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Vector Spaces Vector Spaces and Subspaces

Subsection 1

Vector Spaces and Subspaces
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Vector Spaces Vector Spaces and Subspaces

Vector Spaces

Definition

A vector space is a nonempty set V of objects, called vectors, on which
are defined two operations, called addition and multiplication by scalars

(real numbers), subject to the ten axioms (or rules) listed below. The
axioms must hold for all vectors u, v and w in V and for all scalars c ,d .

1. The sum of u and v , denoted by u + v , is in V .

2. u + v = v + u.

3. (u + v) + w = u + (v + w).

4. There is a zero vector 0 in V such that u + 0 = u.

5. For each u in V , there is a vector −u in V such that u + (−u) = 0.

6. The scalar multiple of u by c , denoted by cu, is in V .

7. c(u + v) = cu + cv .

8. (c + d)u = cu + du.

9. c(du) = (cd)u.

10. 1u = u.
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Vector Spaces Vector Spaces and Subspaces

Additional Properties

The zero vector is unique.

The vector −u, called the negative of u, is unique for each u in V .

For each u in V and scalar c :

0u = 0;
c0 = 0;
−u = (−1)u.
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Vector Spaces Vector Spaces and Subspaces

Examples

The spaces Rn, where n ≥ 1, are the premier examples of vector
spaces.

Let V be the set of all arrows (directed line segments) in
three-dimensional space, with two arrows regarded as equal if they
have the same length and point in the same direction.

Define addition by the parallelogram rule.

For each v in V , define cv to be the arrow whose length is |c | times
the length of v , pointing in the same direction as v if c ≥ 0 and
otherwise pointing in the opposite direction.

Then V is a vector space.
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Vector Spaces Vector Spaces and Subspaces

Examples (Cont’d)

The definition of V is geometric, using concepts of length and
direction.

No xyz-coordinate system is involved.

An arrow of zero length is a single point and represents the zero
vector.

The negative of v is (−1)v .

So Axioms 1, 4, 5, 6, and 10 are evident.

The rest are verified by geometry:
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Vector Spaces Vector Spaces and Subspaces

Example

Let S be the space of all doubly infinite sequences of numbers
(usually written in a row rather than a column):

{yk} = (. . . , y−2, y−1, y0, y1, y2, . . .).

If {zk} is another element of S, then the sum {yk}+ {zk} is the
sequence {yk + zk} formed by adding corresponding terms of {yk}
and {zk}.

The scalar multiple c{yk} is the sequence {cyk}.

The vector space axioms are verified in the same way as for Rn.

Elements of S arise in engineering, for example, whenever a signal is
measured (or sampled) at discrete times.

We will call S the space of (discrete-time) signals.
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Vector Spaces Vector Spaces and Subspaces

Example

For n ≥ 0, the set Pn of polynomials of degree at most n consists of
all polynomials of the form

p(t) = a0 + a1t + a2t
2 + · · ·+ ant

n
,

where the coefficients a0, . . . , an and the variable t are real numbers.

The degree of p is the highest power of t whose coefficient is not
zero.

If p(t) = a0 6= 0, the degree of p is zero.

If all the coefficients are zero, p is called the zero polynomial.

The zero polynomial is included in Pn even though its degree, for
technical reasons, is not defined.
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Vector Spaces Vector Spaces and Subspaces

Example (Cont’d)

If p is given as above and if q(t) = b0 + b1t + · · ·+ bnt
n, then the

sum p + q is defined by

(p + q)(t) = p(t) + q(t)
= (a0 + b0) + (a1 + b1)t + · · ·+ (an + bn)t

n.

The scalar multiple cp is the polynomial defined by

(cp)(t) = cp(t) = ca0 + (ca1)t + · · ·+ (can)t
n
.

These definitions satisfy Axioms 1 and 6 because p + q and cp are
polynomials of degree less than or equal to n.

Axioms 2, 3, and 7-10 follow from properties of the real numbers.

Clearly, the zero polynomial acts as the zero vector in Axiom 4.

Finally, (−1)p acts as the negative of p, so Axiom 5 is satisfied.

Thus Pn is a vector space.
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Vector Spaces Vector Spaces and Subspaces

Example

Let V be the set of all real valued functions defined on a set D.

Functions are added in the usual way: f + g is the function whose
value at t in the domain D is f (t) + g(t).

Likewise, for a scalar c and an f in V , the scalar multiple cf is the
function whose value at t is cf (t).

For instance, if D = R, f (t) = 1 + sin 2t, and g(t) = 2 + 0.5t, then

(f + g)(t) = 3 + sin 2t + 0.5t and (2g )(t) = 4 + t.

Two functions in V are equal if and only if their values are equal for
every t in D.

Hence the zero vector in V is the function that is identically zero,
f (t) = 0 for all t.

The negative of f is (−1)f .

Axioms 1 and 6 are obviously true, and the other axioms follow from
properties of the real numbers, so V is a vector space.
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Vector Spaces Vector Spaces and Subspaces

Subspaces

Definition

A subspace of a vector space V is a subset H of V that has three
properties:

(a) The zero vector of V is in H.

(b) H is closed under vector addition. That is, for each u and v in H, the
sum u + v is in H.

(c) H is closed under multiplication by scalars. That is, for each u in H

and each scalar c , the vector cu is in H.

Properties (a), (b) and (c) guarantee that a subspace H of V is itself
a vector space, under the vector space operations already defined in
V .
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Vector Spaces Vector Spaces and Subspaces

Examples

The set consisting of only the zero vector in a vector space V is a
subspace of V , called the zero subspace and written as {0}.

Let P be the set of all polynomials with real coefficients, with
operations in P defined as for functions.

Then P is a subspace of the space of all real-valued functions defined
on R.

For each n ≥ 0, Pn is a subspace of P, because Pn is a subset of P
that contains the zero polynomial, the sum of two polynomials in Pn

is also in Pn, and a scalar multiple of a polynomial in Pn is also in Pn.
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Vector Spaces Vector Spaces and Subspaces

Example

The vector space R
2 is not a subspace of R3 because R

2 is not even
a subset of R3.

The set

H =











s

t

0



 : s and t are real







is a subset of R3 that “emulates” R
2, although it is logically distinct

from R
2.

H is a subspace of R3.

The zero vector is in H ;
H is closed under vector addition and scalar multiplication because
these operations on vectors in H always produce vectors whose third
entries are zero (and so belong to H).
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Vector Spaces Vector Spaces and Subspaces

Example

A plane in R
3 not through the origin is not a subspace of R3, because

the plane does not contain the zero vector of R3.

A line in R
2 not through the origin is not a subspace of R2.
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Vector Spaces Vector Spaces and Subspaces

Subspace Spanned by a Set

Recall that the term linear combination refers to any sum of scalar
multiples of vectors.

Moreover, Span{v1, . . . , vp} denotes the set of all vectors that can be
written as linear combinations of v1, . . . , vp.

Given v1 and v2 in a vector space V , let H = Span{v1, v2}.

H is a subspace of V .

The zero vector is in H , since 0 = 0v1 + 0v2.

George Voutsadakis (LSSU) Linear Algebra August 2017 16 / 115



Vector Spaces Vector Spaces and Subspaces

Subspace Spanned by a Set (Cont’d)

To show that H is closed under vector addition, take two arbitrary
vectors in H, say, u = s1v1 + s2v2 and w = t1v1 + t2v2. By Axioms
2, 3 and 8 for the vector space V ,

u + w = (s1v1 + s2v2) + (t1v1 + t2v2)
= (s1 + t1)v1 + (s2 + t2)v2.

So u + w is in H.

If c is any scalar, then by Axioms 7 and 9,

cu = c(s1v1 + s2v2) = (cs1)v1 + (cs2)v2.

This shows that cu is in H and H is closed under scalar multiplication.

Thus H is a subspace of V .
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Vector Spaces Vector Spaces and Subspaces

Spanned Subspace and Spanning Set of Vectors

The argument of the preceding example can easily be generalized to
prove the following theorem.

Theorem

If v1, . . . , vp are in a vector space V , then Span{v1, . . . , vp} is a subspace
of V .

We call Span{v1, . . . , vp} the subspace spanned (or generated) by
{v1, . . . , vp}.

Given any subspace H of V , a spanning (or generating) set for H is
a set {v1, . . . , vp} in H such that H = Span{v1, . . . , vp}.
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Vector Spaces Vector Spaces and Subspaces

Example

Let H be the set of all vectors of the form (a − 3b, b − a, a, b), where
a and b are arbitrary scalars, i.e.,

H = {(a − 3b, b − a, a, b) : a and b in R}.

Show that H is a subspace of R4.

Write the vectors in H as column vectors.

Then an arbitrary vector in H has the form








a − 3b
b − a

a

b









= a









1
−1
1
0









+ b









−3
1
0
1









= av1 + bv2.

This calculation shows that H = Span{v1, v2}, where v1 and v2 are
the vectors indicated above.

Thus H is a subspace of R4 by the theorem.
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Vector Spaces Vector Spaces and Subspaces

Example

For what value(s) of h will y be in the subspace of R3 spanned by
v1, v2, v 3, if

v1 =





1
−1
−2



 , v2 =





5
−4
−7



 , v3 =





−3
1
0



 , y =





−4
3
h



 .

We are asking for what value(s) of h the equation
y = x1v1 + x2v2 + x3v3 has solutions.

This happens if and only if the system





1 5 −3
−1 −4 1
−2 −7 0









x1
x2
x3



 =





−4
3
h





is consistent.
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Vector Spaces Vector Spaces and Subspaces

Example (Cont’d)

We reduced the augmented matrix to row echelon form:





1 5 −3 −4
−1 −4 1 3
−2 −7 0 h





R2←R2+R1−→
R3←R3+2R1





1 5 −3 −4
0 1 −2 −1
0 3 −6 h− 8





R3←R3−3R2−→





1 5 −3 −4
0 1 −2 −1
0 0 0 h− 5



 .

Thus, y is in Span {v1, v2, v 3} if and only if h = 5.

George Voutsadakis (LSSU) Linear Algebra August 2017 21 / 115



Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Subsection 2

Null Spaces, Column Spaces and Linear Transformations
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Example

Consider the following system of homogeneous equations:

{

x1 − 3x2 − 2x3 = 0
−5x1 + 9x2 + x3 = 0

In matrix form, this system is written as Ax = 0, where

A =

[

1 −3 −2
−5 9 1

]

.

Recall that the set of all x that satisfy the system is called the
solution set of the system.

To relate this set directly to the matrix A and the equation Ax = 0,
we call it the null space of the matrix A.

So the null space of A is the set of x that satisfy Ax = 0.
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Null Space of a Matrix

Definition

The null space of an m × n matrix A, written as NulA, is the set of all
solutions of the homogeneous equation Ax = 0. In set notation,

NulA = {x : x is in R
n and Ax = 0}.

A more dynamic description of NulA is the set of all x in R
n that are

mapped into the zero vector of Rm via the linear transformation
x → Ax .
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Example

Let A =

[

1 −3 −2
−5 9 1

]

and let u =





5
3

−2



. Determine if u

belongs to the null space of A.

We need to test if u satisfies Au = 0. We compute

Au =

[

1 −3 −2
−5 9 1

]





5
3

−2



 =

[

5− 9 + 4
−25 + 27− 2

]

=

[

0
0

]

.

Thus u is in NulA.
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Vector Space Property of NulA

Theorem

The null space of an m × n matrix A is a subspace of Rn. Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear
equations in n unknowns is a subspace of Rn.

Certainly NulA is a subset of Rn because A has n columns.

We must show that NulA satisfies the three properties of a subspace.

Of course, 0 is in NulA.

Next, let u and v represent any two vectors in NulA. Then Au = 0

and Av = 0. To show that u + v is in NulA, we must show that
A(u + v) = 0. Using a property of matrix multiplication, compute
A(u + v) = Au + Av = 0+ 0 = 0. Thus u + v is in NulA, and NulA
is closed under vector addition.

If c is any scalar, then A(cu) = c(Au) = c0 = 0. So cu is in NulA.

Thus NulA is a subspace of Rn.
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Example

Let H be the set of all vectors in R
4 whose coordinates a, b, c , d

satisfy the equations a − 2b + 5c = d and c − a = b. Show that H is
a subspace of R4.

Rearrange the equations that describe the elements of H, and note
that H is the set of all solutions of the following system of
homogeneous linear equations:

{

a − 2b + 5c − d = 0
−a− b + c = 0

By the theorem, H is a subspace of R4.
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

An Explicit Description of NulA

Find a spanning set for the null space of the matrix

A =





−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4



 .

We find the general solution of Ax = 0 in terms of free variables.




−3 6 −1 1 −7 0
1 −2 2 3 −1 0
2 −4 5 8 −4 0



 −→





1 −2 2 3 −1 0
−3 6 −1 1 −7 0
2 −4 5 8 −4 0





−→





1 −2 2 3 −1 0
0 0 5 10 −10 0
0 0 1 2 −2 0



 −→





1 −2 2 3 −1 0
0 0 1 2 −2 0
0 0 0 0 0 0



 .

The general solution is x1 = 2x2 − 2x3 − 3x4 + x5 =
2x2 − 2(−2x4 + 2x5)− 3x4 + x5 = 2x2 + x4 − 3x5, x3 = − 2x4 + 2x5,
with x2, x4, and x5 free.
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

An Explicit Description of NulA (Cont’d)

Next, decompose the vector giving the general solution into a linear
combination of vectors where the weights are the free variables.

That is,












x1
x2
x3
x4
x5













=













2x2 + x4 − 3x5
x2

−2x4 + 2x5
x4
x5













= x2













2
1
0
0
0













+ x4













1
0

−2
1
0













+ x5













−3
0
2
0
1













= x2u + x4v + x5w .

Every linear combination of u, v and w is an element of NulA.

Thus {u, v ,w} is a spanning set for NulA.
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

The Column Space of a Matrix

Definition

The column space of an m× n matrix A, written as ColA, is the set of all
linear combinations of the columns of A. If A = [a1 · · · an], then
ColA = Span{a1, . . . , an}.

Since Span{a1, . . . , an} is a subspace, by the preceding theorem, the
next theorem follows from the definition of ColA and the fact that the
columns of A are in R

m.

Theorem

The column space of an m × n matrix A is a subspace of Rm.

George Voutsadakis (LSSU) Linear Algebra August 2017 30 / 115



Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Column Spaces and Ranges of Linear Transformations

Note that a typical vector in ColA can be written as Ax for some x

because the notation Ax stands for a linear combination of the
columns of A.

That is,
ColA = {b : b = Ax for some x in R

n}.

The notation Ax for vectors in ColA also shows that ColA is the
range of the linear transformation x 7→ Ax .
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Example

Find a matrix A such that W = ColA, where

W =











6a − b

a + b

−7a



 : a, b in R







.

Write W as a set of linear combinations.

W =







a





6
1

−7



+ b





−1
1
0



 : a, b in R







= Span











6
1

−7



 ,





−1
1
0











.

Now use the vectors in the spanning set as the columns of A. Let

A =





6 −1
1 1

−7 0



 . Then W = ColA, as desired.
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Column Space as Range

Recall from a previous theorem that

the columns of A span R
m

if and only if
the equation Ax = b has a solution for each b.

We can restate this fact as follows:

The column space of an m× n matrix A is all of Rm if and only
if the equation Ax = b has a solution for each b in R

m.
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Example

Let

A =





2 4 −2 1
−2 −5 7 3
3 7 −8 6



 .

(a) If the column space of A is a subspace of Rk , what is k?
(b) If the null space of A is a subspace of Rk , what is k?

(a) The columns of A each have three entries. So ColA is a subspace of
R

k , where k = 3.

(b) A vector x such that Ax is defined must have four entries. So NulA is
a subspace of Rk , where k = 4.
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Example

With A =





2 4 −2 1
−2 −5 7 3
3 7 −8 6



, find a nonzero vector in ColA and a

nonzero vector in NulA.

For a vector in ColA, any column of A will do, say,





2
−2
3



.

To find a nonzero vector in NulA, row reduce the augmented matrix:




2 4 −2 1 0
−2 −5 7 3 0
3 7 −8 6 0



 −→





2 4 −2 1 0
−2 −5 7 3 0
1 2 −1 9 0





−→





1 2 −1 9 0
−2 −5 7 3 0
2 4 −2 1 0



 −→





1 2 −1 9 0
0 −1 5 21 0
0 0 0 −17 0




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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Example (Cont’d)

We continue the reduction:




1 2 −1 9 0
0 −1 5 21 0
0 0 0 −17 0



 −→





1 2 −1 9 0
0 1 −5 −21 0
0 0 0 1 0





−→





1 2 −1 0 0
0 1 −5 0 0
0 0 0 1 0



 −→





1 0 9 0 0
0 1 −5 0 0
0 0 0 1 0



 .

Thus, if x satisfies Ax = 0, then x1 = −9x3, x2 = 5x3, x4 = 0, and x3
is free. Assigning a nonzero value to x3 say, x3 = 1 we obtain a

vector in NulA, namely, x =









−9
5
1
0









.
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Vector Spaces Null Spaces, Column Spaces and Linear Transformations

Example

Let A =





2 4 −2 1
−2 −5 7 3
3 7 −8 6



, u =









3
−2
−1
0









and v =





3
−1
3



.

(a) Determine if u is in NulA. Could u be in ColA?
(b) Determine if v is in ColA. Could v be in NulA?

(a) We compute the product

Au =





2 4 −2 1
−2 −5 7 3
3 7 −8 6













3
−2
−1
0









=





0
−3
3



 6=





0
0
0



 .

Obviously, u is not a solution of Ax = 0. So u is not in NulA.

Also, with four entries, u could not possibly be in ColA, since ColA is
a subspace of R3.
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Example (Cont’d)

(b) Reduce [A v ] to an echelon form.

[A v ] =




2 4 −2 1 3
−2 −5 7 3 −1
3 7 −8 6 3



 −→





2 4 −2 1 3
0 −1 5 4 2
0 1 −5 9

2 −3
2





−→





2 4 −2 1 3
0 1 −5 −4 −2
0 0 0 17

2
1
2



 .

At this point, it is clear that the equation Ax = v is consistent. So v

is in ColA.

With only three entries, v could not possibly be in NulA, since NulA
is a subspace of R4.
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Linear Transformations; Kernel; Range

Definition

A linear transformation T from a vector space V into a vector space W

is a rule that assigns to each vector x in V a unique vector T (x) in W ,
such that:

(i) T (u + v) = T (u) + T (v), for all u, v in V ;

(ii) T (cu) = cT (u), for all u in V and all scalars c .

The kernel (or null space) of such a T is the set of all u in V such
that T (u) = 0 (the zero vector in W ).

The range of T is the set of all vectors in W of the form T (x), for
some x in V .

If T happens to arise as a matrix transformation say, T (x) = Ax for
some matrix A then the kernel and the range of T are just the null
space and the column space of A.
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Properties of Kernel and Range

It is not difficult to show that the kernel of T is a subspace of V .

Also, the range of T is a subspace of W .
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Example

Let V be the vector space of all real-valued functions f defined on an
interval [a, b] with the property that they are differentiable and their
derivatives are continuous functions on [a, b].

Let W be the vector space C [a, b] of all continuous functions on
[a, b].

Let D : V → W be the transformation that changes f in V into its
derivative f ′.

In calculus, two simple differentiation rules are

D(f + g) = D(f ) +D(g) and D(cf ) = cD(f ).

That is, D is a linear transformation.

It can be shown that the kernel of D is the set of constant functions
on [a, b].

Moreover, and the range of D is the set W of all continuous functions
on [a, b].
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Example

Consider the differential equation

y ′′ + ω
2y = 0,

where ω is a constant, used to describe a variety of physical systems.

The set of its solutions is precisely the kernel of the linear
transformation that maps a function y = f (t) into the function
f ′′(t) + ω2f (t).

Finding an explicit description of this vector space is a problem in
differential equations.
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Subsection 3

Linearly Independent Sets; Bases
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Linearly Dependence and Independence

An indexed set of vectors {v1, . . . , vp} in V is said to be linearly

independent if the vector equation

c1v1 + c2v2 + · · · cpvp = 0

has only the trivial solution, c1 = 0, . . . , cp = 0.

The set {v 1, . . . , vp} is said to be linearly dependent if the equation
has a nontrivial solution, that is, if there are some weights, c1, . . . , cp ,
not all zero, such that the equation holds.

In such a case, the equation is called a linear dependence relation

among v1, . . . , vp.

Just as in R
n, a set containing a single vector v is linearly

independent if and only if v 6= 0.

Also, a set of two vectors is linearly dependent if and only if one of
the vectors is a multiple of the other.

And any set containing the zero vector is linearly dependent.
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Characterization of Linearly Dependence

Theorem

An indexed set {v1, . . . , vp} of two or more vectors, with v1 6= 0, is
linearly dependent if and only if some v j (with j > 1) is a linear
combination of the preceding vectors, v1, . . . , v j−1.

The main difference between linear dependence in R
n and in a

general vector space is that when the vectors are not n-tuples, the
homogeneous equation

c1v1 + c2v2 + · · · cpvp = 0

usually cannot be written as a system of n linear equations.

That is, the vectors cannot be made into the columns of a matrix A

in order to study the equation Ax = 0.

We must rely instead on the definition of linear dependence and the
theorem above.
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Example

Let p1(t) = 1, p2(t) = t and p3(t) = 4− t.

Is {p1(t),p2(t),p3(t)} linearly dependent?

We set
x1p1(t) + x2p2(t) + x3p3(t) = 0.

If we can find x1, x2, x3 not all zero satisfying the equation, then the
set {p1(t),p2(t),p3(t)} is linearly dependent. We have:

x1 + x2t + x3(4− t) = 0
(x1 + 4x3) + (x2 − x3)t = 0
{

x1 + 4x3 = 0
x2 − x3 = 0

}

⇒

{

x1 = −4x3
x2 = x3

So x1 = −4, x2 = 1, x3 = 1 satisfy the equation. We conclude
{p1(t),p2(t),p3(t)} is linearly dependent.
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Example

The set {sin t, cos t} is linearly independent in C [0, 1], the space of all
continuous functions on 0 ≤ t ≤ 1, because sin t and cos t are not
multiples of one another as vectors in C [0, 1].

That is, there is no scalar c such that cos t = c sin t for all t in [0, 1].

However, {sin t cos t, sin 2t} is linearly dependent because of the
identity:

sin 2t = 2 sin t cos t, for all t.

George Voutsadakis (LSSU) Linear Algebra August 2017 47 / 115



Vector Spaces Linearly Independent Sets; Bases

Basis of a Vector Space

Definition

Let H be a subspace of a vector space V . An indexed set of vectors
B = {b1, . . . ,bp} in V is a basis for H if:

(i) B is a linearly independent set;

(ii) the subspace spanned by B coincides with H; that is,

H = Span{b1, . . . ,bp}.

The definition of a basis applies to the case when H = V , because
any vector space is a subspace of itself.

Thus a basis of V is a linearly independent set that spans V .

Observe that when H 6= V , condition (ii) includes the requirement
that each of the vectors b1, . . . ,bp must belong to H, because
Span{b1, . . . ,bp} contains b1, . . . ,bp .
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Example

Let A be an invertible n× n matrix - say, A = [a1 · · · an].

Then the columns of A form a basis for Rn because they are linearly
independent and they span R

n, by the Invertible Matrix Theorem.
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Example: Standard Basis

Let e1, . . . , en be the columns of the n × n identity matrix, In.

That is

e1 =











1
0
...
0











, e2 =











0
1
...
0











, . . . , en =











0
0
...
1











.

The set {e1, . . . , en} is called the standard basis for Rn.
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Example

Let v1 =





3
0

−6



, v2 =





−4
1
7



 and v3 =





−2
1
5



.

Determine if {v 1, v2, v3} is a basis for R3.

Since there are exactly three vectors in R
3, we can use any of several

methods to determine if the matrix A = [v1 v2 v3] is invertible.

Reduce to row echelon form:




3 −4 −2
0 1 1

−6 7 5



 −→





3 −4 −2
0 1 1
0 −1 1



 −→





3 −4 −2
0 1 1
0 0 2



 .

Thus, A has three pivot positions. Hence A is invertible. It follows
the columns of A form a basis for R3.
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Example

Let S = {1, t, t2, . . . , tn}. Verify that S is a basis for Pn.

This basis is called the standard basis for Pn.

Certainly S spans Pn.

To show that S is linearly independent, suppose that c0, . . . , cn satisfy

c0 · 1 + c1t + c2t
2 + · · · + cnt

n = 0(t).

This equality means that the polynomial on the left has the same
values as the zero polynomial on the right. A fundamental theorem in
algebra says that the only polynomial in Pn with more than n zeros is
the zero polynomial. That is, the equation above holds for all t only if
c0 = · · · = cn = 0. This proves that S is linearly independent and
hence is a basis for Pn.
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Example: The Spanning Set Theorem

Let

v1 =





0
2

−1



 , v2 =





2
2
0



 , v3 =





6
16
−5



 , H = Span{v1, v2, v 3}.

Note that v3 = 5v1 + 3v2, and show that
Span{v1, v 2, v3} = Span{v 1, v2}.

Then find a basis for the subspace H.

Every vector in Span{v1, v2} belongs to H because
c1v1 + c2v2 = c1v1 + c2v2 + 0v3.

Now let x be any vector in H say, x = c1v1 + c2v2 + c3v3. Since
v3 = 5v1 + 3v2, we may substitute

x = c1v1 + c2v2 + c3(5v1 + 3v2)
= (c1 + 5c3)v1 + (c2 + 3c3)v2.

Thus x is in Span{v1, v2}.
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Example: The Spanning Set Theorem (Cont’d)

We showed that every vector in H already belongs to

Span{v1, v 2} = Span











0
2

−1



 ,





2
2
0











.

So H and Span{v1, v2} are actually the same set of vectors.

Now, notice that {v 1, v2} is obviously linearly independent.

It follows that {v1, v2} both spans H and is a linearly independent
set, whence it is is a basis of H
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The Spanning Set Theorem

Theorem (The Spanning Set Theorem)

Let S = {v1, . . . , vp} be a set in V , and let H = Span{v1, . . . , vp}.

(a) If one of the vectors in S say, v k - is a linear combination of the
remaining vectors in S , then the set formed from S by removing vk

still spans H.

(b) If H 6= {0}, some subset of S is a basis for H.

(a) By rearranging the list of vectors in S , if necessary, we may suppose
that vp is a linear combination of v1, . . . , vp−1. say,

vp = a1v1 + · · ·+ ap−1vp−1.

Given any x in H, we may write

x = c1v1 + · · ·+ cp−1vp−1 + cpvp ,

for suitable scalars c1, . . . , cp .
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The Spanning Set Theorem (Cont’d)

Substituting the expression for vp from the first equation, we get

x = c1v1 + · · ·+ cp−1vp−1 + cp(a1v1 + · · ·+ ap−1vp−1)
= (c1 + cpa1)v1 + · · ·+ (cp−1 + cpap−1)vp−1.

Thus {v1, . . . , vp−1} spans H, since x was an arbitrary element of H.

(b) If the original spanning set S is linearly independent, then it is already
a basis for H.

Otherwise, one of the vectors in S depends on the others and can be
deleted, by Part (a).

So long as there are two or more vectors in the spanning set, we can
repeat this process until the spanning set is linearly independent and
hence is a basis for H.

If the spanning set is eventually reduced to one vector, that vector
will be nonzero (and hence linearly independent) because H 6= {0}.
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Example: Bases for ColA

Find a basis for ColB , where

B = [b1 b2 · · · b5] =









1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0









.

Each nonpivot column of B is a linear combination of the pivot
columns. In fact, b2 = 4b1 and b4 = 2b1 − b3.

By the Spanning Set Theorem, we may discard b2 and b4, and
{b1,b3,b5} will still span ColB . Let

S = {b1,b3,b5} =























1
0
0
0









,









0
1
0
0









,









0
0
0
1























.

Since b1 6= 0 and no vector in S is a linear combination of the vectors
that precede it, S is linearly independent. Thus S is a basis for ColB .
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The Case of a Non-Reduced Matrix

Suppose a matrix A is not in reduced echelon form.

We know that any linear dependence relationship among the columns
of A can be expressed in the form Ax = 0, where x is a column of
weights.

When A is row reduced to a matrix B , the columns of B are often
totally different from the columns of A.

However, the equations Ax = 0 and Bx = 0 have exactly the same
set of solutions.

If A = [a1 · · · an] and B = [b1 · · · bn], then the vector equations

x1a1 + · · · + xnan = 0 and x1b1 + · · ·+ xnbn = 0

also have the same set of solutions.

That is, the columns of A have exactly the same linear dependence
relationships as the columns of B .
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Example: Bases for NulA and ColA

The matrix A below is row equivalent to the matrix B :
A = [a1 a2 · · · a5]

=









1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8









, B =









1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0









.

Find a basis for ColA.

We saw that b2 = 4b1 and b4 = 2b1 − b3.
So we have a2 = 4a1 and a4 = 2a1 − a3.
Thus we may discard a2 and a4 when selecting a minimal spanning
set for ColA.
{a1, a3, a5} must be linearly independent because any linear
dependence relationship among a1, a3, a5 would imply a linear
dependence relationship among b1,b3,b5. But we know that
{b1,b3,b5} is a linearly independent set.
Thus {a1, a3, a5} is a basis for ColA.
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Basis for ColA and Pivot Columns

Theorem

The pivot columns of a matrix A form a basis for ColA.

Let B be the reduced echelon form of A. The set of pivot columns of
B is linearly independent, for no vector in the set is a linear
combination of the vectors that precede it. Since A is row equivalent
to B , the pivot columns of A are linearly independent as well, because
any linear dependence relation among the columns of A corresponds
to a linear dependence relation among the columns of B . For this
same reason, every non-pivot column of A is a linear combination of
the pivot columns of A. Thus the non-pivot columns of A may be
discarded from the spanning set for ColA, by the Spanning Set
Theorem. This leaves the pivot columns of A as a basis for ColA.

George Voutsadakis (LSSU) Linear Algebra August 2017 60 / 115



Vector Spaces Linearly Independent Sets; Bases

Two Views of a Basis

When the Spanning Set Theorem is used, the deletion of vectors from
a spanning set must stop when the set becomes linearly independent.

If an additional vector is deleted, it will not be a linear combination of
the remaining vectors, and hence the smaller set will no longer span
V .

Thus a basis is a spanning set that is as small as possible.

A basis is also a linearly independent set that is as large as possible.

If S is a basis for V , and if S is enlarged by one vector say, w from
V , then the new set cannot be linearly independent, because S spans
V , and w is therefore a linear combination of the elements in S .
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Example

The following three sets in R
3 show how a linearly independent set

can be enlarged to a basis and how further enlargement destroys the
linear independence of the set.

Also, a spanning set can be shrunk to a basis, but further shrinking
destroys the spanning property.











1
0
0



 ,





2
3
0











Linearly Independent

Not Spanning R3

,











1
0
0



 ,





2
3
0



 ,





4
5
6











A basis for R3

,











1
0
0



 ,





2
3
0



 ,





4
5
6



 ,





7
8
9











Spans R3

Linearly Dependent

.
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Subsection 4

Coordinate Systems
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The Unique Representation Theorem

Theorem (The Unique Representation Theorem)

Let B = {b1, . . . ,bn} be a basis for a vector space V . Then for each x in
V , there exists a unique set of scalars c1, . . . , cn such that

x = c1b1 + · · ·+ cnbn.

Since B spans V , there exist scalars such that the equation holds.

Suppose x also has the representation

x = d1b1 + · · ·+ dnbn

for scalars d1, . . . , dn. Then, subtracting, we have

0 = x − x = (c1 − d1)b1 + · · · + (cn − dn)bn.

Since B is linearly independent, the weights must all be zero. That
is, cj = dj for 1 ≤ j ≤ n.
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Coordinates Relative to a Basis

Definition

Suppose B = {b1, . . . ,bn} is a basis for V and x is in V . The
coordinates of x relative to the basis B (or the B-coordinates of x)
are the weights c1, . . . , cn such that x = c1b1 + · · · + cnbn.

If c1, . . . , cn are the B-coordinates of x , then the vector in R
n

[x ]B =







c1
...
cn







is the coordinate vector of x (relative to B), or the B-coordinate
vector of x .

The mapping x 7→ [x ]B is the coordinate mapping (determined by

B).
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Example

Consider a basis B = {b1,b2} for R2, where b1 =

[

1
0

]

and

b2 =

[

1
2

]

.

Suppose an x in R
2 has the coordinate vector [x ]B =

[

−2
3

]

.

The B-coordinates of x tell how to build x from the vectors in B.
That is,

x = (−2)b1 + 3b2 = (−2)

[

1
0

]

+ 3

[

1
2

]

=

[

1
6

]

.
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Example

The entries in the vector x =

[

1
6

]

are the coordinates of x relative

to the standard basis E = {e1, e2}.

Indeed, we have

[

1
6

]

= 1 ·

[

1
0

]

+ 6 ·

[

0
1

]

= 1 · e1 + 6 · e2.

If E = {e1, e2}, then [x ]E = x .
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Example

Let b1 =

[

2
1

]

, b2 =

[

−1
1

]

, x =

[

4
5

]

and B = {b1,b2}. Find

the coordinate vector [x ]B of x relative to B.

The B-coordinates c1, c2 of x satisfy

c1

[

2
1

]

+ c2

[

−1
1

]

=

[

4
5

]

or

[

2 −1
1 1

] [

c1
c2

]

=

[

4
5

]

.

The solution is

c1 =

∣

∣

∣

∣

4 −1
5 1

∣

∣

∣

∣

∣

∣

∣

∣

2 −1
1 1

∣

∣

∣

∣

=
9

3
= 3, c2 =

∣

∣

∣

∣

2 4
1 5

∣

∣

∣

∣

∣

∣

∣

∣

2 −1
1 1

∣

∣

∣

∣

=
6

3
= 2.

Thus x = 3b1 + 2b2, and [x ]B =

[

3
2

]

.
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Change-of-Coordinates Matrix

Let B = {b1, . . . ,bn} be a basis for Rn.

Let PB = [b1 b2 · · · bn].

Then the vector equation x = c1b1 + c2b2 + · · ·+ cnbn is equivalent
to

x = PB[x ]B.

We call PB the change-of-coordinates matrix from B to the
standard basis in R

n.

Left-multiplication by PB transforms the coordinate vector [x ]B into
x .
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Properties of the Change-of-Coordinates Matrix

Since the columns of PB form a basis for Rn, PB is invertible (by the
Invertible Matrix Theorem).

Left-multiplication by P−1
B

converts x into its B-coordinate vector:

P−1
B

x = [x ]B.

The correspondence x 7→ [x ]B, produced here by P−1
B

, is the
coordinate mapping mentioned earlier.

Since P−1
B

is an invertible matrix, the coordinate mapping is a
one-to-one linear transformation from R

n onto R
n, by the Invertible

Matrix Theorem.

George Voutsadakis (LSSU) Linear Algebra August 2017 70 / 115



Vector Spaces Coordinate Systems

Coordinatization

Choosing a basis B = {b1, . . . ,bn} for a vector space V introduces a
coordinate system in V .

The coordinate mapping x 7→ [x ]B connects the possibly unfamiliar
space V to the familiar space R

n.

Points in V can now be identified by their new “names”.
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Vector Spaces Coordinate Systems

Properties of the Coordinate Mapping

Theorem

Let B = {b1, . . . ,bn} be a basis for a vector space V . Then the coordinate
mapping x 7→ [x ]B is a one-to-one linear transformation from V onto R

n.

Take two typical vectors in V , say,

u = c1b1 + · · ·+ cnbn,

w = d1b1 + · · ·+ dnbn.

Then, using vector operations,

u + w = (c1 + d1)b1 + · · · + (cn + dn)bn.

It follows that

[u + w ]B =







c1 + d1
...

cn + dn






=







c1
...
cn






+







d1
...
dn






= [u]B + [w ]B.

So the coordinate mapping preserves addition.
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Vector Spaces Coordinate Systems

Properties of the Coordinate Mapping (Cont’d)

If r is any scalar, then

ru = r(c1b1 + · · ·+ cnbn) = (rc1)b1 + · · ·+ (rcn)bn.

So

[ru]B =







rc1
...
rcn






= r







c1
...
cn






= r [u]B.

Thus the coordinate mapping also preserves scalar multiplication and
hence is a linear transformation.

The coordinate mapping is one-to-one: If [u]B = [w ]B, then
u = PB[u]B = PB[w ]B = w .

It is also onto: If y in R
n, then letting u = PBy , we get

[u]B = P−1
B

u = P−1
B

(PBy) = y .
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Vector Spaces Coordinate Systems

Isomorphisms of Vector Spaces

The linearity of the coordinate mapping extends to linear
combinations:

If u1, . . . ,up are in V and if c1, . . . , cp are scalars, then

[c1u1 + · · ·+ cpup]B = c1[u1]B + · · ·+ cp[up]B.

A one-to-one linear transformation from a vector space V onto a
vector space W is called an isomorphism from V onto W .

The notation and terminology for V and W may differ, but the two
spaces are indistinguishable as vector spaces.

Every vector space calculation in V is accurately reproduced in W ,
and vice versa.

In particular, any real vector space with a basis of n vectors is
indistinguishable from R

n.
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Vector Spaces Coordinate Systems

Example

Let B be the standard basis of the space P3 of polynomials; that is,
let B = {1, t, t2, t3}.

A typical element p of P3 has the form

p(t) = a0 + a1t + a2t
2 + a3t

3
.

Since p is already displayed as a linear combination of the standard
basis vectors, we conclude that

[p]B =









a0
a1
a2
a3









.

Thus the coordinate mapping p 7→ [p]B is an isomorphism from P3

onto R
4.

All vector space operations in P3 correspond to operations in R
4.
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Vector Spaces Coordinate Systems

Example

Use coordinate vectors to verify that the polynomials 1 + 2t2,
4 + t + 5t2, and 3 + 2t are linearly dependent in P2.

The coordinate mapping from the preceding example produces the
coordinate vectors (1, 0, 2), (4, 1, 5) and (3, 2, 0), respectively.

Writing these vectors as the columns of a matrix A, we can determine
their independence by row reducing the augmented matrix for Ax = 0:




1 4 3 0
0 1 2 0
2 5 0 0



 −→





1 4 3 0
0 1 2 0
0 −3 −6 0



 −→





1 4 3 0
0 1 2 0
0 0 0 0



 .

The columns of A are linearly dependent. So the corresponding
polynomials are linearly dependent.

In fact, it is easy to check that column 3 of A is 2 times column 2
minus 5 times column 1.

The corresponding relation for the polynomials is
3 + 2t = 2(4 + t + 5t2)− 5(1 + 2t2).
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Vector Spaces Coordinate Systems

Example

Let v1 =





3
6
2



, v2 =





−1
0
1



, x =





3
12
7



 and B = {v1, v2}.

Then B is a basis for H = Span{v 1, v2}. Determine if x is in H, and
if it is, find the coordinate vector of x relative to B.

If x is in H, then the following vector equation is consistent:

c1





3
6
2



+ c2





−1
0
1



 =





3
12
7



 .

The scalars c1 and c2, if they exist, are the B-coordinates of x .

In matrix form




3 −1
6 0
2 1





[

c1
c2

]

=





3
12
7



 .
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Vector Spaces Coordinate Systems

Example (Cont’d)

Using row operations, we obtain





3 −1 3
6 0 12
2 1 7





R2←
1
6
R2

−→
R1↔R2





1 0 2
3 −1 3
2 1 7





R2←R2−3R1−→
R3←R3−2R1





1 0 2
0 −1 −3
0 1 3





R3←R3+R2−→
R2←(−1)R2





1 0 2
0 1 3
0 0 0



 .

Thus c1 = 2, c2 = 3, and [x ]B =

[

2
3

]

.
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Vector Spaces The Dimension of a Vector Space

Subsection 5

The Dimension of a Vector Space
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Vector Spaces The Dimension of a Vector Space

Dependent Vectors in a Vector Space

Theorem

If a vector space V has a basis B = {b1, . . . ,bn}, then any set in V

containing more than n vectors must be linearly dependent.

Let {u1, . . . ,up} be a set in V with more than n vectors. The
coordinate vectors [u1]B, . . . , [up]B form a linearly dependent set in
R

n, because there are more vectors (p) than entries (n) in each
vector. So there exist scalars c1, . . . , cp , not all zero, such that
c1[u1]B + · · ·+ cp[up]B = 0, the zero vector in R

n. Since the
coordinate mapping is a linear transformation,
[c1u1 + · · ·+ cpup]B = 0. The zero vector on the right displays the n
weights needed to build the vector c1u1 + · · · + cpup from the basis
vectors in B. That is, c1u1 + · · ·+ cpup = 0 · b1 + · · ·+ 0 · bn = 0.
Since the ci are not all zero, {u1, . . . ,up} is linearly dependent.
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Vector Spaces The Dimension of a Vector Space

Number of Vectors in Bases

Theorem

If a vector space V has a basis of n vectors, then every basis of V must
consist of exactly n vectors.

Let B1 be a basis of n vectors and B2 be any other basis (of V ).

Since B1 is a basis and B2 is linearly independent, B2 has no more
than n vectors, by the preceding theorem.

Also, since B2 is a basis and B1 is linearly independent, B2 has at
least n vectors.

Thus B2 consists of exactly n vectors.
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Vector Spaces The Dimension of a Vector Space

Dimension of a Vector Space

If a nonzero vector space V is spanned by a finite set S , then a subset
of S is a basis for V , by the Spanning Set Theorem.

In this case, the preceding theorem ensures that the following
definition makes sense:

Definition

If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V , written as dimV , is the number of vectors in a
basis for V .
The dimension of the zero vector space {0} is defined to be zero.
If V is not spanned by a finite set, then V is said to be
infinite-dimensional.
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Vector Spaces The Dimension of a Vector Space

Examples

The standard basis for Rn contains n vectors.

So dimR
n = n.

The standard polynomial basis {1, t, t2} shows that dimP2 = 3.

In general, dimPn = n + 1.

The space P of all polynomials is infinite-dimensional.
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Vector Spaces The Dimension of a Vector Space

Example

Let H = Span{v1, v2}, where v1 =





3
6
2



, v2 =





−1
0
1



.

Then a basis for H is {v1, v2}, since v1 and v2 are not multiples and
hence are linearly independent.

Thus dimH = 2.
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Vector Spaces The Dimension of a Vector Space

Example

Find the dimension of the subspace

H =























a− 3b + 6c
5a+ 4d

b − 2c − d

5d









: a, b, c , d in R















.

Note that








a − 3b + 6c
5a+ 4d

b − 2c − d

5d









= a









1
5
0
0









+ b









−3
0
1
0









+ c









6
0

−2
0









+ d









0
4

−1
5









;

So H is the set of all linear combinations of the vectors

v 1 =









1
5
0
0









, v 2 =









−3
0
1
0









, v 3 =









6
0

−2
0









, v 4 =









0
4

−1
5









.
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Vector Spaces The Dimension of a Vector Space

Example (Cont’d)

We saw H = Span























1
5
0
0









,









−3
0
1
0









,









6
0

−2
0









,









0
4

−1
5























.

Clearly, v1 6= 0, v2 is not a multiple of v1, but v3 is a multiple of v2.

By the Spanning Set Theorem, we may discard v3 and still have a set
that spans H.

Finally, v4 is not a linear combination of v1 and v2.

So {v1, v2, v4} is linearly independent and hence is a basis for H.

Thus dimH = 3.
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Vector Spaces The Dimension of a Vector Space

Classification of Subspaces of R3

The subspaces of R3 can be classified by dimension:

0-dimensional subspaces: Only the zero subspace.
1-dimensional subspaces: Any subspace spanned by a single nonzero
vector. Such subspaces are lines through the origin.
2-dimensional subspaces: Any subspace spanned by two linearly
independent vectors. Such subspaces are planes through the origin.
3-dimensional subspaces: Only R

3 itself. Any three linearly independent
vectors in R

3 span all of R3, by the Invertible Matrix Theorem.
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Vector Spaces The Dimension of a Vector Space

Subspaces of a Finite-Dimensional Space

Theorem

Let H be a subspace of a finite-dimensional vector space V . Any linearly
independent set in H can be expanded, if necessary, to a basis for H. Also,
H is finite-dimensional and dimH ≤ dimV .

If H = {0}, then certainly dim = 0 ≤ dimV .

Otherwise, let S = {u1, . . . ,uk} be any linearly independent set in H.
If S spans H, then S is a basis for H. Otherwise, there is some uk+1

in H that is not in SpanS . But then {u1, . . . ,uk ,uk+1} will be
linearly independent, because no vector in the set can be a linear
combination of vectors that precede it (by a previous theorem). So
long as the new set does not span H, we can continue this process of
expanding S to a larger linearly independent set in H. But the
number of vectors in a linearly independent expansion of S can never
exceed the dimension of V , by a previous theorem. So eventually the
expansion of S will span H and hence will be a basis for H.
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Vector Spaces The Dimension of a Vector Space

The Basis Theorem

Theorem (The Basis Theorem)

Let V be a p-dimensional vector space, p ≥ 1.

Any linearly independent set of exactly p elements in V is
automatically a basis for V .

Any set of exactly p elements that spans V is automatically a basis
for V .

By the preceding theorem, a linearly independent set S of p elements
can be extended to a basis for V . But that basis must contain exactly
p elements, since dimV = p. So S must already be a basis for V .

Now suppose that S has p elements and spans V . Since V is nonzero,
the Spanning Set Theorem implies that a subset S0 of S is a basis of
V . Since dimV = p, S0 must contain p vectors. Hence S = S0.
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Vector Spaces The Dimension of a Vector Space

The Dimensions of NulA and ColA

Since the pivot columns of a matrix A form a basis for ColA, we know
the dimension of ColA as soon as we know the pivot columns.

Let A be an m × n matrix, and suppose the equation Ax = 0 has k
free variables. We know that the standard method of finding a
spanning set for NulA will produce exactly k linearly independent
vectors say, u1, . . . ,uk one for each free variable. So {u1, . . . ,uk} is
a basis for NulA, and the number of free variables determines the size
of the basis.

The dimension of NulA is the number of free variables in the
equation Ax = 0, and the dimension of ColA is the number of
pivot columns in A.
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Vector Spaces The Dimension of a Vector Space

Example

Find the dimensions of the null space and the column space of

A =





−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4



 .

Row reduce the augmented matrix [A 0] to echelon form:




−3 6 −1 1 −7 0
1 −2 2 3 −1 0
2 −4 5 8 −4 0



 −→





1 −2 2 3 −1 0
−3 6 −1 1 −7 0
2 −4 5 8 −4 0





−→





1 −2 2 3 −1 0
0 0 5 10 −10 0
0 0 1 2 −2 0



 −→





1 −2 2 3 −1 0
0 0 1 2 −2 0
0 0 0 0 0 0





There are three free variables x2, x4 and x5.

Hence the dimension of NulA is 3.

Also, dimColA = 2 because A has two pivot columns.
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Subsection 6

Rank
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Vector Spaces Rank

The Row Space

If A is an m × n matrix, each row of A has n entries and thus can be
identified with a vector in R

n.

The set of all linear combinations of the row vectors is called the row

space of A and is denoted by RowA.

Each row has n entries, so RowA is a subspace of Rn.

Since the rows of A are identified with the columns of AT , we could
also write ColAT in place of RowA.
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Vector Spaces Rank

Example

Let

A =









−2 −5 8 0 −17
1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3









,

r1 = (−2,−5, 8, 0,−17)
r2 = (1, 3,−5, 1, 5)
r3 = (3, 11,−19, 7, 1)
r4 = (1, 7,−13, 5,−3).

The row space of A is the subspace of R5 spanned by {r1, r2, r 3, r 4}.

That is, RowA = Span{r 1, r 2, r 3, r 4}.

It is natural to write row vectors horizontally;

However, they may also be written as column vectors if that is more
convenient.
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Row Space and Elementary Operations

Theorem

If two matrices A and B are row equivalent, then their row spaces are the
same. If B is in echelon form, the nonzero rows of B form a basis for the
row space of A as well as for that of B .

If B is obtained from A by row operations, the rows of B are linear
combinations of the rows of A. It follows that any linear combination
of the rows of B is automatically a linear combination of the rows of
A. Thus the row space of B is contained in the row space of A.

Since row operations are reversible, the same argument shows that
the row space of A is a subset of the row space of B .

So the two row spaces are the same.

If B is in echelon form, its nonzero rows are linearly independent
because no nonzero row is a linear combination of the nonzero rows
below it. Thus the nonzero rows of B form a basis of the (common)
row space of B and A.
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Vector Spaces Rank

The Spaces RowA,ColA and NulA

Find bases for the row space, the column space and the null space of

the matrix A =









−2 −5 8 0 −17
1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3









.

To find bases for the row space and the column space, row reduce A

to an echelon form:

A −→









1 3 −5 1 5
−2 −5 8 0 −17
3 11 −19 7 1
1 7 −13 5 −3









−→









1 3 −5 1 5
0 1 −2 2 −7
0 2 −4 4 −14
0 4 −8 4 −8









−→









1 3 −5 1 5
0 1 −2 2 −7
0 0 0 0 0
0 0 0 −4 20









−→









1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 20
0 0 0 0 0








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The Spaces RowA (Cont’d)

We found

A ∼









1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 20
0 0 0 0 0









.

By the theorem, the first three rows of B form a basis for the row
space of A (as well as for the row space of B):

Basis for RowA : {(1, 3,−5, 1, 5), (0, 1,−2, 2,−7), (0, 0, 0,−4, 20)}.
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The Spaces ColA (Cont’d)

We found

A ∼









1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 20
0 0 0 0 0









.

For the column space, observe from B that the pivots are in columns
1, 2, and 4.

Hence columns 1, 2, and 4 of A (not B) form a basis for ColA:

Basis for ColA :























−2
1
3
1









,









−5
3
11
7









,









0
1
7
5























.
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The Space NulA (Cont’d)

For NulA, we need the reduced echelon form:

A ∼









1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 20
0 0 0 0 0









∼









1 0 1 0 1
0 1 −2 0 3
0 0 0 1 −5
0 0 0 0 0









.

The equation Ax = 0 is equivalent to






x1 + x3 + x5 = 0
x2 − 2x3 + 3x5 = 0

x4 − 5x5 = 0
.

So x1 = −x3 − x5, x2 = 2x3 − 3x5, x4 = 5x5, with x3 and x5 free:












x1
x2
x3
x4
x5













= x3













−1
2
1
0
0













+ x5













−1
−3
0
5
1













; Basis for NulA :
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.
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Vector Spaces Rank

Rank and Nullity of a Matrix

Definition

The rank of A is the dimension of the column space of A.

Since RowA is the same as ColAT , the dimension of the row space of
A is the rank of AT .

The dimension of the null space is sometimes called the nullity of A.
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Vector Spaces Rank

The Rank Theorem

Theorem (The Rank Theorem)

The dimensions of the column space and the row space of an m× n matrix
A are equal. This common dimension, the rank of A, also equals the
number of pivot positions in A and satisfies the equation

rankA+ dimNulA = n.

By a previous theorem, rankA is the number of pivot columns in A.

Equivalently, rankA is the number of pivot positions in an echelon
form B of A. Furthermore, since B has a nonzero row for each pivot,
and since these rows form a basis for the row space of A, the rank of
A is also the dimension of the row space.

We know that the dimension of NulA equals the number of free
variables in the equation Ax = 0. Expressed another way, the
dimension of NulA is the number of columns of A that are not pivot
columns. Obviously, the sum of these two numbers in n.
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Vector Spaces Rank

Example

(a) If A is a 7× 9 matrix with a two-dimensional null space, what is the
rank of A?

(b) Could a 6× 9 matrix have a two-dimensional null space?

(a) Since A has 9 columns,

rankA+ dimNulA = 9 ⇒ rankA+ 2 = 9
⇒ rankA = 7.

(b) If a 6× 9 matrix, call it B, had a two-dimensional null space, it would
have to have rank 7.
But the columns of B are vectors in R

6.
So the dimension of ColB, i.e., rankB cannot exceed 6.
So a 6× 9 matrix cannot have a two-dimensional null space.
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Vector Spaces Rank

The Invertible Matrix Theorem

Theorem (The Invertible Matrix Theorem Cont’d)

Let A be an n × n matrix. Then the following statements are each
equivalent to the statement that A is an invertible matrix:

(m) The columns of A form a basis of Rn.

(n) ColA = R
n.

(o) dimColA = n.

(p) rankA = n.

(q) NulA = {0}.

(r) dimNulA = 0.

Obvious statements about the row space of A may be added to the
Invertible Matrix Theorem, because the row space is the column
space of AT and A is invertible if and only if AT is invertible.
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Vector Spaces Change of Basis

Subsection 7

Change of Basis
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Vector Spaces Change of Basis

Changing Bases

When a basis B is chosen for an n-dimensional vector space V , the
associated coordinate mapping onto R

n provides a coordinate system
for V .

Each x in V is identified uniquely by its B-coordinate vector [x ]B.

In some applications, a problem is described initially using a basis B,
but the problem’s solution is aided by changing B to a new basis C.

Each vector is assigned a new C-coordinate vector.

We study how [x ]C and [x ]B are related for each x in V .
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Vector Spaces Change of Basis

Example

Consider two bases B = {b1,b2} and C = {c1, c2} for a vector space
V , such that b1 = 4c1 + c2 and b2 = −6c1 + c2.

Suppose x = 3b1 + b2. That is, suppose [x ]B =

[

3
1

]

.

Find [x ]C .

Apply the coordinate mapping determined by C to x , taking into
account that it is a linear transformation,

[x ]C = [3b1 + b2]C = 3[b1]C + [b2]C .

We can write this vector equation as a matrix equation, using the
vectors in the linear combination as the columns of a matrix:

[x ]C = [[b1]C [b2]C]

[

3
1

]

.
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Vector Spaces Change of Basis

Example (Cont’d)

This formula gives [x ]C , once we know the columns of the matrix.

We have [b1]C =

[

4
1

]

, [b2]C =

[

−6
1

]

.

Thus we get the solution:

[x ]C =
[

[b1]C [b2]C
]

[

3
1

]

=

[

4 −6
1 1

] [

3
1

]

=

[

6
4

]

.
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Vector Spaces Change of Basis

The Change-of-Coordinates Matrix

Theorem

Let B = {b1, . . . ,bn} and C = {c1, . . . , cn} be bases of a vector space V .
Then there is a unique n× n matrix P

C←B

such that [x ]C = P
C←B

[x ]B. The

columns of P
C←B

are the C-coordinate vectors of the vectors in the basis B.

That is,
P
C←B

= [[b1]C [b2]C · · · [bn]C ].

P
C←B

is called the change-of-coordinates matrix from B to C.
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Vector Spaces Change of Basis

Properties of the Change-of-Coordinates Matrix

The columns of P
C←B

are linearly independent because they are the

coordinate vectors of the linearly independent set B.

Since P
C←B

is square, it must be invertible, by the Invertible Matrix

Theorem.

Left-multiplying both sides of equation [x ]C = P
C←B

[x ]B by P
C←B

−1

yields
P
C←B

−1[x ]C = [x ]B.

Thus P
C←B

−1 is the matrix that converts C-coordinates into

B-coordinates, i.e.,
P
C←B

−1 = P
B←C

.
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Vector Spaces Change of Basis

The Case of the Standard Basis

If B = {b1, . . . ,bn} and E is the standard basis {e1, . . . , en} in R
n,

then [b1]E = b1;

Likewise for the other vectors in B.

In this case, P
E←B

is the same as the change-of coordinates matrix PB

introduced previously, namely,

P
E←B

= PB = [b1 b2 · · · bn].

To change coordinates between two nonstandard bases in R
n, we

need the theorem.

The theorem shows that to solve the change-of-basis problem, we
need the coordinate vectors of the old basis relative to the new basis.
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Vector Spaces Change of Basis

Example

Let b1 =

[

−9
1

]

, b2 =

[

−5
−1

]

, c1 =

[

1
−4

]

, c2 =

[

3
−5

]

.

Consider the bases for R2 given by B = {b1,b2} and C = {c1, c2}.

Find the change-of coordinates matrix from B to C.

The matrix P
C←B

involves the C-coordinate vectors of b1 and b2.

Let [b1]C =

[

x1
x2

]

, [b2]C =

[

y1
y2

]

.

Then, by definition,

x1c1 + x2c2 = b1, y1c1 + y2c2 = b2.

Equivalently in matrix form,

[c1 c2]

[

x1
x2

]

= b1, [c1 c2]

[

y1
y2

]

= b2.
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Vector Spaces Change of Basis

Example (Cont’d)

To solve both systems simultaneously, augment the coefficient matrix
with b1 and b2, [c1 c2 | b1 b2], and row reduce:

[

1 3 −9 −5
−4 −5 1 −1

]

−→

[

1 3 −9 −5
0 7 −35 −21

]

−→

[

1 3 −9 −5
0 1 −5 −3

]

−→

[

1 0 6 4
0 1 −5 −3

]

.

Thus

[b1]C =

[

6
−5

]

, [b2]C =

[

4
−3

]

.

The desired change-of-coordinates matrix is therefore

P
C←B

= [[b1]C [b2]C ] =

[

6 4
−5 −3

]

.
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Vector Spaces Change of Basis

Summary of the Process

Observe that the matrix P
C←B

in the preceding example was the one

appearing on the right of the reduced echelon form.

This is not surprising because the first column of P
C←B

results from

row reducing [c1 c2 | b1] to [I | [b]C ], and similarly for the second
column of P

C←B

.

Thus
[c1 c2 | b1 b2] ∼ [I | P

C←B

].

An analogous procedure works for finding the change-of-coordinates
matrix between any two bases in R

n.
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Vector Spaces Change of Basis

Example

Let b1 =

[

1
−3

]

, b2 =

[

−2
4

]

, c1 =

[

−7
9

]

, c2 =

[

−5
7

]

.

Consider the bases for R2 given by B = {b1,b2} and C = {c1, c2}.
(a) Find the change-of-coordinates matrix from C to B.
(b) Find the change-of-coordinates matrix from B to C.

(a) We compute [b1 b2 | c1 c2] =
[

1 −2 −7 −5
−3 4 9 7

]

−→

[

1 −2 −7 −5
0 −2 −12 −8

]

−→

[

1 −2 −7 −5
0 1 6 4

]

−→

[

1 0 5 3
0 1 6 4

]

.

So P
B←C

=

[

5 3
6 4

]

.

(b) Now we get

P
C←B

= P
B←C

−1 =
1

2

[

4 −3
−6 5

]

=

[

2 −3
2

−3 5
2

]

.
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Vector Spaces Change of Basis

Alternative Description of Change-of-Coordinate Matrix

Another description of the change-of-coordinates matrix P
C←B

uses the

change-ofcoordinate matrices PB and PC that convert B-coordinates
and C-coordinates, respectively, into standard coordinates.

Recall that for each x in R
n,

PB[x ]B = x , PC[x ]C = x , [x ]C = P−1
C

x .

Thus
[x ]C = P−1

C
x = P−1

C
PB[x ]B.

In R
n, the change-of-coordinates matrix P

C←B

may be computed as

P
C←B

= P−1
C

PB or, more suggestively, [x ]C = P−1
E←C

P
E←B

[x ]B.
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