Introduction to Linear Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

LSSU Math 305

(1) Determinants

- Introduction to Determinants
- Properties of Determinants
- Cramer's Rule, Volume \& Linear Transformations

Subsection 1

Introduction to Determinants

2×2 Determinants

- For a 1×1 matrix $A=\left[a_{11}\right]$, we define

$$
\operatorname{det} A=a_{11}
$$

- Recall that the determinant of a 2×2 matrix, $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, is the number

$$
\operatorname{det} A=a_{11} a_{22}-a_{12} a_{21}
$$

- Recall also that a 2×2 matrix is invertible if and only if its determinant is nonzero.

3×3 Determinants

- Consider an invertible $A=\left[a_{i j}\right]$ with $a_{11} \neq 0$.
- We have:

$$
\begin{aligned}
& A \underset{R_{3} \leftarrow a_{11} R_{3}}{\stackrel{R}{2} \leftarrow a_{11} R_{2}}\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{11} a_{21} & a_{11} a_{22} & a_{11} a_{23} \\
a_{11} a_{31} & a_{11} a_{32} & a_{11} a_{33}
\end{array}\right] \\
& R_{2} \stackrel{R_{2}-a_{21} R_{1}}{R_{1}}\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
R_{3} \leftarrow R_{3}-a_{31} R_{1}
\end{array}\left[\begin{array}{ccc}
11 & a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & a_{11} a_{32}-a_{12} a_{31} & a_{11} a_{33}-a_{13} a_{31}
\end{array}\right] .\right.
\end{aligned}
$$

- Since A is invertible, either the (2,2)-entry or the (3,2)-entry on the right is nonzero.
- Let us suppose that the (2,2)-entry is nonzero. (Otherwise, we can make a row interchange before proceeding.)

3×3 Determinants (Cont'd)

- Continuing, we get

$$
\begin{aligned}
& \begin{array}{cc}
{\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & a_{11} a_{32}-a_{12} a_{31} & a_{11} a_{33}-a_{13} a_{31}
\end{array}\right]} & \left.\begin{array}{c}
R_{3} \leftarrow\left(a_{11} a_{22}-a_{12} a_{21}\right) R_{3} \\
{\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{11} a_{22}-a_{12} a_{21} \\
0 & \left(a_{11} a_{22}-a_{12} a_{21}\right)\left(a_{11} a_{32}-a_{12} a_{31}\right)
\end{array}\right.} \\
\left(a_{11} a_{22}-a_{12} a_{21}\right)\left(a_{11} a_{33}-a_{13} a_{31}\right)
\end{array}\right]
\end{array} \\
& R_{3} \leftarrow R_{3}-\left(a_{11} a_{32}-a_{12} a_{31}\right) R_{2}\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& \Delta=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
&-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31} .
\end{aligned}
$$

- Since A is invertible, Δ must be nonzero.
- The converse is true, too, as we will see in the following section.
- We call Δ the determinant of the 3×3 matrix A.

Rewriting the 3×3 Determinant

- To generalize the definition of the determinant to larger matrices, we use 2×2 determinants to rewrite the $3 \times 3 \Delta$ described above.
- The terms in Δ can be grouped as
$\left(a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}\right)-\left(a_{12} a_{21} a_{33}-a_{12} a_{23} a_{31}\right)+\left(a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}\right)$.
- Thus, we get
$\Delta=a_{11} \cdot \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \cdot \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \cdot \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$.
- For brevity, write

$$
\Delta=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13},
$$

where A_{11}, A_{12} and A_{13} are obtained from A by deleting the first row and one of the three columns.

Submatrices of A

- For any square matrix A, let $A_{i j}$ denote the submatrix formed by deleting the i th row and j th column of A.
Example: Let $A=\left[\begin{array}{rrrr}1 & -2 & 5 & 0 \\ 2 & 0 & 4 & -1 \\ 3 & 1 & 0 & 7 \\ 0 & 4 & -2 & 0\end{array}\right]$.
Then A_{32} is obtained by crossing out row 3 and column 2,

$$
A=\left[\begin{array}{rrrr}
1 & -2 & 5 & 0 \\
2 & 0 & 4 & -1 \\
3 & 1 & 0 & 7 \\
0 & 4 & -2 & 0
\end{array}\right] \quad \Rightarrow \quad A_{32}=\left[\begin{array}{rrr}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right]
$$

$n \times n$ Determinant

- We can now give a recursive definition of a determinant.
- When $n=3, \operatorname{det} A$ is defined using determinants of the 2×2 submatrices $A_{1 j}$.
- When $n=4, \operatorname{det} A$ uses determinants of the 3×3 submatrices $A_{1 j}$.
- In general, an $n \times n$ determinant is defined by determinants of $(n-1) \times(n-1)$ submatrices.

Definition

For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is the sum of n terms of the form $\pm a_{1 j} \operatorname{det}_{A 1 j}$, with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{1 n}$ are from the first row of A. In symbols,

$$
\begin{aligned}
\operatorname{det} A & =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j} .
\end{aligned}
$$

Example and Notation

- Compute the determinant of $A=\left[\begin{array}{rrr}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.
- We compute:

$$
\begin{aligned}
\operatorname{det} A & =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13} \\
& =1 \cdot \operatorname{det}\left[\begin{array}{rr}
4 & -1 \\
-2 & 0
\end{array}\right]-5 \cdot \operatorname{det}\left[\begin{array}{rr}
2 & -1 \\
0 & 0
\end{array}\right]+0 \cdot \operatorname{det}\left[\begin{array}{rr}
2 & 4 \\
0 & -2
\end{array}\right] \\
& =1 \cdot(0-2)-5 \cdot(0-0)+0 \cdot(-4-0)=-2 .
\end{aligned}
$$

- Another common notation for the determinant of a matrix uses a pair of vertical lines in place of brackets.
- Thus the calculation can be written as

$$
\operatorname{det} A=1\left|\begin{array}{rr}
4 & -1 \\
-2 & 0
\end{array}\right|-5\left|\begin{array}{rr}
2 & -1 \\
0 & 0
\end{array}\right|+0\left|\begin{array}{rr}
2 & 4 \\
0 & -2
\end{array}\right| .
$$

Cofactors and Cofactor Expansion

- Given $A=\left[a_{i j}\right]$, the (i, j)-cofactor of A is the number $C_{i j}$ given by

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}
$$

- Then $\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}$.
- This formula is the cofactor expansion across the first row of A.

Theorem

The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column. The expansion across the ith row using the cofactors above is

$$
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

The cofactor expansion down the j th column is

$$
\operatorname{det} A=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} .
$$

Example

- Use a cofactor expansion across the third row to compute $\operatorname{det} A$, where $A=\left[\begin{array}{rrr}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.
- Compute

$$
\begin{aligned}
\operatorname{det} A= & a_{31} C_{31}+a_{32} C_{32}+a_{33} C_{33} \\
= & (-1)^{3+1} a_{31} \operatorname{det} A_{31}+(-1)^{3+2} a_{32} \operatorname{det} A_{32} \\
& +(-1)^{3+3} a_{33} \operatorname{det} A_{33} \\
= & 0\left|\begin{array}{rr}
5 & 0 \\
4 & -1
\end{array}\right|-(-2)\left|\begin{array}{rr}
1 & 0 \\
2 & -1
\end{array}\right|+0\left|\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right| \\
= & 0+2(-1)+0=-2 .
\end{aligned}
$$

Example

- Compute $\operatorname{det} A$, where $A=\left[\begin{array}{rrrrr}3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0\end{array}\right]$.
- The cofactor expansion down the first column of A has all terms equal to zero except the first:

$$
\operatorname{det} A=3\left|\begin{array}{rrrr}
2 & -5 & 7 & 3 \\
0 & 1 & 5 & 0 \\
0 & 2 & 4 & -1 \\
0 & 0 & -2 & 0
\end{array}\right| .
$$

Example (Cont'd)

- Next, expand this 4×4 determinant down the first column, in order to take advantage of the zeros there:

$$
\operatorname{det} A=3\left|\begin{array}{rrrr}
2 & -5 & 7 & 3 \\
0 & 1 & 5 & 0 \\
0 & 2 & 4 & -1 \\
0 & 0 & -2 & 0
\end{array}\right|=3 \cdot 2 \cdot\left|\begin{array}{rrr}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right| .
$$

This 3×3 determinant was computed in a previous example and found to equal -2 :

$$
\operatorname{det} A=3 \cdot 2 \cdot(-2)=-12
$$

Matrices with Many Zeroes

- The matrix in the last example was nearly triangular.
- The method in that example is easily adapted to prove the following theorem.

Theorem

If A is a triangular matrix, then $\operatorname{det} A$ is the product of the entries on the main diagonal of A.

- The strategy the last example of looking for zeros works extremely well when an entire row or column consists of zeros. In such a case, the cofactor expansion along such a row or column is a sum of zeros and the determinant is zero.

Subsection 2

Properties of Determinants

Row Operations

Theorem (Row Operations)

Let A be a square matrix.
(a) If a multiple of one row of A is added to another row to produce a matrix B, then $\operatorname{det} B=\operatorname{det} A$.
(b) If two rows of A are interchanged to produce B, then $\operatorname{det} B=-\operatorname{det} A$.
(c) If one row of A is multiplied by k to produce B, then $\operatorname{det} B=k \cdot \operatorname{det} A$.

Row Operations (Part (b))

(b) We show only the special case in which the first and second rows are interchanged. The general case is similar.

$$
\begin{aligned}
\left|\begin{array}{ccc}
a_{21} & \cdots & a_{2 n} \\
a_{11} & \cdots & a_{1 n} \\
a_{31} & \cdots & a_{3 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right| & =\sum_{i=1}^{n} a_{1 i}(-1)^{2+i} \operatorname{det} A_{1 i} \\
& = \\
& =-\sum_{i=1}^{n}(-1) a_{1 i}(-1)^{1+i} \operatorname{det} A_{1 i} \\
& =-\operatorname{det} A .
\end{aligned}
$$

- Note that this implies that, if a matrix A has two identical rows then its determinant is zero, because $\operatorname{det} A=-\operatorname{det} A$.

Row Operations (Part (a))

(a) We show only the special case in which the first row is first plus c times the second row. The general case is similar.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a_{11}+c a_{21} & \cdots & a_{1 n}+c a_{2 n} \\
a_{21} & \cdots & a_{2 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right|=\sum_{i=1}^{n}\left(a_{1 i}+c a_{2 i}\right)(-1)^{1+i} \operatorname{det} A_{1 i} \\
& =\sum_{i=1}^{n} a_{1 i}(-1)^{1+i} \operatorname{det} A_{1 i}+c \sum_{i=1}^{n} a_{2 i}(-1)^{1+i} \operatorname{det} A_{1 i} \\
& =\operatorname{det} A+\left|\begin{array}{ccc}
a_{21} & \cdots & a_{2 n} \\
a_{21} & \cdots & a_{2 n} \\
a_{31} & \cdots & a_{3 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right|=\operatorname{det} A+0=\operatorname{det} A .
\end{aligned}
$$

Row Operations (Part (c))

(c) We show only the special case in which the first row has been multiplied by c. The general case is similar.

$$
\begin{aligned}
\left|\begin{array}{ccc}
c a_{11} & \cdots & c a_{1 n} \\
a_{21} & \cdots & a_{2 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right| & =\sum_{i=1}^{n}\left(c a_{1 i}\right)(-1)^{1+i} \operatorname{det} A_{1 i} \\
& =c \sum_{i=1}^{n} a_{1 i}(-1)^{1+i} \operatorname{det} A_{1 i} \\
& =c \operatorname{det} A .
\end{aligned}
$$

Example

- Compute $\operatorname{det} A$, where $A=\left[\begin{array}{rrr}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$.
- The strategy is to reduce A to echelon form and then to use the fact that the determinant of a triangular matrix is the product of the diagonal entries.
The first two row replacements in column 1 do not change the value:

$$
\operatorname{det} A \xlongequal{ }\left|\begin{array}{rrr}
1 & -4 & 2 \\
-2 & 8 & -9 \\
-1 & 7 & 0
\end{array}\right|=\left|\begin{array}{rrr}
1 & -4 & 2 \\
0 & 0 & -5 \\
-1 & 7 & 0
\end{array}\right|=\left|\begin{array}{rrr}
1 & -4 & 2 \\
0 & 0 & -5 \\
0 & 3 & 2
\end{array}\right| .
$$

An interchange of rows 2 and 3 reverses the sign of the determinant:

$$
\operatorname{det} A=-\left|\begin{array}{rrr}
1 & -4 & 2 \\
0 & 3 & 2 \\
0 & 0 & -5
\end{array}\right|=-1 \cdot 3 \cdot(-5)=15
$$

Example

- Compute $\operatorname{det} A$, where $A=\left[\begin{array}{rrrr}2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6\end{array}\right]$.
- To simplify the arithmetic, we want a 1 in the upper left corner. We could interchange rows 1 and 4 . Instead, we factor out 2 from the top row, and then proceed with row replacements in the first column:

$$
\operatorname{det} A=2\left|\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right|=2\left|\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & -12 & 10 & 10 \\
0 & 0 & -3 & 2
\end{array}\right| .
$$

Example (Cont'd)

- Next, we could factor out another 2 from row 3 or use the 3 in the second column as a pivot.
We choose the latter operation, adding 4 times row 2 to row 3 :

$$
\operatorname{det} A=2\left|\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & -12 & 10 & 10 \\
0 & 0 & -3 & 2
\end{array}\right|=2\left|\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & -3 & 2
\end{array}\right|
$$

Finally, adding $-\frac{1}{2}$ times row 3 to row 4 , and computing the "triangular determinant, we find that

$$
\operatorname{det} A=2\left|\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & 0 & 1
\end{array}\right|=2 \cdot 1 \cdot 3 \cdot(-6) \cdot 1=-36
$$

Determinant and Echelon Form

- Suppose a square matrix A has been reduced to an echelon form U by row replacements and row interchanges.
- If there are r interchanges, then the preceding theorem shows that

$$
\operatorname{det} A=(-1)^{r} \operatorname{det} U
$$

- Since U is in echelon form, it is triangular, and so $\operatorname{det} U$ is the product of the diagonal entries $u_{11}, \ldots, u_{n n}$.
- If A is invertible, the entries $u_{i i}$ are all pivots (because $A \sim I_{n}$ and the $u_{i i}$ have not been scaled to 1 's).
- Otherwise, at least $u_{n n}$ is zero, and the product $u_{11} \cdots u_{n n}$ is zero.
- Thus

$$
\operatorname{det} A= \begin{cases}(-1)^{r} \cdot(\text { product of pivots in } U), & \text { if } A \text { is invertible; } \\ 0, & \text { if } A \text { is not invertible } .\end{cases}
$$

Invertibility and Determinants

Theorem

A square matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

- This theorem adds the statement " $\operatorname{det} A \neq 0$ " to the Invertible Matrix Theorem.
- A useful corollary is that $\operatorname{det} A=0$ when the columns of A are linearly dependent.
- Also, $\operatorname{det} A=0$ when the rows of A are linearly dependent.
- In practice, linear dependence is obvious when two columns or two rows are the same or a column or a row is zero.

Example

- Compute $\operatorname{det} A$, where $A=\left[\begin{array}{rrrr}3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ -6 & 7 & -7 & 4 \\ -5 & -8 & 0 & 9\end{array}\right]$.
- Add 2 times row 1 to row 3 to obtain

$$
\operatorname{det} A=\operatorname{det}\left[\begin{array}{rrrr}
3 & -1 & 2 & -5 \\
0 & 5 & -3 & -6 \\
0 & 5 & -3 & -6 \\
-5 & -8 & 0 & 9
\end{array}\right]=0
$$

because the second and third rows of the second matrix are equal.

Example

- Compute $\operatorname{det} A$, where $A=\left[\begin{array}{rrrr}0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2\end{array}\right]$.
- A good way to begin is to use the 2 in column 1 as a pivot, eliminating the -2 below it.
Then use a cofactor expansion to reduce the size of the determinant, followed by another row replacement operation.
- We have
$\operatorname{det} A=\left|\begin{array}{rrrr}0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & -3 & 1\end{array}\right|=-2\left|\begin{array}{rrr}1 & 2 & -1 \\ 3 & 6 & 2 \\ 0 & -3 & 1\end{array}\right|=-2\left|\begin{array}{rrr}1 & 2 & -1 \\ 0 & 0 & 5 \\ 0 & -3 & 1\end{array}\right|$.

Example (Cont'd)

- An interchange of rows 2 and 3 in

$$
-2\left|\begin{array}{rrr}
1 & 2 & -1 \\
0 & 0 & 5 \\
0 & -3 & 1
\end{array}\right|
$$

would produce a "triangular determinant".
Another approach is to make a cofactor expansion down the first column:

$$
\operatorname{det} A=(-2) \cdot 1 \cdot\left|\begin{array}{rr}
0 & 5 \\
-3 & 1
\end{array}\right|=-2 \cdot 15=-30
$$

Determinant of the Transpose

Theorem

If A is an $n \times n$ matrix, then $\operatorname{det} A^{T}=\operatorname{det} A$.

- The theorem is obvious for $n=1$.

Suppose the theorem is true for $k \times k$ determinants and let $n=k+1$. Then we have: $\operatorname{det} A^{T}$

$$
\begin{aligned}
& =\left|\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \vdots & & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right|=\sum_{i=1}^{n} a_{i 1}(-1)^{1+i} \operatorname{det}\left(A^{T}\right)_{1 i} \\
& =\sum_{i=1}^{n} a_{i 1}(-1)^{i+1} \operatorname{det}\left(A_{i 1}\right)^{T} \stackrel{\text { I.H. }}{=} \sum_{i=1}^{n} a_{i 1}(-1)^{i+1} \operatorname{det} A_{i 1} \\
& =\operatorname{det} A .
\end{aligned}
$$

By the principle of induction, the theorem is true for all $n \geq 1$.

Multiplicative Property

Theorem (Multiplicative Property)

If A and B are $n \times n$ matrices, then $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.
Example: Verify the theorem for $A=\left[\begin{array}{ll}6 & 1 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{ll}4 & 3 \\ 1 & 2\end{array}\right]$.

- We have

$$
A B=\left[\begin{array}{ll}
6 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
25 & 20 \\
14 & 13
\end{array}\right]
$$

Now we compute

$$
\begin{aligned}
\operatorname{det} A B & =25 \cdot 13-20 \cdot 14=325-280=45 ; \\
(\operatorname{det} A)(\operatorname{det} B) & =9 \cdot 5=45=\operatorname{det} A B .
\end{aligned}
$$

Linearity Property

- For an $n \times n$ matrix A, we can consider $\operatorname{det} A$ as a function of the n column vectors in A.
- Suppose that the j th column of A is allowed to vary, and write

$$
A=\left[\begin{array}{lllllll}
\boldsymbol{a}_{1} & \cdots & a_{j-1} & \boldsymbol{x} & \boldsymbol{a}_{j+1} & \cdots & \boldsymbol{a}_{n}
\end{array}\right] .
$$

- Define a transformation T from \mathbb{R}^{n} to \mathbb{R} by

$$
T(\boldsymbol{x})=\operatorname{det}\left[\begin{array}{lllllll}
\boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{j-1} & \boldsymbol{x} & \boldsymbol{a}_{j+1} & \cdots & \boldsymbol{a}_{n}
\end{array}\right]
$$

- Then,

$$
\begin{aligned}
T(c \boldsymbol{x}) & =c T(\boldsymbol{x}), \quad \text { for all scalars } c \text { and all } \boldsymbol{x} \text { in } \mathbb{R}^{n}, \\
T(\boldsymbol{u}+\boldsymbol{v}) & =T(\boldsymbol{u})+T(\boldsymbol{v}), \quad \text { for all } \boldsymbol{u}, \boldsymbol{v} \text { in } \mathbb{R}^{n} .
\end{aligned}
$$

Subsection 3

Cramer's Rule, Volume \& Linear Transformations

Cramer's Rule

- For any $n \times n$ matrix A and any \boldsymbol{b} in \mathbb{R}^{n}, let $A_{i}(\boldsymbol{b})$ be the matrix obtained from A by replacing column i by the vector \boldsymbol{b} :

$$
A_{i}(\boldsymbol{b})=\left[\begin{array}{llll}
\boldsymbol{a}_{1} & \cdots & \underbrace{\boldsymbol{b}}_{\text {col. } i} \cdots & \boldsymbol{a}_{n}
\end{array}\right]
$$

Theorem (Cramer's Rule)

Let A be an invertible $n \times n$ matrix. For any \boldsymbol{b} in \mathbb{R}^{n}, the unique solution x of $A \boldsymbol{x}=\boldsymbol{b}$ has entries given by

$$
x_{i}=\frac{\operatorname{det} A_{i}(\boldsymbol{b})}{\operatorname{det} A}, \quad i=1, \ldots, n
$$

- Denote the columns of A by $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ and the columns of the $n \times n$ identity matrix $/$ by $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$.

Cramer's Rule (Cont'd)

- If $A \boldsymbol{x}=\boldsymbol{b}$, the definition of matrix multiplication shows that

$$
\begin{aligned}
A \cdot I_{i}(\boldsymbol{x}) & =A\left[\begin{array}{lllll}
\boldsymbol{e}_{1} & \cdots & \boldsymbol{x} & \cdots & \boldsymbol{e}_{n}
\end{array}\right] \\
& =\left[\begin{array}{lllll}
A \boldsymbol{e}_{1} & \cdots & A \boldsymbol{x} & \cdots & A \boldsymbol{e}_{n}
\end{array}\right] \\
& =\left[\begin{array}{lllll}
\boldsymbol{a}_{1} & \cdots & \boldsymbol{b} & \cdots & \boldsymbol{a}_{n}
\end{array}\right] \\
& =A_{i}(\boldsymbol{b})
\end{aligned}
$$

By the multiplicative property of determinants,

$$
(\operatorname{det} A)\left(\operatorname{det} I_{i}(\boldsymbol{x})\right)=\operatorname{det} A_{i}(\boldsymbol{b})
$$

The second determinant on the left is simply x_{i} (make a cofactor expansion along the i th row). Hence $(\operatorname{det} A) \cdot x_{i}=\operatorname{det} A_{i}(\boldsymbol{b})$. This proves the required equation because A is invertible and $\operatorname{det} A \neq 0$.

Example

- Use Cramer's rule to solve the system $\left\{\begin{aligned} 3 x_{1}-2 x_{2} & =6 \\ -5 x_{1}+4 x_{2} & =8\end{aligned}\right.$.
- View the system as $A \boldsymbol{x}=\boldsymbol{b}$. Using the notation introduced above,

$$
A=\left[\begin{array}{rr}
3 & -2 \\
-5 & 4
\end{array}\right], \quad A_{1}(\boldsymbol{b})=\left[\begin{array}{rr}
6 & -2 \\
8 & 4
\end{array}\right], \quad A_{2}(\boldsymbol{b})=\left[\begin{array}{rr}
3 & 6 \\
-5 & 8
\end{array}\right] .
$$

Since $\operatorname{det} A=2$, the system has a unique solution. By Cramer's rule,

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}(\boldsymbol{b})}{\operatorname{det} A}=\frac{24+16}{2}=20 \\
& x_{2}=\frac{\operatorname{det} A_{2}(\boldsymbol{b})}{\operatorname{det} A}=\frac{24+30}{2}=27
\end{aligned}
$$

Example

- Consider the system $\left\{\begin{array}{r}3 s x_{1}-2 x_{2}=4 \\ -6 x_{1}+s x_{2}=1\end{array}\right.$ in which s is an unspecified parameter.
Determine the values of s for which the system has a unique solution, and use Cramer's rule to describe the solution.
- View the system as $A \boldsymbol{x}=\boldsymbol{b}$. Then

$$
A=\left[\begin{array}{rr}
3 s & -2 \\
-6 & s
\end{array}\right], \quad A_{1}(\boldsymbol{b})=\left[\begin{array}{rr}
4 & -2 \\
1 & s
\end{array}\right], \quad A_{2}(\boldsymbol{b})=\left[\begin{array}{rr}
3 s & 4 \\
-6 & 1
\end{array}\right] .
$$

Since $\operatorname{det} A=3 s^{2}-12=3(s+2)(s-2)$, the system has a unique solution precisely when $s \neq \pm 2$. For such an s, we have

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}(\boldsymbol{b})}{\operatorname{det} A}=\frac{4 s+2}{3(s+2)(s-2)} \\
& x_{2}=\frac{\operatorname{det} A_{2}(\boldsymbol{b})}{\operatorname{det} A}=\frac{3 s+24}{3(s+2)(s-2)}=\frac{s+8}{(s+2)(s-2)}
\end{aligned}
$$

A Formula for A^{-1}

- The j th column of A^{-1} is a vector \boldsymbol{x} that satisfies $A \boldsymbol{x}=\boldsymbol{e}_{j}$ where \boldsymbol{e}_{j} is the j th column of the identity matrix, and the ith entry of \boldsymbol{x} is the (i, j)-entry of A^{-1}.
- By Cramer's rule,

$$
(i, j) \text {-entry of } A^{-1}=x_{i}=\frac{\operatorname{det} A_{i}\left(\boldsymbol{e}_{i}\right)}{\operatorname{det} A}
$$

- Recall that $A_{j i}$ denotes the submatrix of A formed by deleting row j and column i.
- A cofactor expansion down column i of $A_{i}\left(\boldsymbol{e}_{j}\right)$ shows that

$$
\operatorname{det} A_{i}\left(\boldsymbol{e}_{j}\right)=(-1)^{i+j} \operatorname{det} A_{j i}=C_{j i}
$$

where $C_{j i}$ is a cofactor of A.

- Thus, we get that the (i, j)-entry of A^{-1} is the cofactor $C_{j i}$ divided by $\operatorname{det} A$. [Note that the subscripts on $C_{j i}$ are the reverse of (i, j).]

The Adjoint of a Matrix

- We conclude that

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]
$$

- The matrix of cofactors on the right side is called the adjugate (or classical adjoint) of A, denoted by $\operatorname{adj} A$.

Theorem (An Inverse Formula)

Let A be an invertible $n \times n$ matrix. Then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A .
$$

Example

- Find the inverse of the matrix $A=\left[\begin{array}{rrr}2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & -2\end{array}\right]$.
- The nine cofactors are

The adjugate matrix is the transpose of the matrix of cofactors:

$$
\operatorname{adj} A=\left[\begin{array}{rrr}
-2 & 14 & 4 \\
3 & -7 & 1 \\
5 & -7 & -3
\end{array}\right]
$$

Example (Cont'd)

- We could compute $\operatorname{det} A$ directly, but the following computation provides a check on the calculations above and produces $\operatorname{det} A$:

$$
(\operatorname{adj} A) \cdot A=\left[\begin{array}{rrr}
-2 & 14 & 4 \\
3 & -7 & 1 \\
5 & -7 & -3
\end{array}\right]\left[\begin{array}{rrr}
2 & 1 & 3 \\
1 & -1 & 1 \\
1 & 4 & -2
\end{array}\right]=14 / .
$$

Since $(\operatorname{adj} A) A=14 I$, the theorem shows that $\operatorname{det} A=14$. Hence

$$
A^{-1}=\frac{1}{14}\left[\begin{array}{rrr}
-2 & 14 & 4 \\
3 & -7 & 1 \\
5 & -7 & -3
\end{array}\right]=\left[\begin{array}{rrr}
-\frac{1}{7} & 1 & \frac{2}{7} \\
\frac{3}{14} & -\frac{1}{2} & \frac{1}{14} \\
\frac{5}{14} & -\frac{1}{2} & -\frac{3}{14}
\end{array}\right]
$$

Determinants as Area or Volume

Theorem

If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\operatorname{det} A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\operatorname{det} A|$.

Example: Calculate the area of the parallelogram determined by the points $(-2,2),(0,3),(4,-1),(6,4)$.

- First translate the parallelogram to one having the origin as a vertex.

For example, subtract the vertex $(-2,-2)$ from each vertex.

Determinants as Area or Volume

The new parallelogram has the same area, and its vertices are $(0,0)$, $(2,5),(6,1)$ and $(8,6)$. This parallelogram is determined by the columns of $A=\left[\begin{array}{ll}2 & 6 \\ 5 & 1\end{array}\right]$. We have $\left|\operatorname{det} A_{j}\right|=|-28|$. So the area of the parallelogram is 28 .

Linear Transformations

- If T is a linear transformation and S is a set in the domain of T, let $T(S)$ denote the set of images of points in S.
- When S is a region bounded by a parallelogram, we also refer to S as a parallelogram.

Theorem

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^{2}, then

$$
\{\text { area of } T(S)\}=|\operatorname{det} A| \cdot\{\text { area of } S\}
$$

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^{3}, then

$$
\{\text { volume of } T(S)\}=|\operatorname{det} A| \cdot\{\text { volume of } S\}
$$

- The conclusions also hold whenever S is a region in \mathbb{R}^{2} with finite area or a region in \mathbb{R}^{3} with finite volume.

Example

- Let a and b be positive numbers. Find the area of the region E bounded by the ellipse whose equation is

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1
$$

- We claim that E is the image of the unit disk D under the linear transformation T determined by the matrix $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$.

Example (Cont'd)

- If $\boldsymbol{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and $\boldsymbol{x}=A \boldsymbol{u}$, then

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

$$
\text { i.e., } u_{1}=\frac{x_{1}}{a} \text { and } u_{2}=\frac{x_{2}}{b} \text {. }
$$

It follows that \boldsymbol{u} is in the unit disk, with $u_{1}^{2}+u_{2}^{2} \leq 1$, if and only if \boldsymbol{x} is in E, with $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}} \leq 1$.
Thus, we get

$$
\begin{aligned}
\{\text { area of ellipse }\} & =\{\text { area of } T(D)\} \\
& =|\operatorname{det} A| \cdot\{\text { area of } D\} \\
& =a b \cdot \pi \cdot 1^{2}=\pi a b .
\end{aligned}
$$

