix Algebra The Inverse of a Matrix

Example

Consider A =

[
2 5
−3 −7

]

and C =

[
−7 −5
3 2

]

.

We have

AC =

[
2 5
−3 −7

] [
−7 −5
3 2

]

=

[
1 0
0 1

]

;

CA =

[
−7 −5
3 2

] [
2 5
−3 −7

]

=

[
1 0
0 1

]

.

Thus, C = A−1.
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Matrix Algebra The Inverse of a Matrix

Formula for the Inverse of a 2× 2 Matrix

Theorem

Let A =

[
a b

c d

]

. If ad − bc 6= 0, then A is invertible and

A−1 =
1

ad − bc

[
d −b

−c a

]

.

If ad − bc = 0, then A is not invertible.

The quantity ad − bc is called the determinant of A, and we write

detA = ad − bc .

The theorem says that a 2× 2 matrix A is invertible if and only if
detA 6= 0.
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Matrix Algebra The Inverse of a Matrix

Example

Find the inverse of A =

[
3 4
5 6

]

.

We have
detA = 3 · 6− 4 · 5 = − 2 6= 0.

So A is invertible.

We have

A−1 =
1

−2

[
6 −4
−5 3

]

=

[
−3 2

5
2 −3

2

]

.
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Matrix Algebra The Inverse of a Matrix

Invertibility and Solutions of Linear Systems

Theorem

If A is an invertible n × n matrix, then for each b in Rn, the equation
Ax = b has the unique solution x = A−1b.

Take any b in Rn.

A solution exists because if A−1b is substituted for x , we get

Ax = A(A−1b) = (AA−1)b = Ib = b.

So A−1b is a solution.

To prove that the solution is unique, show that if u is any solution,
then u must be A−1b.

Indeed, if Au = b, we can multiply both sides by A−1 and obtain
A−1Au = A−1b, implying Iu = A−1b, which gives u = A−1b.
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Matrix Algebra The Inverse of a Matrix

Example

Use the inverse matrix method to solve the system

{
3x1 + 4x2 = 3
5x1 + 6x2 = 7

Consider A =

[
3 4
5 6

]

.

Compute its inverse A−1 =

[
−3 2

5
2 −3

2

]

.

Then calculate x :

x = A−1b =

[
−3 2

5
2 −3

2

] [
3
7

]

=

[
5
−3

]

.
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Matrix Algebra The Inverse of a Matrix

Properties of Invertible Matrices

Theorem

(a) If A is an invertible matrix, then A−1 is invertible and (A−1)−1 = A.

(b) If A and B are n × n invertible matrices, then so is AB , and
(AB)−1 = B−1A−1.

(c) If A is an invertible matrix, then so is AT , and (AT )−1 = (A−1)T .

(a) Notice that the equation A−1C = I and CA−1 = I are satisfied with
A in place of C . Hence A−1 is invertible and A it its inverse.

(b) We compute

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I ;
(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I .

(c) Similarly, we get

(A−1)TAT = (AA−1)T = IT = I ;
AT (A−1)T = (A−1A)T = IT = I .
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Matrix Algebra The Inverse of a Matrix

Elementary Matrices

An elementary matrix is one that is obtained by performing a single
elementary row operation on an identity matrix.

Example: Let E1 =





1 0 0
0 1 0
−4 0 1



, E2 =





0 1 0
1 0 0
0 0 1



,

E3 =





1 0 0
0 1 0
0 0 5



 and A =





a b c

d e f

g h i



.

Compute E1A, E2A and E3A, and describe how these products can be
obtained by elementary row operations on A.
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Matrix Algebra The Inverse of a Matrix

Example (Cont’d)

We obtain

E1A =





1 0 0
0 1 0
−4 0 1









a b c

d e f

g h i



 =





a b c

d e f

g − 4a h − 4b i − 4c




.

Here we operated R3 ← R3 − 4R1.
We obtain

E2A =





0 1 0
1 0 0
0 0 1









a b c

d e f

g h i



 =





d e f

a b c

g h i




.

The operation was R1 ↔ R2.
Finally,

E3A =





1 0 0
0 1 0
0 0 5









a b c

d e f

g h i



 =





a b c

d e f

5g 5h 5i




.

So we get R3 ← 5R3.
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Matrix Algebra The Inverse of a Matrix

Properties of Elementary Matrices

If an elementary row operation is performed on an m × n matrix A,
the resulting matrix can be written as EA, where the m×m matrix E

is created by performing the same row operation on Im.

Each elementary matrix E is invertible.

The inverse of E is the elementary matrix F of the same type that
transforms E back into I .

In fact, since row operations are reversible, elementary matrices are
invertible, for if E is produced by a row operation on I , then there is
another row operation of the same type that changes E back into I .
Hence there is an elementary matrix F such that FE = I .
Since E and F correspond to reverse operations, EF = I , too.

George Voutsadakis (LSSU) Linear Algebra August 2017 37 / 73



Matrix Algebra The Inverse of a Matrix

Example

Find the inverse of E1 =





1 0 0
0 1 0
−4 0 1



.

To transform E1 into I , we must perform R3 ← R3 + 4R1.

The elementary matrix that does this is

E−11 =





1 0 0
0 1 0

+4 0 1




.
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Matrix Algebra The Inverse of a Matrix

Finding A
−1

Theorem

An n × n matrix A is invertible if and only if A is row equivalent to In. In
this case, any sequence of elementary row operations that reduces A to In
also transforms In into A−1.

Suppose that A is invertible. Then, since the equation Ax = b has a
solution for each b, A has a pivot position in every row. Because A is
square, the n pivot positions must be on the diagonal. This implies
that the reduced echelon form of A is In. That is, A ∼ In.
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Matrix Algebra The Inverse of a Matrix

Finding A
−1 (Converse)

Suppose, conversely, that A ∼ In. But each step of the row reduction
of A corresponds to left-multiplication by an elementary matrix. So
there exist elementary matrices E1, . . . ,Ep such that

A ∼ E1A ∼ E2(E1A) ∼ Ep(Ep−1 · · ·E1A) = In.

That is, Ep · · ·E1A = In. Since the product Ep · · · E1 of invertible
matrices is invertible, we get

(Ep · · ·E1)
−1(Ep · · · E1)A = (Ep · · ·E1)

−1In
A = (Ep · · ·E1)

−1
.

Thus A is invertible, as it is the inverse of an invertible matrix. Also,
A−1 = [(Ep · · ·E1)

−1]−1 = Ep · · · E1. Then A−1 = Ep · · ·E1In. So A−1

results from applying E1, . . . ,Ep successively to In. This is the same
sequence that reduced A to In.
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Matrix Algebra The Inverse of a Matrix

An Algorithm for Finding A
−1

Row reduce the augmented matrix
[
A I

]
.

If A is row equivalent to I , then
[
A I

]
is row equivalent to

[
I A−1

]
.

Otherwise, A does not have an inverse.
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Matrix Algebra The Inverse of a Matrix

Example

Find the inverse of the matrix A =





0 1 2
1 0 3
4 −3 8



 if it exists.





0 1 2 1 0 0
1 0 3 0 1 0
4 −3 8 0 0 1




R1↔R2
−→





1 0 3 0 1 0
0 1 2 1 0 0
4 −3 8 0 0 1




R3←R3−4R1
−→





1 0 3 0 1 0
0 1 2 1 0 0
0 −3 −4 0 −4 1




R3←R3+3R2
−→





1 0 3 0 1 0
0 1 2 1 0 0
0 0 2 3 −4 1




R3←

1
2R3

−→





1 0 3 0 1 0
0 1 2 1 0 0
0 0 1 3

2 −2 1
2




R2←R2−2R3
−→





1 0 0 − 9
2 7 − 3

2
0 1 0 −2 4 −1
0 0 1 3

2 −2 1
2





Since A ∼ I , A is invertible, and A−1 =





−9
2 7 −3

2
−2 4 −1

3
2 −2 1

2




.
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Matrix Algebra The Inverse of a Matrix

Another View of Matrix Inversion

Denote the columns of In by e1, . . . , en.

Then row reduction of
[
A I

]
to

[
I A−1

]
can be viewed as the

simultaneous solution of the n systems

Ax = e1, Ax = e2, . . . , Ax = en,

where the “augmented columns” of these systems have all been
placed next to A to form

[
A e1 e2 · · · en

]
.

The equation AA−1 = I and the definition of matrix multiplication
show that the columns of A−1 are precisely the solutions of these
systems.
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Matrix Algebra Characterization of Invertible Matrices

Subsection 3

Characterization of Invertible Matrices
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Matrix Algebra Characterization of Invertible Matrices

The Invertible Matrix Theorem

Theorem (The Invertible Matrix Theorem)

Let A be a square n × n matrix. Then the following statements are equivalent:

(a) A is an invertible matrix.

(b) A is row equivalent to the n× n identity matrix.

(c) A has n pivot positions.

(d) The equation Ax = 0 has only the trivial solution.

(e) The columns of A form a linearly independent set.

(f) The linear transformation x 7→ Ax is one-to-one.

(g) The equation Ax = b has at least one solution for each b in Rn.

(h) The columns of A span Rn.

(i) The linear transformation x 7→ Ax maps Rn onto Rn.

(j) There is an n × n matrix C such that CA = I .

(k) There is an n × n matrix D such that AD = I .

(l) AT is an invertible matrix.
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Matrix Algebra Characterization of Invertible Matrices

Example

Use the Invertible Matrix Theorem to decide if

A =





1 0 −2
3 1 −2
−5 −1 9



 is invertible.

We have

A
R2←R2−3R1
−→

R3←R3+5R1





1 0 −2
0 1 4
0 −1 −1




R3←R3+r2
−→





1 0 −2
0 1 4
0 0 3




.

So A has three pivot positions. Hence is invertible, by the Invertible
Matrix Theorem.
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Matrix Algebra Characterization of Invertible Matrices

Invertible Linear Transformations

A linear transformation T : Rn → R
n is said to be invertible if there

exists a function S : Rn → R
n such that

S(T (x)) = x , for all x in Rn;
T (S(x)) = x , for all x in Rn

.

The next theorem shows that if such an S exists, it is unique and
must be a linear transformation.

We call S the inverse of T and write it as T−1.
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Matrix Algebra Characterization of Invertible Matrices

Invertible Transformations and Matrices

Theorem

Let T : Rn → R
n be a linear transformation and let A be the standard

matrix for T . Then T is invertible if and only if A is an invertible matrix.
In that case, the linear transformation S given by S(x) = A−1x is the
unique function satisfying S(T (x)) = x , for all x in Rn, and
T (S(x)) = x , for all x in Rn.

Suppose that T is invertible. Then the second equation shows that T
is onto Rn: Let b be in Rn. Set x = S(b). Then
T (x) = T (S(b)) = b. So each b is in the range of T . Thus A is
invertible, by the Invertible Matrix Theorem.

Conversely, suppose that A is invertible, and let S(x) = A−1x . Then,
S is a linear transformation, and S obviously satisfies both equations.
For instance, S(T (x)) = S(Ax) = A−1(Ax) = x . Thus T is
invertible.
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Matrix Algebra Characterization of Invertible Matrices

Invertible Transformations and Matrices (Cont’d)

Now we show that S , with S(x) = A−1x , is the unique
transformation satisfying

S(T (x)) = x , for all x in Rn,
T (S(x)) = x , for all x in Rn

.

Suppose that S ′ : Rn → R
n is another transformation satisfying

S ′(T (x)) = x , for all x in Rn,
T (S ′(x)) = x , for all x in Rn.

But then we have, for all x in Rn,

S ′(x) = S ′(T (S(x))) = S(x).

So S ′ = S and S is unique.
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Matrix Algebra Characterization of Invertible Matrices

Example

What can you say about a one-to-one linear transformation T from
R

n into Rn?

The columns of the standard matrix A of T are linearly independent.

So A is invertible, by the Invertible Matrix Theorem.

Thus, T maps Rn onto Rn.

Also, T is invertible, by the preceding theorem.
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Matrix Algebra Partitioned Matrices

Subsection 4

Partitioned Matrices
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Matrix Algebra Partitioned Matrices

Partitioned (or Block) Matrices

The matrix A =





3 0 −1 5 9 −2
−5 2 4 0 −3 1

−8 −6 3 1 7 −4



 can be written as

the 2× 3 partitioned (or block) matrix

A =

[
A11 A12 A13

A21 A22 A23

]

whose entries are the blocks (or submatrices)

A11 =

[
3 0 −1
−5 2 4

]

, A12 =

[
5 9
0 −3

]

, A13 =

[
−2
1

]

A21 =
[
−8 −6 3

]
, A22 =

[
1 7

]
, A23 =

[
−4

]
.
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Matrix Algebra Partitioned Matrices

Addition and Scalar Multiplication

If matrices A and B are the same size and are partitioned in exactly
the same way, then it is natural to make the same partition of the
ordinary matrix sum A+ B .

Example:




1 2 3

4 5 6
7 8 9



+





3 5 7

9 8 4
6 2 1



 =





4 7 10

13 13 10
13 10 10




.

In this case, each block of A+ B is the (matrix) sum of the
corresponding blocks of A and B .

Multiplication of a partitioned matrix by a scalar is also computed
block by block.

Example:

3

[
A11 A12 A13

A21 A22 A23

]

=

[
3A11 3A12 3A13

3A21 3A22 3A23

]

.
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Matrix Algebra Partitioned Matrices

Multiplication of Partitioned Matrices

Partitioned matrices can be multiplied by the usual row-column rule
as if the block entries were scalars, provided that for a product AB ,
the column partition of A matches the row partition of B .

Example: Let

A =





2 −3 1 0 −4
1 5 −2 3 −1

0 −4 −2 7 −1



 =

[
A11 A12

A21 A22

]

,

B =









6 4
−2 1
−3 7

−1 3
5 2









=

[
B1

B2

]

.

The 5 columns of A are partitioned into a set of 3 columns and then
a set of 2 columns.
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Matrix Algebra Partitioned Matrices

Example (Cont’d)

The 5 rows of B are partitioned in the same way - into a set of 3 rows
and then a set of 2 rows.

We say that the partitions of A and B are conformable for block

multiplication.
We then have

AB =

[
A11 A12

A21 A22

] [
B1

B2

]

=

[
A11B1 + A12B2

A21B1 + A22B2

]

=











[
2 −3 1
1 5 −2

]




6 4
−2 1
−3 7



+

[
0 −4
3 −1

] [
−1 3
5 2

]

[
0 −4 −2

]





6 −4
−2 1
−3 7



+
[
7 −1

]
[
−1 3
5 2

]











=





[
15 12
2 −5

]

+

[
−20 −8
−8 7

]

[
14 −18

]
+
[
−12 19

]



 =





−5 4
−6 2
2 1




.
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Matrix Algebra Partitioned Matrices

Example

Let A =

[
−3 1 2
1 −4 5

]

and B =





a b

c d

e f



.

Verify that

AB = col1(A)row1(B) + col2(A)row2(B) + col3(A)row3(B).

We have

col1(A)row1(B) + col2(A)row2(B) + col3(A)row3(B)

=

[
−3
1

]
[
a b

]
+

[
1
−4

]
[
c d

]
+

[
2
5

]
[
e f

]

=

[
−3a −3b

a b

]

+

[
c d

−4c −4d

]

+

[
2e 2f
5e 5f

]

=

[
−3a+ c + 2e −3b + d + 2f
a − 4c + 5e b − 4d + 5f

]

= AB .
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Matrix Algebra Partitioned Matrices

Column-Row Expansion of AB

Theorem

If A is m × n and B is n × p, then

AB =
[
col1(A) col2(A) · · · coln(A)

]








row1(B)
row2(B)

...
rown(B)








= col1(A)row1(B) + · · · + coln(A)rown(B).

For each row index i and column index j , the (i , j)-entry in
colk(A)rowk(B) is the product of aik from colk(A) and bkj from
rowk(B). Hence the (i , j)-entry in the sum shown in the equation is
ai1b1j + ai2b2j + · · ·+ ainbnj . This sum is also the (i , j)-entry in AB ,
by the row-column rule.
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Matrix Algebra Partitioned Matrices

Inverses of Partitioned Matrices

A matrix of the form A =

[
A11 A12

0 A22

]

is said to be block upper

triangular.

Assume that A11 is p × p, A22 is q × q, and A is invertible.

Find a formula for A−1.

Denote A−1 by B and partition B so that
[
A11 A12

0 A22

] [
B11 B12

B21 B22

]

=

[
Ip 0
0 Iq

]

.

This matrix equation provides four equations that will lead to the
unknown blocks B11, . . . ,B22:

A11B11 + A12B21 = Ip
A11B12 + A12B22 = 0

A22B21 = 0
A22B22 = Iq
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Matrix Algebra Partitioned Matrices

Inverses of Partitioned Matrices (Cont’d)

By itself, A22B22 = Iq does not show that A22 is invertible.

However, since A22 is square, the Invertible Matrix Theorem and the
last equation together show that A22 is invertible and B22 = A−122 .

Next, left-multiply both sides of A22B21 = 0 by A−122 and obtain
B21 = A−122 0 = 0.

So A11B11 + A12B21 = Ip simplifies to A11B11 + 0 = Ip.

Since A11 is square, this shows that A11 is invertible and B11 = A−111 .

Finally, use these results with A11B12 + A12B22 = 0 to find that
A11B12 = − A12B22 = − A12A

−1
22 and B12 = − A−111 A12A

−1
22 .

Thus

A−1 =

[
A11 A12

0 A22

]−1

=

[
A−111 −A−111 A12A

−1
22

0 A−122

]

.
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Matrix Algebra Partitioned Matrices

Block Diagonal Matrices

A block diagonal matrix is a partitioned matrix with zero blocks off
the main diagonal (of blocks).

Such a matrix is invertible if and only if each block on the diagonal is
invertible.
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Matrix Algebra Partitioned Matrices

Example

Suppose A =

[
B 0
0 C

]

is a square block diagonal matrix.

Show that A is invertible if and only if B ,C are invertible.

Suppose that A is invertible. Assume A−1 is partitioned as

A−1 =

[
D E

F G

]

so that the two partitions are conformal with block

multiplication. Then we have:

AA−1 = I ⇒

[
B 0
0 C

] [
D E

F G

]

=

[
Ip 0
0 Iq

]

⇒







BD = Ip
BE = 0
CF = 0
CG = Iq

⇒







D = B−1

E = 0
F = 0
G = C−1

So we get that B ,C are invertible matrices, with inverses D,G ,

respectively. Moreover, we see that A−1 =

[
B−1 0
0 C−1

]

.
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Matrix Algebra Partitioned Matrices

Example (Cont’d)

Assume, conversely, that A =

[
B 0
0 C

]

with B ,C invertible. To

show that A is invertible, form the matrix

[
B−1 0
0 C−1

]

. Note that

its partition and that of A are conformable with block multiplication
and compute:

[
B 0
0 C

] [
B−1 0
0 C−1

]

=

[
BB−1 0
0 CC−1

]

=

[
Ip 0
0 Iq

]

= I ;
[
B−1 0
0 C−1

] [
B 0
0 C

]

=

[
B−1B 0

0 C−1C

]

=

[
Ip 0
0 Iq

]

= I ;

Thus A is invertible and A−1 =

[
B−1 0
0 C−1

]

.
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Matrix Algebra Matrix Factorizations

Subsection 5

Matrix Factorizations
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Matrix Algebra Matrix Factorizations

LU Factorization

Assume that A is an m × n matrix that can be row reduced to
echelon form, without row interchanges.

Then A can be written in the form A = LU, where L is an m ×m

lower triangular matrix with 1’s on the diagonal and U is an m × n

echelon form of A.

A =







1 0 0 0
∗ 1 0 0
∗ ∗ 1 0
∗ ∗ ∗ 1













� ∗ ∗ ∗ ∗

0 � ∗ ∗ ∗

0 0 0 � ∗

0 0 0 0 0






.

Such a factorization is called an LU factorization of A.

The matrix L is invertible and is called a unit lower triangular

matrix.
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Matrix Algebra Matrix Factorizations

Solving Equations Using the LU Factorization

When A = LU, the equation Ax = b can be written as L(Ux) = b.

Writing y for Ux , we can find x by solving the pair of equations

Ly = b

Ux = y

First solve Ly = b for y ;

Then solve Ux = y for x .

Each equation is easy to solve because L and U are triangular.
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Matrix Algebra Matrix Factorizations

Example

Using the LU factorization

A =







3 −7 −2 2
−3 5 1 0
6 −4 0 −5
−9 5 −5 12






=







1 0 0 0
−1 1 0 0
2 −5 1 0
−3 8 3 1













3 −7 −2 2
0 −2 −1 2
0 0 −1 1
0 0 0 −1







= LU, solve Ax = b, where b =







−9
5
7
11






.
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Matrix Algebra Matrix Factorizations

Example (Cont’d)

First solve Ly = b:
[
L b

]

=







1 0 0 0 −9
−1 1 0 0 5
2 −5 1 0 7
−3 8 3 1 11







R2←R2+R1
−→

R3←R3−2R1
R4←R4+3R1







1 0 0 0 −9
0 1 0 0 −4
0 −5 1 0 25
0 8 3 1 −16







R3←R3+5R2
−→

R4←R4−8R2







1 0 0 0 −9
0 1 0 0 −4
0 0 1 0 5
0 0 3 1 16







R4←R4−3R3
−→







1 0 0 0 −9
0 1 0 0 −4
0 0 1 0 5
0 0 0 1 1







=
[
I y

]
.
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Matrix Algebra Matrix Factorizations

Example (Cont’d)

Now solve Ux = y :
[

U y
]

=









3 −7 −2 2 −9
0 −2 −1 2 −4
0 0 −1 1 5
0 0 0 −1 1









R4←(−1)R4
−→









3 −7 −2 2 −9
0 −2 −1 2 −4
0 0 −1 1 5
0 0 0 1 −1









R1←R1−2R4
−→

R2←R2−2R4
R3←R3−R4









3 −7 −2 0 −7
0 −2 −1 0 −2
0 0 −1 0 6
0 0 0 1 −1









R3←(−1)R3
−→









3 −7 −2 0 −7
0 −2 −1 0 −2
0 0 1 0 −6
0 0 0 1 −1









R1←R1+2R3
−→

R2←R2+R3









3 −7 0 0 −19
0 −2 0 0 −8
0 0 1 0 −6
0 0 0 1 −1









R2←(− 1
2
)R2

−→









3 −7 0 0 −19
0 1 0 0 4
0 0 1 0 −6
0 0 0 1 −1









R1←R1+7R2
−→









3 0 0 0 9
0 1 0 0 4
0 0 1 0 −6
0 0 0 1 −1









R1←
1
3
R1

−→









1 0 0 0 3
0 1 0 0 4
0 0 1 0 −6
0 0 0 1 −1









= [I4 x ].
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Matrix Algebra Matrix Factorizations

Obtaining an LU Factorization

Suppose A can be reduced to an echelon form U using only row
replacements that add a multiple of one row to another row below it.

In this case, there exist unit lower triangular elementary matrices
E1, . . . ,Ep such that Ep · · ·E1A = U.

Then A = (Ep · · ·E1)
−1U = LU, where L = (Ep · · ·E1)

−1.

It can be shown that products and inverses of unit lower triangular
matrices are also unit lower triangular.

Thus L is unit lower triangular.

Note that the row operations which reduce A to U, also reduce the
matrix L to I , because Ep · · ·E1L = (Ep · · ·E1)(Ep · · ·E1)

−1 = I .
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Matrix Algebra Matrix Factorizations

The LU Factorization Algorithm

Algorithm for an LU Factorization

1. Reduce A to an echelon form U by a sequence of row replacement
operations, if possible.

2. Place entries in L such that the same sequence of row operations
reduces L to I .

Step 1 is not always possible, but when it is, the argument in the
preceding slide shows that an LU factorization exists.

By construction, L will satisfy (Ep · · ·E1)L = I using the same
E1, . . . ,Ep as the one reducing A to U.

Thus L will be invertible, by the Invertible Matrix Theorem, with
(Ep · · ·E1) = L−1.

Since Ep · · ·E1A = U, L−1A = U, and A = LU.
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Matrix Algebra Matrix Factorizations

Example

Find an LU factorization of A =







2 4 −1 5 −2
−4 −5 3 −8 1
2 −5 −4 1 8
−6 0 7 −3 1






.

A =







2 4 −1 5 −2
−4 −5 3 −8 1
2 −5 −4 1 8
−6 0 7 −3 1







R2←R2+2R1
−→

R3←R3−R1
R4←R4+3R1







2 4 −1 5 −2
0 3 1 2 −3
0 −9 −3 −4 10
0 12 4 12 −5







R3←R3+3R2
−→

R4←R4−4R2







2 4 −1 5 −2
0 3 1 2 −3
0 0 0 2 1
0 0 0 4 7







R4←R4−2R3
−→







2 4 −1 5 −2
0 3 1 2 −3
0 0 0 2 1
0 0 0 0 5







= U .
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Matrix Algebra Matrix Factorizations

Example (Cont’d): Pivot Columns

To transform A to U, we looked at the following pivot columns:

A =







2 4 −1 5 −2
−4 −5 3 −8 1
2 −5 −4 1 8
−6 0 7 −3 1







R2←R2+2R1
−→

R3←R3−R1
R4←R4+3R1







2 4 −1 5 −2
0 3 1 2 −3
0 −9 −3 −4 10
0 12 4 12 −5







R3←R3+3R2
−→

R4←R4−4R2







2 4 −1 5 −2
0 3 1 2 −3
0 0 0 2 1
0 0 0 4 7







R4←R4−2R3
−→







2 4 −1 5 −2
0 3 1 2 −3
0 0 0 2 1
0 0 0 0 5







= U .

George Voutsadakis (LSSU) Linear Algebra August 2017 72 / 73



Matrix Algebra Matrix Factorizations

Example (Cont’d)

Since A has four rows, L should be 4× 4.

We look at the colored entries of the preceding slide that were used to
determine the sequence of row operations that transformed A to U.







2
−4
2
−6











3
−9
12





[
2
4

]
[
5
]
.

Divide each by the pivot and use the result to form L:

L =







1 0 0 0
−2 1 0 0
1 −3 1 0
−3 4 2 1






.

This is because the same row operations we used to transform A to U

transform L to I4.
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