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Subsection 1

Introduction to Determinants
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Determinants Introduction to Determinants

2× 2 Determinants

For a 1× 1 matrix A = [a11], we define

detA = a11.

Recall that the determinant of a 2× 2 matrix, A =

[
a11 a12
a21 a22

]

, is

the number
detA = a11a22 − a12a21.

Recall also that a 2× 2 matrix is invertible if and only if its
determinant is nonzero.
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Determinants Introduction to Determinants

3× 3 Determinants

Consider an invertible A = [aij ] with a11 6= 0.

We have:

A
R2←a11R2−→
R3←a11R3





a11 a12 a13
a11a21 a11a22 a11a23
a11a31 a11a32 a11a33





R2←R2−a21R1−→
R3←R3−a31R1





a11 a12 a13
0 a11a22 − a12a21 a11a23 − a13a21
0 a11a32 − a12a31 a11a33 − a13a31



 .

Since A is invertible, either the (2, 2)-entry or the (3, 2)-entry on the
right is nonzero.

Let us suppose that the (2, 2)-entry is nonzero. (Otherwise, we can
make a row interchange before proceeding.)
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Determinants Introduction to Determinants

3× 3 Determinants (Cont’d)

Continuing, we get




a11 a12 a13

0 a11a22 − a12a21 a11a23 − a13a21

0 a11a32 − a12a31 a11a33 − a13a31





R3←(a11a22−a12a21)R3
−→





a11 a12 a13

0 a11a22 − a12a21 a11a23 − a13a21

0 (a11a22 − a12a21)(a11a32 − a12a31) (a11a22 − a12a21)(a11a33 − a13a31)





R3←R3−(a11a32−a12a31)R2
−→





a11 a12 a13

0 a11a22 − a12a21 a11a23 − a13a21

0 0 a11∆





,

where

∆ = a11a22a33 + a12a23a31 + a13a21a32
− a11a23a32 − a12a21a33 − a13a22a31.

Since A is invertible, ∆ must be nonzero.

The converse is true, too, as we will see in the following section.

We call ∆ the determinant of the 3× 3 matrix A.
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Determinants Introduction to Determinants

Rewriting the 3× 3 Determinant

To generalize the definition of the determinant to larger matrices, we
use 2× 2 determinants to rewrite the 3× 3 ∆ described above.

The terms in ∆ can be grouped as

(a11a22a33−a11a23a32)−(a12a21a33−a12a23a31)+(a13a21a32−a13a22a31).

Thus, we get

∆ = a11 ·det

[
a22 a23
a32 a33

]

−a12·det

[
a21 a23
a31 a33

]

+a13·det

[
a21 a22
a31 a32

]

.

For brevity, write

∆ = a11detA11 − a12detA12 + a13detA13,

where A11, A12 and A13 are obtained from A by deleting the first row
and one of the three columns.
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Determinants Introduction to Determinants

Submatrices of A

For any square matrix A, let Aij denote the submatrix formed by
deleting the ith row and jth column of A.

Example: Let A =







1 −2 5 0
2 0 4 −1
3 1 0 7
0 4 −2 0






.

Then A32 is obtained by crossing out row 3 and column 2,

A =







1 −2 5 0
2 0 4 −1
3 1 0 7
0 4 −2 0







⇒ A32 =





1 5 0
2 4 −1
0 −2 0



 .
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Determinants Introduction to Determinants

n × n Determinant

We can now give a recursive definition of a determinant.

When n = 3, detA is defined using determinants of the 2× 2
submatrices A1j .

When n = 4, detA uses determinants of the 3× 3 submatrices A1j .

In general, an n × n determinant is defined by determinants of
(n − 1)× (n − 1) submatrices.

Definition

For n ≥ 2, the determinant of an n× n matrix A = [aij ] is the sum of n
terms of the form ±a1jdetA1j , with plus and minus signs alternating, where
the entries a11, a12, . . . , a1n are from the first row of A. In symbols,

detA = a11detA11 − a12detA12 + · · · + (−1)1+na1ndetA1n

=
n∑

j=1

(−1)1+ja1jdetA1j .
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Determinants Introduction to Determinants

Example and Notation

Compute the determinant of A =





1 5 0
2 4 −1
0 −2 0



.

We compute:

detA = a11detA11 − a12detA12 + a13detA13

= 1 · det

[
4 −1

−2 0

]

− 5 · det

[
2 −1
0 0

]

+ 0 · det

[
2 4
0 −2

]

= 1 · (0− 2)− 5 · (0− 0) + 0 · (−4− 0) = − 2.

Another common notation for the determinant of a matrix uses a pair
of vertical lines in place of brackets.

Thus the calculation can be written as

detA = 1

∣
∣
∣
∣

4 −1
−2 0

∣
∣
∣
∣
− 5

∣
∣
∣
∣

2 −1
0 0

∣
∣
∣
∣
+ 0

∣
∣
∣
∣

2 4
0 −2

∣
∣
∣
∣
.
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Determinants Introduction to Determinants

Cofactors and Cofactor Expansion

Given A = [aij ], the (i , j)-cofactor of A is the number Cij given by

Cij = (−1)i+jdetAij .

Then detA = a11C11 + a12C12 + · · ·+ a1nC1n.

This formula is the cofactor expansion across the first row of A.

Theorem

The determinant of an n × n matrix A can be computed by a cofactor
expansion across any row or down any column. The expansion across the
ith row using the cofactors above is

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

The cofactor expansion down the jth column is

detA = a1jC1j + a2jC2j + · · ·+ anjCnj .
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Determinants Introduction to Determinants

Example

Use a cofactor expansion across the third row to compute detA,

where A =





1 5 0
2 4 −1
0 −2 0



.

Compute

detA = a31C31 + a32C32 + a33C33

= (−1)3+1a31detA31 + (−1)3+2a32detA32

+ (−1)3+3a33detA33

= 0

∣
∣
∣
∣

5 0
4 −1

∣
∣
∣
∣
− (−2)

∣
∣
∣
∣

1 0
2 −1

∣
∣
∣
∣
+ 0

∣
∣
∣
∣

1 5
2 4

∣
∣
∣
∣

= 0 + 2(−1) + 0 = − 2.

George Voutsadakis (LSSU) Linear Algebra August 2017 12 / 45



Determinants Introduction to Determinants

Example

Compute detA, where A =









3 −7 8 9 −6
0 2 −5 7 3
0 0 1 5 0
0 0 2 4 −1
0 0 0 −2 0









.

The cofactor expansion down the first column of A has all terms
equal to zero except the first:

detA = 3

∣
∣
∣
∣
∣
∣
∣
∣

2 −5 7 3
0 1 5 0
0 2 4 −1
0 0 −2 0

∣
∣
∣
∣
∣
∣
∣
∣

.
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Determinants Introduction to Determinants

Example (Cont’d)

Next, expand this 4× 4 determinant down the first column, in order
to take advantage of the zeros there:

detA = 3

∣
∣
∣
∣
∣
∣
∣
∣

2 −5 7 3
0 1 5 0
0 2 4 −1
0 0 −2 0

∣
∣
∣
∣
∣
∣
∣
∣

= 3 · 2 ·

∣
∣
∣
∣
∣
∣

1 5 0
2 4 −1
0 −2 0

∣
∣
∣
∣
∣
∣

.

This 3× 3 determinant was computed in a previous example and
found to equal −2:

detA = 3 · 2 · (−2) = − 12.
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Determinants Introduction to Determinants

Matrices with Many Zeroes

The matrix in the last example was nearly triangular.

The method in that example is easily adapted to prove the following
theorem.

Theorem

If A is a triangular matrix, then detA is the product of the entries on the
main diagonal of A.

The strategy the last example of looking for zeros works extremely
well when an entire row or column consists of zeros.

In such a case, the cofactor expansion along such a row or column is
a sum of zeros and the determinant is zero.
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Determinants Properties of Determinants

Subsection 2

Properties of Determinants
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Determinants Properties of Determinants

Row Operations

Theorem (Row Operations)

Let A be a square matrix.

(a) If a multiple of one row of A is added to another row to produce a
matrix B , then detB = detA.

(b) If two rows of A are interchanged to produce B , then detB = −detA.

(c) If one row of A is multiplied by k to produce B , then detB = k · detA.
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Determinants Properties of Determinants

Row Operations (Part (b))

(b) We show only the special case in which the first and second rows are
interchanged. The general case is similar.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a21 · · · a2n
a11 · · · a1n
a31 · · · a3n
...

...
an1 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∑n

i=1 a1i (−1)2+idetA1i

=
∑n

i=1(−1)a1i (−1)1+idetA1i

= −
∑n

i=1 a1i (−1)1+idetA1i

= − detA.

Note that this implies that, if a matrix A has two identical rows then
its determinant is zero, because detA = −detA.
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Determinants Properties of Determinants

Row Operations (Part (a))

(a) We show only the special case in which the first row is first plus c
times the second row. The general case is similar.
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 + ca21 · · · a1n + ca2n
a21 · · · a2n
...

...
an1 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∑n

i=1(a1i + ca2i )(−1)1+idetA1i

=
∑n

i=1 a1i(−1)1+idetA1i + c
∑n

i=1 a2i (−1)1+idetA1i

= detA+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a21 · · · a2n
a21 · · · a2n
a31 · · · a3n
...

...
an1 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= detA+ 0 = detA.
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Determinants Properties of Determinants

Row Operations (Part (c))

(c) We show only the special case in which the first row has been
multiplied by c . The general case is similar.

∣
∣
∣
∣
∣
∣
∣
∣
∣

ca11 · · · ca1n
a21 · · · a2n
...

...
an1 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∑n

i=1(ca1i )(−1)1+idetA1i

= c
∑n

i=1 a1i(−1)1+idetA1i

= cdetA.
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Determinants Properties of Determinants

Example

Compute detA, where A =





1 −4 2
−2 8 −9
−1 7 0



.

The strategy is to reduce A to echelon form and then to use the fact
that the determinant of a triangular matrix is the product of the
diagonal entries.

The first two row replacements in column 1 do not change the value:

detA =

∣
∣
∣
∣
∣
∣

1 −4 2
−2 8 −9
−1 7 0

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1 −4 2
0 0 −5

−1 7 0

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1 −4 2
0 0 −5
0 3 2

∣
∣
∣
∣
∣
∣

.

An interchange of rows 2 and 3 reverses the sign of the determinant:

detA = −

∣
∣
∣
∣
∣
∣

1 −4 2
0 3 2
0 0 −5

∣
∣
∣
∣
∣
∣

= − 1 · 3 · (−5) = 15.
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Determinants Properties of Determinants

Example

Compute detA, where A =







2 −8 6 8
3 −9 5 10

−3 0 1 −2
1 −4 0 6






.

To simplify the arithmetic, we want a 1 in the upper left corner.

We could interchange rows 1 and 4.

Instead, we factor out 2 from the top row, and then proceed with row
replacements in the first column:

detA = 2

∣
∣
∣
∣
∣
∣
∣
∣

1 −4 3 4
3 −9 5 10

−3 0 1 −2
1 −4 0 6

∣
∣
∣
∣
∣
∣
∣
∣

= 2

∣
∣
∣
∣
∣
∣
∣
∣

1 −4 3 4
0 3 −4 −2
0 −12 10 10
0 0 −3 2

∣
∣
∣
∣
∣
∣
∣
∣

.
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Determinants Properties of Determinants

Example (Cont’d)

Next, we could factor out another 2 from row 3 or use the 3 in the
second column as a pivot.

We choose the latter operation, adding 4 times row 2 to row 3:

detA = 2

∣
∣
∣
∣
∣
∣
∣
∣

1 −4 3 4
0 3 −4 −2
0 −12 10 10
0 0 −3 2

∣
∣
∣
∣
∣
∣
∣
∣

= 2

∣
∣
∣
∣
∣
∣
∣
∣

1 −4 3 4
0 3 −4 −2
0 0 −6 2
0 0 −3 2

∣
∣
∣
∣
∣
∣
∣
∣

.

Finally, adding −1
2 times row 3 to row 4, and computing the

“triangular determinant, we find that

detA = 2

∣
∣
∣
∣
∣
∣
∣
∣

1 −4 3 4
0 3 −4 −2
0 0 −6 2
0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

= 2 · 1 · 3 · (−6) · 1 = − 36.
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Determinants Properties of Determinants

Determinant and Echelon Form

Suppose a square matrix A has been reduced to an echelon form U by
row replacements and row interchanges.

If there are r interchanges, then the preceding theorem shows that

detA = (−1)rdetU.

Since U is in echelon form, it is triangular, and so detU is the product
of the diagonal entries u11, . . . , unn.

If A is invertible, the entries uii are all pivots (because A ∼ In and the
uii have not been scaled to 1’s).

Otherwise, at least unn is zero, and the product u11 · · · unn is zero.

Thus

detA =

{
(−1)r · (product of pivots in U), if A is invertible;
0, if A is not invertible.
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Determinants Properties of Determinants

Invertibility and Determinants

Theorem

A square matrix A is invertible if and only if detA 6= 0.

This theorem adds the statement “detA 6= 0” to the Invertible Matrix
Theorem.

A useful corollary is that detA = 0 when the columns of A are linearly
dependent.

Also, detA = 0 when the rows of A are linearly dependent.

In practice, linear dependence is obvious when two columns or two
rows are the same or a column or a row is zero.

George Voutsadakis (LSSU) Linear Algebra August 2017 25 / 45



Determinants Properties of Determinants

Example

Compute detA, where A =







3 −1 2 −5
0 5 −3 −6

−6 7 −7 4
−5 −8 0 9






.

Add 2 times row 1 to row 3 to obtain

detA = det







3 −1 2 −5
0 5 −3 −6
0 5 −3 −6

−5 −8 0 9






= 0,

because the second and third rows of the second matrix are equal.
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Determinants Properties of Determinants

Example

Compute detA, where A =







0 1 2 −1
2 5 −7 3
0 3 6 2

−2 −5 4 −2






.

A good way to begin is to use the 2 in column 1 as a pivot,
eliminating the −2 below it.

Then use a cofactor expansion to reduce the size of the determinant,
followed by another row replacement operation.

We have

detA =

∣
∣
∣
∣
∣
∣
∣
∣

0 1 2 −1
2 5 −7 3
0 3 6 2
0 0 −3 1

∣
∣
∣
∣
∣
∣
∣
∣

= − 2

∣
∣
∣
∣
∣
∣

1 2 −1
3 6 2
0 −3 1

∣
∣
∣
∣
∣
∣

= − 2

∣
∣
∣
∣
∣
∣

1 2 −1
0 0 5
0 −3 1

∣
∣
∣
∣
∣
∣

.
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Determinants Properties of Determinants

Example (Cont’d)

An interchange of rows 2 and 3 in

−2

∣
∣
∣
∣
∣
∣

1 2 −1
0 0 5
0 −3 1

∣
∣
∣
∣
∣
∣

would produce a “triangular determinant”.

Another approach is to make a cofactor expansion down the first
column:

detA = (−2) · 1 ·

∣
∣
∣
∣

0 5
−3 1

∣
∣
∣
∣
= − 2 · 15 = − 30.
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Determinants Properties of Determinants

Determinant of the Transpose

Theorem

If A is an n × n matrix, then detAT = detA.

The theorem is obvious for n = 1.

Suppose the theorem is true for k × k determinants and let
n = k + 1. Then we have: detAT

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a21 · · · an1
a12 a22 · · · an2
...

...
...

a1n a2n · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∑n

i=1 ai1(−1)1+idet(AT )1i

=
∑n

i=1 ai1(−1)i+1det(Ai1)
T I.H.

=
∑n

i=1 ai1(−1)i+1detAi1

= detA.

By the principle of induction, the theorem is true for all n ≥ 1.

George Voutsadakis (LSSU) Linear Algebra August 2017 29 / 45



Determinants Properties of Determinants

Multiplicative Property

Theorem (Multiplicative Property)

If A and B are n × n matrices, then detAB = (detA)(detB).

Example: Verify the theorem for A =

[
6 1
3 2

]

, B =

[
4 3
1 2

]

.

We have

AB =

[
6 1
3 2

] [
4 3
1 2

]

=

[
25 20
14 13

]

.

Now we compute

detAB = 25 · 13− 20 · 14 = 325 − 280 = 45;
(detA)(detB) = 9 · 5 = 45 = detAB .
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Determinants Properties of Determinants

Linearity Property

For an n × n matrix A, we can consider detA as a function of the n

column vectors in A.

Suppose that the jth column of A is allowed to vary, and write

A =
[

a1 · · · aj−1 x aj+1 · · · an

]
.

Define a transformation T from R
n to R by

T (x) = det
[

a1 · · · aj−1 x aj+1 · · · an

]
.

Then,

T (cx) = cT (x), for all scalars c and all x in Rn,
T (u + v) = T (u) + T (v), for all u, v in Rn.
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Determinants Cramer’s Rule, Volume & Linear Transformations

Subsection 3

Cramer’s Rule, Volume & Linear Transformations
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Determinants Cramer’s Rule, Volume & Linear Transformations

Cramer’s Rule

For any n × n matrix A and any b in Rn, let Ai(b) be the matrix
obtained from A by replacing column i by the vector b:

Ai(b) = [ a1 · · · b
︸︷︷︸
col. i

· · · an ]

Theorem (Cramer’s Rule)

Let A be an invertible n × n matrix. For any b in Rn, the unique solution
x of Ax = b has entries given by

xi =
detAi(b)

detA
, i = 1, . . . , n.

Denote the columns of A by a1, . . . , an and the columns of the n× n

identity matrix I by e1, . . . , en.
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Determinants Cramer’s Rule, Volume & Linear Transformations

Cramer’s Rule (Cont’d)

If Ax = b, the definition of matrix multiplication shows that

A · Ii (x) = A
[

e1 · · · x · · · en

]

=
[
Ae1 · · · Ax · · · Aen

]

=
[

a1 · · · b · · · an

]

= Ai(b).

By the multiplicative property of determinants,

(detA)(detIi (x)) = detAi(b).

The second determinant on the left is simply xi (make a cofactor
expansion along the ith row). Hence (detA) · xi = detAi(b). This
proves the required equation because A is invertible and detA 6= 0.
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Determinants Cramer’s Rule, Volume & Linear Transformations

Example

Use Cramer’s rule to solve the system

{
3x1 − 2x2 = 6

−5x1 + 4x2 = 8
.

View the system as Ax = b. Using the notation introduced above,

A =

[
3 −2

−5 4

]

, A1(b) =

[
6 −2
8 4

]

, A2(b) =

[
3 6

−5 8

]

.

Since detA = 2, the system has a unique solution. By Cramer’s rule,

x1 =
detA1(b)

detA
=

24 + 16

2
= 20;

x2 =
detA2(b)

detA
=

24 + 30

2
= 27.
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Determinants Cramer’s Rule, Volume & Linear Transformations

Example

Consider the system

{
3sx1 − 2x2 = 4
−6x1 + sx2 = 1

in which s is an

unspecified parameter.

Determine the values of s for which the system has a unique solution,
and use Cramer’s rule to describe the solution.

View the system as Ax = b. Then

A =

[
3s −2
−6 s

]

, A1(b) =

[
4 −2
1 s

]

, A2(b) =

[
3s 4
−6 1

]

.

Since detA = 3s2 − 12 = 3(s + 2)(s − 2), the system has a unique
solution precisely when s 6= ±2. For such an s, we have

x1 =
detA1(b)

detA
=

4s + 2

3(s + 2)(s − 2)
,

x2 =
detA2(b)

detA
=

3s + 24

3(s + 2)(s − 2)
=

s + 8

(s + 2)(s − 2)
.
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A Formula for A−1

The jth column of A−1 is a vector x that satisfies Ax = e j where e j

is the jth column of the identity matrix, and the ith entry of x is the
(i , j)-entry of A−1.

By Cramer’s rule,

(i , j)-entry of A−1 = xi =
detAi(e i )

detA
.

Recall that Aji denotes the submatrix of A formed by deleting row j

and column i .

A cofactor expansion down column i of Ai (e j) shows that

detAi(e j) = (−1)i+jdetAji = Cji ,

where Cji is a cofactor of A.

Thus, we get that the (i , j)-entry of A−1 is the cofactor Cji divided by
detA. [Note that the subscripts on Cji are the reverse of (i , j).]
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The Adjoint of a Matrix

We conclude that

A−1 =
1

detA








C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn







.

The matrix of cofactors on the right side is called the adjugate (or
classical adjoint) of A, denoted by adjA.

Theorem (An Inverse Formula)

Let A be an invertible n × n matrix. Then

A−1 =
1

detA
adjA.
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Example

Find the inverse of the matrix A =





2 1 3
1 −1 1
1 4 −2



.

The nine cofactors are

C11 = +

∣

∣

∣

∣

−1 1
4 −2

∣

∣

∣

∣

= − 2, C12 = −

∣

∣

∣

∣

1 1
1 −2

∣

∣

∣

∣

= 3, C13 = +

∣

∣

∣

∣

1 −1
1 4

∣

∣

∣

∣

= 5,

C21 = −

∣

∣

∣

∣

1 3
4 −2

∣

∣

∣

∣

= 14, C22 = +

∣

∣

∣

∣

2 3
1 −2

∣

∣

∣

∣

= 7, C23 = −

∣

∣

∣

∣

2 1
1 4

∣

∣

∣

∣

= 7,

C31 = +

∣

∣

∣

∣

1 3
−1 1

∣

∣

∣

∣

= 4, C32 = −

∣

∣

∣

∣

2 3
1 1

∣

∣

∣

∣

= 1, C33 = +

∣

∣

∣

∣

2 1
1 −1

∣

∣

∣

∣

= − 3.

The adjugate matrix is the transpose of the matrix of cofactors:

adjA =





−2 14 4
3 −7 1
5 −7 −3



 .
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Example (Cont’d)

We could compute detA directly, but the following computation
provides a check on the calculations above and produces detA:

(adjA) · A =





−2 14 4
3 −7 1
5 −7 −3









2 1 3
1 −1 1
1 4 −2



 = 14I .

Since (adjA)A = 14I , the theorem shows that detA = 14.

Hence

A−1 =
1

14





−2 14 4
3 −7 1
5 −7 −3



 =





−1
7 1 2

7
3
14 −1

2
1
14

5
14 −1

2 − 3
14



 .
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Determinants as Area or Volume

Theorem

If A is a 2× 2 matrix, the area of the parallelogram determined by the
columns of A is |detA|. If A is a 3× 3 matrix, the volume of the
parallelepiped determined by the columns of A is |detA|.

Example: Calculate the area of the parallelogram determined by the
points (−2, 2), (0, 3), (4,−1), (6, 4).

First translate the parallelogram to one having the origin as a vertex.

For example, subtract the vertex (−2,−2) from each vertex.
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Determinants as Area or Volume

The new parallelogram has the same area, and its vertices are (0, 0),
(2, 5), (6, 1) and (8, 6). This parallelogram is determined by the

columns of A =

[
2 6
5 1

]

. We have |detAj | = | − 28|. So the area of

the parallelogram is 28.
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Linear Transformations

If T is a linear transformation and S is a set in the domain of T , let
T (S) denote the set of images of points in S .

When S is a region bounded by a parallelogram, we also refer to S as
a parallelogram.

Theorem

Let T : R2 → R
2 be the linear transformation determined by a 2× 2

matrix A. If S is a parallelogram in R2, then

{area of T (S)} = |detA| · {area of S}.

If T is determined by a 3× 3 matrix A, and if S is a parallelepiped in R3,
then {volume of T (S)} = |detA| · {volume of S}.

The conclusions also hold whenever S is a region in R2 with finite
area or a region in R3 with finite volume.
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Example

Let a and b be positive numbers. Find the area of the region E

bounded by the ellipse whose equation is

x21
a2

+
x22
b2

= 1.

We claim that E is the image of the unit disk D under the linear

transformation T determined by the matrix A =

[
a 0
0 b

]

.

George Voutsadakis (LSSU) Linear Algebra August 2017 44 / 45



Determinants Cramer’s Rule, Volume & Linear Transformations

Example (Cont’d)

If u =

[
u1
u2

]

, x =

[
x1
x2

]

, and x = Au, then

[
x1
x2

]

=

[
a 0
0 b

] [
u1
u2

]

,

i.e., u1 =
x1
a
and u2 =

x2
b
.

It follows that u is in the unit disk, with u21 + u22 ≤ 1, if and only if x

is in E , with
x21
a2

+
x22
b2

≤ 1.

Thus, we get

{area of ellipse} = {area of T (D)}
= |detA| · {area of D}
= ab · π · 12 = πab.
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