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Subsection 1

Eigenvectors and Eigenvalues
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Example

Let A =

[

3 −2
1 0

]

, u =

[

−1
1

]

, v =

[

2
1

]

.

The images of u and v under multiplication by A are shown in the
figure

In fact, Av is just 2v .

So A only “stretches”, or dilates, v .
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Eigenvectors and Eigenvalues

Definition

An eigenvector of an n × n matrix A is a nonzero vector x such that
Ax = λx for some scalar λ. A scalar λ is called an eigenvalue of A if
there is a nontrivial solution x of Ax = λx ; such an x is called an
eigenvector corresponding to λ.

Example: Let A =

[

1 6
5 2

]

, u =

[

6
−5

]

, v =

[

3
−2

]

.

Are u and v eigenvectors of A?

Au =

[

1 6
5 2

] [

6
−5

]

=

[

−24
20

]

= − 4

[

6
−5

]

= − 4u,

Av =

[

1 6
5 2

] [

3
−2

]

=

[

−9
11

]

6= λ

[

3
−2

]

.

Thus u is an eigenvector corresponding to an eigenvalue −4, but v is
not an eigenvector of A.
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Example

Show that 7 is an eigenvalue of matrix A =

[

1 6
5 2

]

and find the

corresponding eigenvectors.

The scalar 7 is an eigenvalue of A if and only if the equation Ax = 7x
has a nontrivial solution.

This is equivalent to Ax − 7x = 0, or (A− 7I )x = 0.

To solve this homogeneous equation, form the matrix

A− 7I =

[

1 6
5 2

]

−

[

7 0
0 7

]

=

[

−6 6
5 −5

]

.

The columns of A− 7I are obviously linearly dependent, so the
original equation has nontrivial solutions.

Thus 7 is an eigenvalue of A.
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Example (Cont’d)

To find the corresponding eigenvectors, use row operations:

[

−6 6 0
5 −5 0

]

−→

[

1 −1 0
0 0 0

]

.

The general solution has the form

[

x1
x2

]

=

[

x2
x2

]

= x2

[

1
1

]

.

Each vector of this form with x2 6= 0 is an eigenvector corresponding
to λ = 7.

George Voutsadakis (LSSU) Linear Algebra August 2017 7 / 66



Eigenvectors and Eigenvalues Eigenvectors and Eigenvalues

Eigenspace Corresponding to an Eigenvalue

Note that in general Ax = λx is equivalent to (A− λI )x = 0.

Thus λ is an eigenvalue of an n × n matrix A if and only if the
equation

(A− λI )x = 0

has a nontrivial solution.

The set of all solutions is just the null space of the matrix A− λI .

So this set is a subspace of Rn and is called the eigenspace of A
corresponding to λ.

The eigenspace consists of the zero vector and all the eigenvectors
corresponding to λ.
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Example

Let A =





4 −1 6
2 1 6
2 −1 8



. An eigenvalue of A is 2. Find a basis for the

corresponding eigenspace.

Form

A− 2I =





4 −1 6
2 1 6
2 −1 8



−





2 0 0
0 2 0
0 0 2



 =





2 −1 6
2 −1 6
2 −1 6



 .

Row reduce the augmented matrix for (A− 2I )x = 0:




2 −1 6 0
2 −1 6 0
2 −1 6 0



 −→





2 −1 6 0
0 0 0 0
0 0 0 0



 .

At this point, it is clear that 2 is indeed an eigenvalue of A because
the equation (A− 2I )x = 0 has free variables.
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Example (Cont’d)

We must have 2x1 − x2 + 6x3 = 0.

This gives x1 =
1
2x2 − 3x3, with x2 and x3 free.

So the general solution is





x1
x2
x3



 = x2





1
2
1
0



+ x3





−3
0
1



 , x2 and x3 free.

The eigenspace is a two-dimensional subspace of R3.

A basis is











1
2
0



 ,





−3
0
1











.
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Eigenvalues of Triangular Matrices

Theorem

The eigenvalues of a triangular matrix are the entries on its main diagonal.

For simplicity, consider the 3× 3 case.
If A is upper triangular, then A− λI has the form

A− λI =





a11 a12 a13
0 a22 a23
0 0 a33



−





λ 0 0
0 λ 0
0 0 λ





=





a11 − λ a12 a13
0 a22 − λ a23
0 0 a33 − λ



 .

The scalar λ is an eigenvalue of A if and only if the equation
(A− λI )x = 0 has a nontrivial solution, that is, if and only if the
equation has a free variable. Because of the zero entries in A− λI ,
(A− λI )x = 0 has a free variable if and only if at least one of the
entries on the diagonal of A− λI is zero. This happens if and only if
λ equals one of the entries a11, a22, a33 in A.
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Example

Let A =





3 6 −8
0 0 6
0 0 2



 and B =





4 0 0
−2 1 0
5 3 4



.

The eigenvalues of A are 3, 0, and 2.

The eigenvalues of B are 4 and 1.
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Eigenvalues and Invertibility

Suppose a matrix A has an eigenvalue of 0.

This happens if and only if the equation

Ax = 0x

has a nontrivial solution.

But this is equivalent to Ax = 0, which has a nontrivial solution if
and only if A is not invertible.

Thus 0 is an eigenvalue of A if and only if A is not invertible.

This fact may be added to the Invertible Matrix Theorem.
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Eigenvectors Corresponding to Distinct Eigenvalues

Theorem

If v1, . . . , v r are eigenvectors that correspond to distinct eigenvalues
λ1, . . . , λr of an n × n matrix A, then the set {v1, . . . , v r} is linearly
independent.

Suppose {v1, . . . , v r} is linearly dependent.

Since v1 is nonzero, we conclude by a previous theorem that one of
the vectors in the set is a linear combination of the preceding vectors.
Let p be the least index such that vp+1 is a linear combination of the
preceding (linearly independent) vectors. Then there exist scalars
c1, . . . , cp such that

c1v1 + · · ·+ cpvp = vp+1.

Multiplying both sides by λp+1, we get

c1λp+1v1 + · · ·+ cpλp+1vp+1 = λp+1vp+1.
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Proof (Cont’d)

Multiplying c1v1 + · · ·+ cpvp = vp+1 by A and using the fact that
Avk = λkvk for each k , we obtain

c1Av1 + · · ·+ cpAvp = Avp+1,

c1λ1v1 + · · ·+ cpλpvp = λp+1vp+1.

Subtracting c1λp+1v1 + · · ·+ cpλp+1vp+1 = λp+1vp+1 from the
equation above, we have

c1(λ1 − λp+1)v1 + · · ·+ cp(λp − λp+1)vp = 0.

Since {v1, . . . , v p} is linearly independent, the weights in the equation
above are all zero. But none of the factors λi − λp+1 are zero,
because the eigenvalues are distinct. Hence ci = 0 for i = 1, . . . , p.

But then we get vp+1 = 0, which is impossible.

Hence {v1, . . . , v r} cannot be linearly dependent and therefore must
be linearly independent.
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Subsection 2

The Characteristic Equation
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Example

Find the eigenvalues of A =

[

2 3
3 −6

]

.

We must find all scalars such that the matrix equation (A− λI )x = 0

has a nontrivial solution.

By the Invertible Matrix Theorem, this problem is equivalent to
finding all λ such that the matrix A− λI is not invertible, where

A− λI =

[

2 3
3 −6

]

−

[

λ 0
0 λ

]

=

[

2− λ 3
3 −6− λ

]

.

By a previous result, this matrix fails to be invertible precisely when
its determinant is zero.

So the eigenvalues of A are the solutions of the equation

det(A− λI ) = det

[

2− λ 3
3 −6− λ

]

= 0.
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Example (Cont’d)

Recall that

det

[

a b

c d

]

= ad − bc .

So

det(A− λI ) =

∣

∣

∣

∣

2− λ 3
3 −6− λ

∣

∣

∣

∣

= (2− λ)(−6− λ)− 3 · 3
= − 12 + 6λ− 2λ+ λ2 − 9
= λ2 + 4λ− 21
= (λ− 3)(λ+ 7).

If det(A− λI ) = 0, then λ = 3 or λ = −7.

So the eigenvalues of A are 3 and −7.
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The Determinant Reviewed

Let A be an n× n matrix;

Let U be any echelon form obtained from A by row replacements and
row interchanges (without scaling).

Let r be the number of such row interchanges.

Then the determinant of A, written as detA, is (−1)r times the
product of the diagonal entries u11, . . . , unn in U.

If A is invertible, then u11, . . . , unn are all pivots (because A ∼ In and
the uii have not been scaled to 1’s).

Otherwise, at least unn is zero, and the product u11 · · · unn is zero.

Thus

detA =

{

(−1)r · (product of pivots of U), if A is invertible,
0, if A is not invertible.
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Example

Compute detA for A =





1 5 0
2 4 −1
0 −2 0



.

The following row reduction uses one row interchange:

A −→





1 5 0
0 −6 −1
0 −2 0



 −→





1 5 0
0 −2 0
0 −6 −1





−→





1 5 0
0 −2 0
0 0 −1



 = U.

So detA equals (−1)1 · (1 · (−2) · (−1)) = − 2.
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The Invertible Matrix Theorem (Revisited)

Theorem (The Invertible Matrix Theorem Cont’d)

Let A be an n × n matrix. Then A is invertible if and only if:

(s) The number 0 is not an eigenvalue of A.

(t) The determinant of A is not zero.

When A is a 3× 3 matrix, |detA| turns out to be the volume of the
parallelepiped determined by the columns a1, a2, a3 of A.

This volume is nonzero if and only if the vectors a1, a2, a3 are linearly
independent, in which case the matrix A is invertible.
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Properties of Determinants

Theorem (Properties of Determinants)

Let A and B be n × n matrices.

(a) A is invertible if and only if detA 6= 0.

(b) detAB = (detA)(detB).

(c) detAT = detA.

(d) If A is triangular, then detA is the product of the entries on the main
diagonal of A.

(e) A row replacement operation on A does not change the determinant.

A row interchange changes the sign of the determinant.

A row scaling also scales the determinant by the same scalar factor.
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The Characteristic Equation

Part (a) of the preceding theorem shows how to determine when a
matrix of the form A− λI is not invertible.

The scalar equation det(A− λI ) = 0 is called the characteristic

equation of A.

By previous work we know the following:

A scalar is an eigenvalue of an n × n matrix A if and only if
satisfies the characteristic equation

det(A− λI ) = 0.
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Example

Find the characteristic equation of A =









5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 0 1









.

We have

det(A− λI ) = det









5− λ −2 6 −1
0 3− λ −8 0
0 0 5− λ 4
0 0 0 1− λ









= (5− λ)(3− λ)(5− λ)(1 − λ).

The characteristic equation is

(5− λ)2(3− λ)(1 − λ) = 0.

Expanding the product, we can also write

λ4 − 14λ3 + 68λ2 − 130λ + 75 = 0.
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The Characteristic Polynomial

It can be shown that if A is an n × n matrix, then det(A− λI ) is a
polynomial of degree n called the characteristic polynomial of A.

An eigenvalue a of A is said to have multiplicity k if (λ− a) occurs k
times as a factor of the characteristic polynomial.

In general, the (algebraic) multiplicity of an eigenvalue is its
multiplicity as a root of the characteristic equation.
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Example

The characteristic polynomial of a 6× 6 matrix is λ6 − 4λ5 − 12λ4.

Find the eigenvalues and their multiplicities.

Factor the polynomial

λ6 − 4λ5 − 12λ4 = λ4(λ2 − 4λ− 12)
= λ4(λ− 6)(λ + 2).

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1) and −2
(multiplicity 1).
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Similarity

If A and B are n × n matrices, then A is similar to B if there is an
invertible matrix P such that

P−1AP = B , or, equivalently, A = PBP−1.

Writing Q for P−1, we have Q−1BQ = A.

So B is also similar to A.

We say simply that A and B are similar.

Changing A into P−1AP is called a similarity transformation.
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Similarity and Characteristic Polynomials

Theorem

If n × n matrices A and B are similar, then they have the same
characteristic polynomial and hence the same eigenvalues (with the same
multiplicities).

If B = P−1AP , then

B − λI = P−1AP − λP−1P = P−1(AP − λP) = P−1(A− λI )P .

Using the multiplicative property of the determinant, we compute

det(B − λI ) = det[P−1(A− λI )P ]
= det(P−1) · det(A− λI ) · det(P).

But det(P−1) · det(P) = det(P−1P) = detI = 1.

So we get det(B − λI ) = det(A− λI ).
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Subsection 3

Diagonalization
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Example: Powers of Diagonal Matrices

Let D =

[

5 0
0 3

]

.

Then D2 =

[

5 0
0 3

] [

5 0
0 3

]

=

[

52 0
0 32

]

.

Also D3 = DD2 =

[

5 0
0 3

] [

52 0
0 32

]

=

[

53 0
0 33

]

In general, Dk =

[

5k 0
0 3k

]

.
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Example

Let A =

[

7 2
−4 1

]

.

Find a formula for Ak , given that A = PDP−1, where

P =

[

1 1
−1 −2

]

and D =

[

5 0
0 3

]

.

The standard formula for the inverse of a 2× 2 matrix yields

P−1 =

[

2 1
−1 −1

]

.

Then, by associativity of matrix multiplication,

A2 = (PDP−1)(PDP−1) = PD(P−1P)DP−1 = PDDP−1

= PD2P−1 =

[

1 1
−1 −2

] [

52 0
0 32

] [

2 1
−1 −1

]

.

Again

A3 = (PDP−1)A2 = (PDP−1)(PD2P−1) = PDD2P−1 = PD3P−1.
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Example (Cont’d)

In general, for k ≥ 1,

Ak = PDkP−1 =

[

1 1
−1 −2

] [

5k 0
0 3k

] [

2 1
−1 −1

]

=

[

5k 3k

−5k −2 · 3k

] [

2 1
−1 −1

]

=

[

2 · 5k − 3k 5k − 3k

−2 · 5k + 2 · 3k −5k + 2 · 3k

]

.
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Diagonalizability

A square matrix A is said to be diagonalizable if A is similar to a
diagonal matrix, that is, if A = PDP−1 for some invertible matrix P

and some diagonal matrix D.

Theorem (The Diagonalization Theorem)

An n × n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors.
In fact, A = PDP−1, with D a diagonal matrix, if and only if the columns
of P are n linearly independent eigenvectors of A. In this case, the
diagonal entries of D are eigenvalues of A that correspond, respectively, to
the eigenvectors in P .

In other words, A is diagonalizable if and only if there are enough
eigenvectors to form a basis of Rn.

We call such a basis an eigenvector basis of Rn.
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Proof of the Diagonalization Theorem

First, observe that if P is any n × n matrix with columns v1, . . . , vn,
and if D is any diagonal matrix with diagonal entries λ1, . . . , λn, then

AP = A[v1 v2 · · · vn] = [Av1 Av2 · · · Avn].

Also

PD = P











λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn











= [λ1v1 λ2v2 · · · λnvn].

Now suppose A is diagonalizable and A = PDP−1. Then
right-multiplying this relation by P , we have AP = PD. In this case,
we get that

[Av1 Av2 · · · Avn] = [λ1v1 λ2v2 · · ·λnvn].
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Proof of the Diagonalization Theorem (Cont’d)

Equating columns, we find that Av1 = λ1v1, Av2 = λ2v2, . . .,
Avn = λnvn. Since P is invertible, its columns v1, . . . , v n must be
linearly independent. Also, since these columns are nonzero, the last
equations show that λ1, . . . , λn are eigenvalues and v1, . . . , vn are
corresponding eigenvectors. This argument proves the “only if” parts
of the first and second statements, along with the third statement, of
the theorem.

Finally, given any n eigenvectors v1, . . . , vn, use them to construct
the columns of P and use corresponding eigenvalues λ1, . . . , λn to
construct D. Then, we get

AP = A[v1 · · · vn] = [Av1 · · ·Avn] = [λ1v1 · · · λnvn] = PD.

This is true without any condition on the eigenvectors. If, in fact,
the eigenvectors are linearly independent, then P is invertible (by the
Invertible Matrix Theorem), and AP = PD implies that A = PDP−1.
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The Diagonalization Process

Diagonalize the the matrix A =





1 3 3
−3 −5 −3
3 3 1



, if possible.

That is, find an invertible matrix P and a diagonal matrix D such
that A = PDP−1.

Step 1 (Find the eigenvalues of A): We have

0 = det(A− λI ) = det





1− λ 3 3
−3 −5− λ −3
3 3 1− λ





= (1− λ)(−5− λ)(1− λ)− 27− 27
− 9(−5− λ) + 9(1 − λ) + 9(1 − λ)

= − λ3 + 2λ2 − λ− 5λ2 + 10λ− 5− 27− 27
+ 45 + 9λ+ 9− 9λ+ 9− 9λ

= − λ3 − 3λ2 + 4

George Voutsadakis (LSSU) Linear Algebra August 2017 36 / 66



Eigenvectors and Eigenvalues Diagonalization

The Diagonalization Process (Step 1 Cont’d)

−λ3 − 3λ2 + 4 = − λ3 + λ2 − 4λ2 + 4
= − λ2(λ− 1)− 4(λ− 1)(λ + 1)
= (λ− 1)(−λ2 − 4λ− 4)
= − (λ− 1)(λ+ 2)2.

The eigenvalues are λ = 1 and λ = −2.
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The Diagonalization Process (Step 2)

Step 2 (Find three linearly independent eigenvectors of A): Three
vectors are needed because A is a 3× 3 matrix. This is the critical
step. If it fails, then the theorem says that A cannot be diagonalized.

Basis for λ = 1:

(A− I )v = 0 ⇒





0 3 3
−3 −6 −3
3 3 0









x1
x2
x3



 = 0





0 3 3 0
−3 −6 −3 0
3 3 0 0



 −→





1 1 0 0
1 2 1 0
0 1 1 0



 −→





1 1 0 0
0 1 1 0
0 0 0 0





{

x1 + x2 = 0
x2 + x3 = 0

⇒





x1
x2
x3



 = x3





1
−1
1



 .

So v 1 =





1
−1
1



 is a basis.
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The Diagonalization Process (Step 2 Cont’d)

Basis for λ = −2:

(A+ 2I )v = 0 ⇒





3 3 3
−3 −3 −3
3 3 3









x1
x2
x3



 = 0





3 3 3 0
−3 −3 −3 0
3 3 3 0



 −→





1 1 1 0
0 0 0 0
0 0 0 0





x1 = −x2 − x3 ⇒





x1
x2
x3



 = x2





−1
1
0



+ x3





−1
0
1



 .

So v 2 =





−1
1
0



, v 3 =





−1
0
1



 form a basis.

We can check that {v1, v2, v3} is a linearly independent set.
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Eigenvectors and Eigenvalues Diagonalization

The Diagonalization Process (Steps 3 and 4)

Step 3 (Construct P from the vectors in Step 2): The order of the
vectors is unimportant. Using the order chosen in Step 2, form

P = [v1 v2 v3] =





1 −1 −1
−1 1 0
1 0 1



 .

Step 4 (Construct D from the corresponding eigenvalues): In this
step, it is essential that the order of the eigenvalues matches the
order chosen for the columns of P . Use the eigenvalue λ = −2 twice,
once for each of the eigenvectors corresponding to λ = −2:

D =





1 0 0
0 −2 0
0 0 −2



 .
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Eigenvectors and Eigenvalues Diagonalization

The Diagonalization Process (Final Check)

We check that P and D really work.

To avoid computing P−1, simply verify that AP = PD.

AP =





1 3 3
−3 −5 −3
3 3 1









1 −1 −1
−1 1 0
1 0 1



 =





1 2 2
−1 −2 0
1 0 −2



 ;

PD =





1 −1 −1
−1 1 0
1 0 1









1 0 0
0 −2 0
0 0 −2



 =





1 2 2
−1 −2 0
1 0 −2



 .
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Eigenvectors and Eigenvalues Diagonalization

Example

Diagonalize the matrix A =





2 4 3
−4 −6 −3
3 3 1



, if possible.

The characteristic equation of A is

0 = det(A− λI ) = det





2− λ 4 3
−4 −6− λ −3
3 3 1− λ





= (2− λ)(−6− λ)(1− λ)− 36 − 36
+ 9(6 + λ) + 9(2− λ) + 16(1− λ)

= − λ3 − 4λ2 + 12λ + λ2 + 4λ− 12− 36− 36
+ 54 + 9λ+ 18 − 9λ+ 16− 16λ

= − λ3 − 3λ2 + 4
previous
= · · ·
= − (λ− 1)(λ + 2)2.

The eigenvalues are λ = 1 and λ = −2.
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Eigenvectors and Eigenvalues Diagonalization

Example (Cont’d)

Consider λ = 1:

We have

(A− I )v = 0 ⇒





1 4 3
−4 −7 −3
3 3 0









x1
x2
x3



 = 0





1 4 3 0
−4 −7 −3 0
3 3 0 0



 −→





1 4 3 0
0 9 9 0
0 −9 −9 0



 −→





1 4 3 0
0 1 1 0
0 0 0 0





{

x1 + 4x2 + 3x3 = 0
x2 + x3 = 0

⇒





x1
x2
x3



 = x3





1
−1
1



 .

So a basis for λ = 1 consists of v1 =





1
−1
1



.
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Eigenvectors and Eigenvalues Diagonalization

Example (Cont’d)

Consider λ = −2:

We have

(A+ 2I )v = 0 ⇒





4 4 3
−4 −4 −3
3 3 3









x1
x2
x3



 = 0





4 4 3 0
−4 −4 −3 0
3 3 3 0



 −→





1 1 1 0
−4 −4 3 0
0 0 0 0



 −→





1 1 1 0
0 0 −1 0
0 0 0 0





{

x1 + x2 + x3 = 0
−x3 = 0

⇒





x1
x2
x3



 = x2





−1
1
0



 .

So a basis for λ = 1 consists of v2 =





−1
1
0



.
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Eigenvectors and Eigenvalues Diagonalization

Example (Cont’d)

There are no other eigenvalues, and every eigenvector of A is a
multiple of either v1 or v2.

Hence it is impossible to construct a basis of R3 using eigenvectors of
A.

So by the theorem, A is not diagonalizable.
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Eigenvectors and Eigenvalues Diagonalization

Sufficient Condition for Diagonalizability

Theorem

An n × n matrix with n distinct eigenvalues is diagonalizable.

Let v1, . . . , vn be eigenvectors corresponding to the n distinct
eigenvalues of a matrix A.

Then {v1, . . . , v n} is linearly independent, by a previous theorem.

Hence A is diagonalizable.

It is not necessary for an n × n matrix to have n distinct eigenvalues
in order to be diagonalizable.

The 3× 3 matrix in a previous example was diagonalizable even
though it has only two distinct eigenvalues.
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Eigenvectors and Eigenvalues Diagonalization

Example

Determine if the matrix A =





5 −8 1
0 0 7
0 0 −2



 is diagonalizable.

Since the matrix is triangular, its eigenvalues are 5, 0 and −2.

Since A is a 3× 3 matrix with three distinct eigenvalues, A is
diagonalizable.
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Eigenvectors and Eigenvalues Diagonalization

Matrices Whose Eigenvalues Are Not Distinct

Theorem

Let A be an n × n matrix whose distinct eigenvalues are λ1, . . . , λp.

(a) For 1 ≤ k ≤ p, the dimension of the eigenspace for λk is less than or
equal to the multiplicity of the eigenvalue λk .

(b) The matrix A is diagonalizable if and only if the sum of the dimensions
of the eigenspaces equals n, and this happens if and only if:

(i) the characteristic polynomial factors completely into linear factors;
(ii) the dimension of the eigenspace for each k equals the multiplicity of k .

(c) If A is diagonalizable and Bk is a basis for the eigenspace
corresponding to λk for each k , then the total collection of vectors in
the sets B1, . . . ,Bp forms an eigenvector basis for Rn.
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Eigenvectors and Eigenvalues Diagonalization

Example

Diagonalize the matrix A =









5 0 0 0
0 5 0 0
1 4 −3 0

−1 −2 0 −3









, if possible.

Since A is a triangular matrix, the eigenvalues are 5 and −3, each
with multiplicity 2.

We find a basis for each eigenspace.
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Eigenvectors and Eigenvalues Diagonalization

Example (Cont’d)

For λ = 5:

(A− 5I )v = 0 ⇒









0 0 0 0
0 0 0 0
1 4 −8 0
1 −2 0 −8

















x1
x2
x3
x4









= 0









0 0 0 0 0
0 0 0 0 0
1 4 −8 0 0
1 −2 0 −8 0









−→









1 2 0 8 0
0 1 −4 −4 0
0 0 0 0 0
0 0 0 0 0

















x1
x2
x3
x4









=









−8x3 − 16x4
4x3 + 4x4

x3
x4









= x3









−8
4
1
0









+ x4









−16
4
0
1









.
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Eigenvectors and Eigenvalues Diagonalization

Example (Cont’d)

For λ = −3:

(A+ 3I )v = 0 ⇒









8 0 0 0
0 8 0 0
1 4 0 0

−1 −2 0 0

















x1
x2
x3
x4









= 0









8 0 0 0 0
0 8 0 0 0
1 4 0 0 0

−1 −2 0 0 0









−→









1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

















x1
x2
x3
x4









=









0
0
x3
x4









= x3









0
0
1
0









+ x4









0
0
0
1









.
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Eigenvectors and Eigenvalues Diagonalization

Example (Cont’d)

The set {v1, . . . , v4} =























−8
4
1
0









,









−16
4
0
1









,









0
0
1
0









,









0
0
0
1























is

linearly independent, by the preceding theorem.

So the matrix P = [v1 v2 v3 v4] is invertible, and A = PDP−1, where

P =









−8 −16 0 0
4 4 0 0
1 0 1 0
0 1 0 1









and D =









5 0 0 0
0 5 0 0
0 0 −3 0
0 0 0 −3









.
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Subsection 4

Eigenvectors and Linear Transformations
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Linear Transformations and Bases

Let V be an n-dimensional vector space.

Let W be an m-dimensional vector space.

Let T be any linear transformation from V to W .

To associate a matrix with T , choose (ordered) bases B and C for V
and W , respectively.

Given any x in V , the coordinate vector [x ]B is in Rn and the
coordinate vector of its image, [T (x)]C , is in R

m:
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

The Matrix of a Linear Transformation

We establish a connection between [x ]B and [T (x)]C .

Let {b1, . . . ,bn} be the basis B for V .

If x = r1b1 + · · · + rnbn, then [x ]B =







r1
...
rn






.

Moreover, since T is linear,

T (x) = T (r1b1 + · · ·+ rnbn) = r1T (b1) + · · ·+ rnT (bn).

Since the coordinate mapping from W to Rm is linear we get

[T (x)]C = r1[T (b1)]C + · · ·+ rn[T (bn)]c .
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

The Matrix of a Linear Transformation (Cont’d)

Since C-coordinate vectors are in Rm, the last vector equation can be
written as a matrix equation, namely,

[T (x)]C = M[x ]B,

where
M =

[

[T (b1)]C [T (b2)]C · · · [T (bn)]C
]

.

The matrix M is a matrix representation of T , called the matrix for

T relative to the bases B and C.

x
T ✲ T (x)

[x ]B

❄ Multiplication

by M
✲ [T (x)]C

❄
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Example

Suppose B = {b1,b2} is a basis for V and C = {c1, c2, c3} is a basis
for W .

Let T : V → W be a linear transformation with the property that

T (b1) = 3c1 − 2c2 + 5c3 and T (b2) = 4c1 + 7c2 − c3.

Find the matrix M for T relative to B and C.

The C-coordinate vectors of the images of b1 and b2 are

[T (b1)]C =





3
−2
5



 and [T (b2)]C =





4
7

−1



 .

Hence

M =





3 4
−2 7
5 −1



 .
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Linear Transformations from V into V

In case W is the same as V and the basis C is the same as B, the
matrix M is called the matrix for T relative to B, or simply the
B-matrix for T , and is denoted by [T ]B:

x
T ✲ T (x)

[x ]B

❄ Multiplication

by [T ]B
✲ [T (x)]B

❄

The B-matrix for T : V → V satisfies

[T (x)]B = [T ]B[x ]B, for all x in V .
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Example

The mapping T : P2 → P2 defined by

T (a0 + a1t + a2t
2) = a1 + 2a2t

is a linear transformation.
(a) Find the B-matrix for T , where B is the basis {1, t, t2}.
(b) Verify that [T (p)]B = [T ]B[p]B for each p in P2.

(a) Compute the images of the basis vectors:

T (1) = 0, T (t) = 1, T (t2) = 2t.

Then write the B-coordinate vectors of T (1), T (t) and T (t2) (which
are found by inspection in this example): and place them together as
the B-matrix for T :

[T (1)]
B
=





0
0
0



 , [T (t)]
B
=





1
0
0



 ,
[

T (t2)
]

B
=





0
2
0



 .
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Example (Cont’d)

We place the coordinate vectors together to form
[T ]

B
= [[T (1)]B [T (t)]B [T (t2)]B]:

[T ]
B
=





0 1 0
0 0 2
0 0 0



 .

(b) For a general p(t) = a0 + a1t + a2t
2,

[T (p)]B = [a1 + 2a2t]B =





a1
2a2
0





=





0 1 0
0 0 2
0 0 0









a0
a1
a2



 = [T ]B[p]B.
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Diagonal Matrix Representation

Theorem (Diagonal Matrix Representation)

Suppose A = PDP−1, where D is a diagonal n × n matrix. If B is the
basis for Rn formed from the columns of P , then D is the B-matrix for the
transformation x 7→ Ax.

Denote the columns of P by b1, . . . ,bn, so that B = {b1, . . . ,bn}
and P = [b1 · · · bn].

In this case, P is the change-of-coordinates matrix PB where

P [x ]B = x and [x ]B = P−1x .
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Diagonal Matrix Representation (Cont’d)

If T (x) = Ax for x in Rn, then

[T ]B = [[T (b1)]B · · · [T (bn)]B]
= [[Ab1]B · · · [Abn]B]
= [P−1Ab1 · · · P−1Abn]
= P−1A[b1 · · · bn]
= P−1AP .

Since A = PDP−1, we have [T ]B = P−1AP = D.
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Example

Define T : R2 → R
2 by T (x) = Ax , where A =

[

7 2
−4 1

]

.

Find a basis B for R2 with the property that the B-matrix for T is a
diagonal matrix.

We diagonalize A by finding its eigenvalues and the corresponding
eigenvectors.

|A− λI | =

∣

∣

∣

∣

7− λ 2
−4 1− λ

∣

∣

∣

∣

= (7− λ)(1 − λ) + 8

= λ2 − 8λ+ 15 = (λ− 3)(λ− 5).

For λ = 3:

(A− 3I )v = 0 ⇒

[

4 2
−4 −2

] [

x1
x2

]

= 0
[

4 2 0
−4 −2 0

]

−→

[

1 1
2 0

0 0 0

]

⇒ v1 =

[

−1
2
1

]

.

George Voutsadakis (LSSU) Linear Algebra August 2017 63 / 66



Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Example

For λ = 5:

(A − 5I )v = 0 ⇒

[

2 2
−4 −4

] [

x1
x2

]

= 0
[

2 2 0
−4 −4 0

]

−→

[

1 1 0
0 0 0

]

⇒ v2 =

[

−1
1

]

.

So we get A = PDP−1, with P =

[

−1
2 −1
1 1

]

and D =

[

3 0
0 5

]

.

Since the columns of P are eigenvectors of A, by the preceding
theorem, D is the B-matrix for T when B = {v 1, v2}.

The mappings x 7→ Ax and u 7→ Du describe the same linear
transformation, relative to different bases.
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Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Similarity of Matrix Representations

If A is similar to a matrix C , with A = PCP−1, then C = P−1AP is
the B-matrix for the transformation x 7→ Ax when the basis B is
formed from the columns of P .

x
Multiplication

by A
✲ Ax

xB

❄ Multiplication

by C
✲ [Ax]B

✻

Conversely, if T : Rn → R
n is defined by T (x) = Ax , and if B is any

basis for Rn, then the B-matrix for T is similar to A.

Thus, the set of all matrices similar to a matrix A coincides with the
set of all matrix representations of the transformation x 7→ Ax.

George Voutsadakis (LSSU) Linear Algebra August 2017 65 / 66



Eigenvectors and Eigenvalues Eigenvectors and Linear Transformations

Example

Let A =

[

4 −9
4 −8

]

, b1 =

[

3
2

]

, b2 =

[

2
1

]

.

The characteristic polynomial of A is (λ+ 2)2, but the eigenspace for
the eigenvalue −2 is only one-dimensional; so A is not diagonalizable.

However, the basis B = {b1,b2} has the property that the B-matrix
C for the transformation x 7→ Ax is a triangular matrix called the
Jordan form of A. Find this B-matrix C .

If P = [b1 b2], then the B-matrix is C = P−1AP .

Compute

AP =

[

4 −9
4 −8

] [

3 2
2 1

]

=

[

−6 −1
−4 0

]

C = P−1AP =

[

−1 2
2 −3

] [

−6 −1
−4 0

]

=

[

−2 1
0 −2

]

.
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