Introduction to Linear Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

LSSU Math 305

(1) Eigenvectors and Eigenvalues

- Eigenvectors and Eigenvalues
- The Characteristic Equation
- Diagonalization
- Eigenvectors and Linear Transformations

Subsection 1

Eigenvectors and Eigenvalues

Example

- Let $A=\left[\begin{array}{rr}3 & -2 \\ 1 & 0\end{array}\right], \boldsymbol{u}=\left[\begin{array}{r}-1 \\ 1\end{array}\right], \boldsymbol{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
- The images of \boldsymbol{u} and \boldsymbol{v} under multiplication by A are shown in the figure

- In fact, $A \boldsymbol{v}$ is just $2 \boldsymbol{v}$.
- So A only "stretches", or dilates, \boldsymbol{v}.

Eigenvectors and Eigenvalues

Definition

An eigenvector of an $n \times n$ matrix A is a nonzero vector \boldsymbol{x} such that $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution \boldsymbol{x} of $A \boldsymbol{x}=\lambda \boldsymbol{x}$; such an \boldsymbol{x} is called an eigenvector corresponding to λ.

Example: Let $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right], \boldsymbol{u}=\left[\begin{array}{r}6 \\ -5\end{array}\right], \boldsymbol{v}=\left[\begin{array}{r}3 \\ -2\end{array}\right]$.
Are \boldsymbol{u} and \boldsymbol{v} eigenvectors of A ?

$$
\begin{aligned}
& A \boldsymbol{u}=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{r}
6 \\
-5
\end{array}\right]=\left[\begin{array}{r}
-24 \\
20
\end{array}\right]=-4\left[\begin{array}{r}
6 \\
-5
\end{array}\right]=-4 \boldsymbol{u} \\
& A \boldsymbol{v}=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{r}
3 \\
-2
\end{array}\right]=\left[\begin{array}{r}
-9 \\
11
\end{array}\right] \neq \lambda\left[\begin{array}{r}
3 \\
-2
\end{array}\right] .
\end{aligned}
$$

Thus \boldsymbol{u} is an eigenvector corresponding to an eigenvalue -4 , but \boldsymbol{v} is not an eigenvector of A.

Example

- Show that 7 is an eigenvalue of matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and find the corresponding eigenvectors.
- The scalar 7 is an eigenvalue of A if and only if the equation $A \boldsymbol{x}=7 \boldsymbol{x}$ has a nontrivial solution.

This is equivalent to $A \boldsymbol{x}-7 \boldsymbol{x}=\mathbf{0}$, or $(A-7 I) \boldsymbol{x}=\mathbf{0}$.
To solve this homogeneous equation, form the matrix

$$
A-7 I=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]-\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]=\left[\begin{array}{rr}
-6 & 6 \\
5 & -5
\end{array}\right]
$$

The columns of $A-7 I$ are obviously linearly dependent, so the original equation has nontrivial solutions.
Thus 7 is an eigenvalue of A.

Example (Cont'd)

- To find the corresponding eigenvectors, use row operations:

$$
\left[\begin{array}{rr|r}
-6 & 6 & 0 \\
5 & -5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The general solution has the form $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Each vector of this form with $x_{2} \neq 0$ is an eigenvector corresponding to $\lambda=7$.

Eigenspace Corresponding to an Eigenvalue

- Note that in general $\boldsymbol{A x}=\lambda \boldsymbol{x}$ is equivalent to $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$.
- Thus λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$
(A-\lambda I) \boldsymbol{x}=\mathbf{0}
$$

has a nontrivial solution.

- The set of all solutions is just the null space of the matrix $A-\lambda /$.
- So this set is a subspace of \mathbb{R}^{n} and is called the eigenspace of A corresponding to λ.
- The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ.

Example

- Let $A=\left[\begin{array}{rrr}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$. An eigenvalue of A is 2 . Find a basis for the corresponding eigenspace.
- Form

$$
A-2 I=\left[\begin{array}{rrr}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right]
$$

Row reduce the augmented matrix for $(A-2 I) \boldsymbol{x}=\mathbf{0}$:

$$
\left[\begin{array}{rrr|r}
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
2 & -1 & 6 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

At this point, it is clear that 2 is indeed an eigenvalue of A because the equation $(A-2 I) \boldsymbol{x}=\mathbf{0}$ has free variables.

Example (Cont'd)

- We must have $2 x_{1}-x_{2}+6 x_{3}=0$.

This gives $x_{1}=\frac{1}{2} x_{2}-3 x_{3}$, with x_{2} and x_{3} free.
So the general solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right], x_{2} \text { and } x_{3} \text { free. }
$$

The eigenspace is a two-dimensional subspace of \mathbb{R}^{3}.
A basis is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}-3 \\ 0 \\ 1\end{array}\right]\right\}$.

Eigenvalues of Triangular Matrices

Theorem

The eigenvalues of a triangular matrix are the entries on its main diagonal.

- For simplicity, consider the 3×3 case.

If A is upper triangular, then $A-\lambda /$ has the form

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
0 & a_{22}-\lambda & a_{23} \\
0 & 0 & a_{33}-\lambda
\end{array}\right] .
\end{aligned}
$$

The scalar λ is an eigenvalue of A if and only if the equation $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ has a nontrivial solution, that is, if and only if the equation has a free variable. Because of the zero entries in $A-\lambda I$, $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ has a free variable if and only if at least one of the entries on the diagonal of $A-\lambda /$ is zero. This happens if and only if λ equals one of the entries a_{11}, a_{22}, a_{33} in A.

Example

- Let $A=\left[\begin{array}{rrr}3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrr}4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4\end{array}\right]$.
- The eigenvalues of A are 3,0 , and 2 .
- The eigenvalues of B are 4 and 1 .

Eigenvalues and Invertibility

- Suppose a matrix A has an eigenvalue of 0 .
- This happens if and only if the equation

$$
A x=0 x
$$

has a nontrivial solution.

- But this is equivalent to $A \boldsymbol{x}=\mathbf{0}$, which has a nontrivial solution if and only if A is not invertible.
- Thus 0 is an eigenvalue of A if and only if A is not invertible.
- This fact may be added to the Invertible Matrix Theorem.

Eigenvectors Corresponding to Distinct Eigenvalues

Theorem

If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{r}}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right\}$ is linearly independent.

- Suppose $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right\}$ is linearly dependent. Since \boldsymbol{v}_{1} is nonzero, we conclude by a previous theorem that one of the vectors in the set is a linear combination of the preceding vectors. Let p be the least index such that \boldsymbol{v}_{p+1} is a linear combination of the preceding (linearly independent) vectors. Then there exist scalars c_{1}, \ldots, c_{p} such that

$$
c_{1} \boldsymbol{v}_{1}+\cdots+c_{p} \boldsymbol{v}_{p}=\boldsymbol{v}_{p+1}
$$

Multiplying both sides by λ_{p+1}, we get

$$
c_{1} \lambda_{p+1} \boldsymbol{v}_{1}+\cdots+c_{p} \lambda_{p+1} \boldsymbol{v}_{p+1}=\lambda_{p+1} \boldsymbol{v}_{p+1}
$$

Proof (Cont'd)

- Multiplying $c_{1} \boldsymbol{v}_{1}+\cdots+c_{p} \boldsymbol{v}_{p}=\boldsymbol{v}_{p+1}$ by A and using the fact that $A \boldsymbol{v}_{k}=\lambda_{k} \boldsymbol{v}_{k}$ for each k, we obtain

$$
\begin{aligned}
c_{1} A \boldsymbol{v}_{1}+\cdots+c_{p} A \boldsymbol{v}_{p} & =A \boldsymbol{v}_{p+1} \\
c_{1} \lambda_{1} \boldsymbol{v}_{1}+\cdots+c_{p} \lambda_{p} \boldsymbol{v}_{p} & =\lambda_{p+1} \boldsymbol{v}_{p+1}
\end{aligned}
$$

Subtracting $c_{1} \lambda_{p+1} \boldsymbol{v}_{1}+\cdots+c_{p} \lambda_{p+1} \boldsymbol{v}_{p+1}=\lambda_{p+1} \boldsymbol{v}_{p+1}$ from the equation above, we have

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \boldsymbol{v}_{1}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \boldsymbol{v}_{p}=\mathbf{0}
$$

Since $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}\right\}$ is linearly independent, the weights in the equation above are all zero. But none of the factors $\lambda_{i}-\lambda_{p+1}$ are zero, because the eigenvalues are distinct. Hence $c_{i}=0$ for $i=1, \ldots, p$.
But then we get $\boldsymbol{v}_{p+1}=\mathbf{0}$, which is impossible.
Hence $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right\}$ cannot be linearly dependent and therefore must be linearly independent.

Subsection 2

The Characteristic Equation

Example

- Find the eigenvalues of $A=\left[\begin{array}{rr}2 & 3 \\ 3 & -6\end{array}\right]$.
- We must find all scalars such that the matrix equation $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ has a nontrivial solution.
By the Invertible Matrix Theorem, this problem is equivalent to finding all λ such that the matrix $A-\lambda /$ is not invertible, where

$$
A-\lambda I=\left[\begin{array}{rr}
2 & 3 \\
3 & -6
\end{array}\right]-\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right]
$$

By a previous result, this matrix fails to be invertible precisely when its determinant is zero.
So the eigenvalues of A are the solutions of the equation

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right]=0
$$

Example (Cont'd)

- Recall that

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

So

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right| \\
& =(2-\lambda)(-6-\lambda)-3 \cdot 3 \\
& =-12+6 \lambda-2 \lambda+\lambda^{2}-9 \\
& =\lambda^{2}+4 \lambda-21 \\
& =(\lambda-3)(\lambda+7) .
\end{aligned}
$$

If $\operatorname{det}(A-\lambda I)=0$, then $\lambda=3$ or $\lambda=-7$.
So the eigenvalues of A are 3 and -7 .

The Determinant Reviewed

- Let A be an $n \times n$ matrix;
- Let U be any echelon form obtained from A by row replacements and row interchanges (without scaling).
- Let r be the number of such row interchanges.
- Then the determinant of A, written as $\operatorname{det} A$, is $(-1)^{r}$ times the product of the diagonal entries $u_{11}, \ldots, u_{n n}$ in U.
- If A is invertible, then $u_{11}, \ldots, u_{n n}$ are all pivots (because $A \sim I_{n}$ and the $u_{i i}$ have not been scaled to 1 's).
- Otherwise, at least $u_{n n}$ is zero, and the product $u_{11} \cdots u_{n n}$ is zero.
- Thus

$$
\operatorname{det} A= \begin{cases}(-1)^{r} \cdot(\text { product of pivots of } U), & \text { if } A \text { is invertible, } \\ 0, & \text { if } A \text { is not invertible }\end{cases}
$$

Example

- Compute $\operatorname{det} A$ for $A=\left[\begin{array}{rrr}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.
- The following row reduction uses one row interchange:

$$
A \longrightarrow\left[\begin{array}{rrr}
1 & 5 & 0 \\
0 & -6 & -1 \\
0 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 5 & 0 \\
0 & -2 & 0 \\
0 & -6 & -1
\end{array}\right]
$$

So $\operatorname{det} A$ equals $(-1)^{1} \cdot(1 \cdot(-2) \cdot(-1))=-2$.

The Invertible Matrix Theorem (Revisited)

Theorem (The Invertible Matrix Theorem Cont'd)

Let A be an $n \times n$ matrix. Then A is invertible if and only if:
(s) The number 0 is not an eigenvalue of A.
(t$)$ The determinant of A is not zero.

- When A is a 3×3 matrix, $|\operatorname{det} A|$ turns out to be the volume of the parallelepiped determined by the columns $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$ of A.
This volume is nonzero if and only if the vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$ are linearly independent, in which case the matrix A is invertible.

Properties of Determinants

Theorem (Properties of Determinants)

Let A and B be $n \times n$ matrices.
(a) A is invertible if and only if $\operatorname{det} A \neq 0$.
(b) $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.
(c) $\operatorname{det} A^{T}=\operatorname{det} A$.
(d) If A is triangular, then $\operatorname{det} A$ is the product of the entries on the main diagonal of A.
(e) A row replacement operation on A does not change the determinant.

A row interchange changes the sign of the determinant.
A row scaling also scales the determinant by the same scalar factor.

The Characteristic Equation

- Part (a) of the preceding theorem shows how to determine when a matrix of the form $A-\lambda /$ is not invertible.
- The scalar equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.
- By previous work we know the following:

A scalar is an eigenvalue of an $n \times n$ matrix A if and only if satisfies the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

Example

- Find the characteristic equation of $A=\left[\begin{array}{rrrr}5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cccc}
5-\lambda & -2 & 6 & -1 \\
0 & 3-\lambda & -8 & 0 \\
0 & 0 & 5-\lambda & 4 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right] \\
& =(5-\lambda)(3-\lambda)(5-\lambda)(1-\lambda) .
\end{aligned}
$$

The characteristic equation is

$$
(5-\lambda)^{2}(3-\lambda)(1-\lambda)=0
$$

Expanding the product, we can also write

$$
\lambda^{4}-14 \lambda^{3}+68 \lambda^{2}-130 \lambda+75=0
$$

The Characteristic Polynomial

- It can be shown that if A is an $n \times n$ matrix, then $\operatorname{det}(A-\lambda I)$ is a polynomial of degree n called the characteristic polynomial of A.
- An eigenvalue a of A is said to have multiplicity k if $(\lambda-a)$ occurs k times as a factor of the characteristic polynomial.
- In general, the (algebraic) multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation.

Example

- The characteristic polynomial of a 6×6 matrix is $\lambda^{6}-4 \lambda^{5}-12 \lambda^{4}$. Find the eigenvalues and their multiplicities.
- Factor the polynomial

$$
\begin{aligned}
\lambda^{6}-4 \lambda^{5}-12 \lambda^{4} & =\lambda^{4}\left(\lambda^{2}-4 \lambda-12\right) \\
& =\lambda^{4}(\lambda-6)(\lambda+2)
\end{aligned}
$$

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1) and -2 (multiplicity 1).

Similarity

- If A and B are $n \times n$ matrices, then A is similar to B if there is an invertible matrix P such that

$$
P^{-1} A P=B, \quad \text { or, equivalently, } \quad A=P B P^{-1} .
$$

- Writing Q for P^{-1}, we have $Q^{-1} B Q=A$.
- So B is also similar to A.
- We say simply that A and B are similar.
- Changing A into $P^{-1} A P$ is called a similarity transformation.

Similarity and Characteristic Polynomials

Theorem

If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

- If $B=P^{-1} A P$, then

$$
B-\lambda I=P^{-1} A P-\lambda P^{-1} P=P^{-1}(A P-\lambda P)=P^{-1}(A-\lambda I) P
$$

Using the multiplicative property of the determinant, we compute

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left[P^{-1}(A-\lambda I) P\right] \\
& =\operatorname{det}\left(P^{-1}\right) \cdot \operatorname{det}(A-\lambda I) \cdot \operatorname{det}(P)
\end{aligned}
$$

But $\operatorname{det}\left(P^{-1}\right) \cdot \operatorname{det}(P)=\operatorname{det}\left(P^{-1} P\right)=\operatorname{det} I=1$.
So we get $\operatorname{det}(B-\lambda I)=\operatorname{det}(A-\lambda I)$.

Subsection 3

Diagonalization

Example: Powers of Diagonal Matrices

- Let $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.
- Then $D^{2}=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}5^{2} & 0 \\ 0 & 3^{2}\end{array}\right]$.
- Also $D^{3}=D D^{2}=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}5^{2} & 0 \\ 0 & 3^{2}\end{array}\right]=\left[\begin{array}{cc}5^{3} & 0 \\ 0 & 3^{3}\end{array}\right]$
- In general, $D^{k}=\left[\begin{array}{cc}5^{k} & 0 \\ 0 & 3^{k}\end{array}\right]$.

Example

- Let $A=\left[\begin{array}{rr}7 & 2 \\ -4 & 1\end{array}\right]$.

Find a formula for A^{k}, given that $A=P D P^{-1}$, where

$$
P=\left[\begin{array}{rr}
1 & 1 \\
-1 & -2
\end{array}\right] \text { and } D=\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right]
$$

- The standard formula for the inverse of a 2×2 matrix yields

$$
P^{-1}=\left[\begin{array}{rr}
2 & 1 \\
-1 & -1
\end{array}\right]
$$

- Then, by associativity of matrix multiplication,

$$
\begin{aligned}
A^{2} & =\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D\left(P^{-1} P\right) D P^{-1}=P D D P^{-1} \\
& =P D^{2} P^{-1}=\left[\begin{array}{rr}
1 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{cc}
5^{2} & 0 \\
0 & 3^{2}
\end{array}\right]\left[\begin{array}{rr}
2 & 1 \\
-1 & -1
\end{array}\right] .
\end{aligned}
$$

- Again

$$
A^{3}=\left(P D P^{-1}\right) A^{2}=\left(P D P^{-1}\right)\left(P D^{2} P^{-1}\right)=P D D^{2} P^{-1}=P D^{3} P^{-1}
$$

Example (Cont'd)

- In general, for $k \geq 1$,

$$
\begin{aligned}
A^{k} & =P D^{k} P^{-1}=\left[\begin{array}{rr}
1 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{cc}
5^{k} & 0 \\
0 & 3^{k}
\end{array}\right]\left[\begin{array}{rr}
2 & 1 \\
-1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
5^{k} & 3^{k} \\
-5^{k} & -2 \cdot 3^{k}
\end{array}\right]\left[\begin{array}{rr}
2 & 1 \\
-1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 \cdot 5^{k}-3^{k} & 5^{k}-3^{k} \\
-2 \cdot 5^{k}+2 \cdot 3^{k} & -5^{k}+2 \cdot 3^{k}
\end{array}\right] .
\end{aligned}
$$

Diagonalizability

- A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is, if $A=P D P^{-1}$ for some invertible matrix P and some diagonal matrix D.

Theorem (The Diagonalization Theorem)

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
In fact, $A=P D P^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

- In other words, A is diagonalizable if and only if there are enough eigenvectors to form a basis of \mathbb{R}^{n}.
We call such a basis an eigenvector basis of \mathbb{R}^{n}.

Proof of the Diagonalization Theorem

- First, observe that if P is any $n \times n$ matrix with columns $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$, and if D is any diagonal matrix with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$, then

$$
A P=A\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
A \boldsymbol{v}_{1} & A \boldsymbol{v}_{2} & \cdots & A \boldsymbol{v}_{n}
\end{array}\right]
$$

- Also

$$
P D=P\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=\left[\begin{array}{lllll}
\lambda_{1} & \boldsymbol{v}_{1} & \lambda_{2} & \boldsymbol{v}_{2} & \cdots
\end{array} \lambda_{n} \boldsymbol{v}_{n}\right] .
$$

Now suppose A is diagonalizable and $A=P D P^{-1}$. Then right-multiplying this relation by P, we have $A P=P D$. In this case, we get that

$$
\left[\begin{array}{llll}
A \boldsymbol{v}_{1} & A \boldsymbol{v}_{2} & \cdots & A \boldsymbol{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} & \boldsymbol{v}_{1} & \lambda_{2} & \boldsymbol{v}_{2}
\end{array} \cdots \lambda_{n} \boldsymbol{v}_{n}\right] .
$$

Proof of the Diagonalization Theorem (Cont'd)

- Equating columns, we find that $A \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}=\lambda_{2} \boldsymbol{v}_{2}, \ldots$, $A \boldsymbol{v}_{n}=\lambda_{n} \boldsymbol{v}_{n}$. Since P is invertible, its columns $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ must be linearly independent. Also, since these columns are nonzero, the last equations show that $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues and $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ are corresponding eigenvectors. This argument proves the "only if" parts of the first and second statements, along with the third statement, of the theorem.
Finally, given any n eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$, use them to construct the columns of P and use corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ to construct D. Then, we get

$$
A P=A\left[\boldsymbol{v}_{1} \cdots \boldsymbol{v}_{n}\right]=\left[\begin{array}{lll}
A \boldsymbol{v}_{1} & \cdots & A \boldsymbol{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} & \boldsymbol{v}_{1} & \cdots & \lambda_{n} \\
\boldsymbol{v}_{n}
\end{array}\right]=P D .
$$

This is true without any condition on the eigenvectors. If, in fact, the eigenvectors are linearly independent, then P is invertible (by the Invertible Matrix Theorem), and $A P=P D$ implies that $A=P D P^{-1}$.

The Diagonalization Process

- Diagonalize the the matrix $A=\left[\begin{array}{rrr}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$, if possible.

That is, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
Step 1 (Find the eigenvalues of A): We have

$$
\begin{aligned}
0 & =\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{rrr}
1-\lambda & 3 & 3 \\
-3 & -5-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right] \\
& =(1-\lambda)(-5-\lambda)(1-\lambda)-27-27 \\
& =-9(-5-\lambda)+9(1-\lambda)+9(1-\lambda) \\
& =+\lambda^{3}+2 \lambda^{2}-\lambda-5 \lambda^{2}+10 \lambda-5-27-27 \\
& +\lambda^{3}-3 \lambda+9 \lambda^{2}+4
\end{aligned}
$$

The Diagonalization Process (Step 1 Cont'd)

$$
\begin{aligned}
-\lambda^{3}-3 \lambda^{2}+4 & =-\lambda^{3}+\lambda^{2}-4 \lambda^{2}+4 \\
& =-\lambda^{2}(\lambda-1)-4(\lambda-1)(\lambda+1) \\
& =(\lambda-1)\left(-\lambda^{2}-4 \lambda-4\right) \\
& =-(\lambda-1)(\lambda+2)^{2} .
\end{aligned}
$$

The eigenvalues are $\lambda=1$ and $\lambda=-2$.

The Diagonalization Process (Step 2)

Step 2 (Find three linearly independent eigenvectors of A): Three vectors are needed because A is a 3×3 matrix. This is the critical step. If it fails, then the theorem says that A cannot be diagonalized.

- Basis for $\lambda=1$:

$$
\begin{aligned}
& (A-I) \boldsymbol{v}=\mathbf{0} \Rightarrow\left[\begin{array}{rrr}
0 & 3 & 3 \\
-3 & -6 & -3 \\
3 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\mathbf{0} \\
& {\left[\begin{array}{rrr|r}
0 & 3 & 3 & 0 \\
-3 & -6 & -3 & 0 \\
3 & 3 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \left\{\begin{array}{r}
x_{1}+x_{2}=0 \\
x_{2}+x_{3}=0
\end{array} \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] .\right. \\
& \text { So } \boldsymbol{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \text { is a basis. }
\end{aligned}
$$

The Diagonalization Process (Step 2 Cont'd)

Basis for $\lambda=-2$:

$$
\begin{aligned}
& (A+2 I) \boldsymbol{v}=\mathbf{0} \Rightarrow\left[\begin{array}{rrr}
3 & 3 & 3 \\
-3 & -3 & -3 \\
3 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\mathbf{0} \\
& {\left[\begin{array}{rrr|r}
3 & 3 & 3 & 0 \\
-3 & -3 & -3 & 0 \\
3 & 3 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& x_{1}=-x_{2}-x_{3} \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

So $\boldsymbol{v}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ form a basis.
We can check that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is a linearly independent set.

The Diagonalization Process (Steps 3 and 4)

Step 3 (Construct P from the vectors in Step 2): The order of the vectors is unimportant. Using the order chosen in Step 2, form

$$
P=\left[\begin{array}{lll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \mathbf{v}_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Step 4 (Construct D from the corresponding eigenvalues): In this step, it is essential that the order of the eigenvalues matches the order chosen for the columns of P. Use the eigenvalue $\lambda=-2$ twice, once for each of the eigenvectors corresponding to $\lambda=-2$:

$$
D=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

The Diagonalization Process (Final Check)

- We check that P and D really work.
- To avoid computing P^{-1}, simply verify that $A P=P D$.

$$
\begin{aligned}
& A P=\left[\begin{array}{rrr}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 2 & 2 \\
-1 & -2 & 0 \\
1 & 0 & -2
\end{array}\right] ; \\
& P D=\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]=\left[\begin{array}{rrr}
1 & 2 & 2 \\
-1 & -2 & 0 \\
1 & 0 & -2
\end{array}\right] .
\end{aligned}
$$

Example

- Diagonalize the matrix $A=\left[\begin{array}{rrr}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$, if possible.
- The characteristic equation of A is

$$
\begin{aligned}
0 & =\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}
2-\lambda & 4 & 3 \\
-4 & -6-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right] \\
= & (2-\lambda)(-6-\lambda)(1-\lambda)-36-36 \\
& =-9(6+\lambda)+9(2-\lambda)+16(1-\lambda) \\
& -\lambda^{3}-4 \lambda^{2}+12 \lambda+\lambda^{2}+4 \lambda-12-36-36 \\
& =-54+9 \lambda+18-9 \lambda+16-16 \lambda \\
& =-\lambda^{3}-3 \lambda^{2}+4 \\
\text { previous } & \cdots \\
& = \\
& -(\lambda-1)(\lambda+2)^{2} .
\end{aligned}
$$

The eigenvalues are $\lambda=1$ and $\lambda=-2$.

Example (Cont'd)

- Consider $\lambda=1$:

We have

$$
\begin{aligned}
& (A-I) \boldsymbol{v}=\mathbf{0} \Rightarrow\left[\begin{array}{rrr}
1 & 4 & 3 \\
-4 & -7 & -3 \\
3 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\mathbf{0} \\
& {\left[\begin{array}{rrr|r}
1 & 4 & 3 & 0 \\
-4 & -7 & -3 & 0 \\
3 & 3 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 4 & 3 \\
0 & 9 & 9
\end{array}\left|\begin{array}{l}
0 \\
0 \\
0 \\
-9
\end{array}-9\right| \begin{array}{lll|l}
0
\end{array}\right] \rightarrow\left[\left.\begin{array}{lll}
1 & 4 & 3 \\
0 & 1 & 1
\end{array} \right\rvert\, 0\right.} \\
& 0
\end{aligned} 0
$$

Example (Cont'd)

- Consider $\lambda=-2$:

We have

$$
\begin{aligned}
& (A+2 I) \boldsymbol{v}=\mathbf{0} \Rightarrow\left[\begin{array}{rrr}
4 & 4 & 3 \\
-4 & -4 & -3 \\
3 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\mathbf{0} \\
& {\left[\begin{array}{rrr|r}
4 & 4 & 3 & 0 \\
-4 & -4 & -3 & 0 \\
3 & 3 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & 0 \\
-4 & -4 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \left\{\begin{array}{r}
x_{1}+x_{2}+x_{3}=0 \\
-x_{3}=0
\end{array} \Rightarrow\left[\begin{array}{r}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right] .\right. \\
& \text { So a basis for } \lambda=1 \text { consists of } \boldsymbol{v}_{2}=\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right] .
\end{aligned}
$$

Example (Cont'd)

- There are no other eigenvalues, and every eigenvector of A is a multiple of either \boldsymbol{v}_{1} or \boldsymbol{v}_{2}. Hence it is impossible to construct a basis of \boldsymbol{R}^{3} using eigenvectors of A.

So by the theorem, A is not diagonalizable.

Sufficient Condition for Diagonalizability

Theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

- Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ be eigenvectors corresponding to the n distinct eigenvalues of a matrix A.
Then $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ is linearly independent, by a previous theorem. Hence A is diagonalizable.
- It is not necessary for an $n \times n$ matrix to have n distinct eigenvalues in order to be diagonalizable.
The 3×3 matrix in a previous example was diagonalizable even though it has only two distinct eigenvalues.

Example

- Determine if the matrix $A=\left[\begin{array}{rrr}5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2\end{array}\right]$ is diagonalizable.
- Since the matrix is triangular, its eigenvalues are 5, 0 and -2 . Since A is a 3×3 matrix with three distinct eigenvalues, A is diagonalizable.

Matrices Whose Eigenvalues Are Not Distinct

Theorem

Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_{1}, \ldots, \lambda_{p}$.
(a) For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is less than or equal to the multiplicity of the eigenvalue λ_{k}.
(b) The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, and this happens if and only if:
(i) the characteristic polynomial factors completely into linear factors;
(ii) the dimension of the eigenspace for each k equals the multiplicity of k.
(c) If A is diagonalizable and \mathcal{B}_{k} is a basis for the eigenspace corresponding to λ_{k} for each k, then the total collection of vectors in the sets $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ forms an eigenvector basis for \mathbb{R}^{n}.

Example

- Diagonalize the matrix $A=\left[\begin{array}{rrrr}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$, if possible.
- Since A is a triangular matrix, the eigenvalues are 5 and -3 , each with multiplicity 2.
We find a basis for each eigenspace.

Example (Cont'd)

- For $\lambda=5$:

$$
\begin{aligned}
& (A-5 /) \boldsymbol{v}=\mathbf{0} \Rightarrow\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 4 & -8 & 0 \\
1 & -2 & 0 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\mathbf{0} \\
& {\left[\begin{array}{rrrr|r}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 4 & -8 & 0 & 0 \\
1 & -2 & 0 & -8 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 2 & 0 & 8 & 0 \\
0 & 1 & -4 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-8 x_{3}-16 x_{4} \\
4 x_{3}+4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-8 \\
4 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-16 \\
4 \\
0 \\
1
\end{array}\right] .}
\end{aligned}
$$

Example (Cont'd)

- For $\lambda=-3$:

$$
\begin{aligned}
& (A+3 I) \boldsymbol{v}=\mathbf{0} \Rightarrow\left[\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
1 & 4 & 0 & 0 \\
-1 & -2 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\mathbf{0} \\
& {\left[\begin{array}{llll|l}
8 & 0 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 & 0 \\
1 & 4 & 0 & 0 & 0 \\
-1 & -2 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .}
\end{aligned}
$$

Example (Cont'd)

- The set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{4}\right\}=\left\{\left[\begin{array}{r}-8 \\ 4 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-16 \\ 4 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ is
linearly independent, by the preceding theorem.
So the matrix $P=\left[\begin{array}{llll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4}\end{array}\right]$ is invertible, and $A=P D P^{-1}$, where

$$
P=\left[\begin{array}{rrrr}
-8 & -16 & 0 & 0 \\
4 & 4 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{rrrr}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

Subsection 4

Eigenvectors and Linear Transformations

Linear Transformations and Bases

- Let V be an n-dimensional vector space.
- Let W be an m-dimensional vector space.
- Let T be any linear transformation from V to W.
- To associate a matrix with T, choose (ordered) bases \mathcal{B} and \mathcal{C} for V and W, respectively.
- Given any \boldsymbol{x} in V, the coordinate vector $[\boldsymbol{x}]_{\mathcal{B}}$ is in \mathbb{R}^{n} and the coordinate vector of its image, $[T(\boldsymbol{x})]_{\mathcal{C}}$, is in \mathbb{R}^{m} :

The Matrix of a Linear Transformation

- We establish a connection between $[\boldsymbol{x}]_{\mathcal{B}}$ and $[T(\boldsymbol{x})]_{\mathcal{C}}$.
- Let $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\}$ be the basis \mathcal{B} for V.
- If $\boldsymbol{x}=r_{1} \boldsymbol{b}_{1}+\cdots+r_{n} \boldsymbol{b}_{n}$, then $[\boldsymbol{x}]_{\mathcal{B}}=\left[\begin{array}{c}r_{1} \\ \vdots \\ r_{n}\end{array}\right]$.
- Moreover, since T is linear,

$$
T(\boldsymbol{x})=T\left(r_{1} \boldsymbol{b}_{1}+\cdots+r_{n} \boldsymbol{b}_{n}\right)=r_{1} T\left(\boldsymbol{b}_{1}\right)+\cdots+r_{n} T\left(\boldsymbol{b}_{n}\right)
$$

- Since the coordinate mapping from W to \mathbb{R}^{m} is linear we get

$$
[T(\boldsymbol{x})]_{\mathcal{C}}=r_{1}\left[T\left(\boldsymbol{b}_{1}\right)\right]_{\mathcal{C}}+\cdots+r_{n}\left[T\left(\boldsymbol{b}_{n}\right)\right]_{\boldsymbol{c}}
$$

The Matrix of a Linear Transformation (Cont'd)

- Since \mathcal{C}-coordinate vectors are in \mathbb{R}^{m}, the last vector equation can be written as a matrix equation, namely,

$$
[T(\boldsymbol{x})]_{\mathcal{C}}=M[\boldsymbol{x}]_{\mathcal{B}},
$$

where

$$
M=\left[\begin{array}{llll}
{\left[T\left(\boldsymbol{b}_{1}\right)\right]_{\mathcal{C}}} & {\left[\begin{array}{ll}
\left.T\left(\boldsymbol{b}_{2}\right)\right]_{\mathcal{C}} & \cdots
\end{array}\right]\left[\begin{array}{l}
\left.T\left(\boldsymbol{b}_{n}\right)\right]_{\mathcal{C}}
\end{array}\right]}
\end{array}\right.
$$

- The matrix M is a matrix representation of T, called the matrix for T relative to the bases \mathcal{B} and \mathcal{C}.

Example

- Suppose $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right\}$ is a basis for V and $\mathcal{C}=\left\{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right\}$ is a basis for W.
- Let $T: V \rightarrow W$ be a linear transformation with the property that

$$
T\left(\boldsymbol{b}_{1}\right)=3 \boldsymbol{c}_{1}-2 \boldsymbol{c}_{2}+5 \boldsymbol{c}_{3} \quad \text { and } \quad T\left(\boldsymbol{b}_{2}\right)=4 \boldsymbol{c}_{1}+7 \boldsymbol{c}_{2}-\boldsymbol{c}_{3} .
$$

- Find the matrix M for T relative to \mathcal{B} and \mathcal{C}.
- The \mathcal{C}-coordinate vectors of the images of \boldsymbol{b}_{1} and \boldsymbol{b}_{2} are

$$
\left[T\left(\boldsymbol{b}_{1}\right)\right]_{\mathcal{C}}=\left[\begin{array}{r}
3 \\
-2 \\
5
\end{array}\right] \quad \text { and } \quad\left[T\left(\boldsymbol{b}_{2}\right)\right]_{\mathcal{C}}=\left[\begin{array}{r}
4 \\
7 \\
-1
\end{array}\right]
$$

- Hence

$$
M=\left[\begin{array}{rr}
3 & 4 \\
-2 & 7 \\
5 & -1
\end{array}\right]
$$

Linear Transformations from V into V

- In case W is the same as V and the basis \mathcal{C} is the same as \mathcal{B}, the matrix M is called the matrix for T relative to \mathcal{B}, or simply the \mathcal{B}-matrix for T, and is denoted by $[T]_{\mathcal{B}}$:

- The \mathcal{B}-matrix for $T: V \rightarrow V$ satisfies

$$
[T(\boldsymbol{x})]_{\mathcal{B}}=[T]_{\mathcal{B}}[\boldsymbol{x}]_{\mathcal{B}}, \text { for all } \boldsymbol{x} \text { in } V
$$

Example

- The mapping $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined by

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=a_{1}+2 a_{2} t
$$

is a linear transformation.
(a) Find the \mathcal{B}-matrix for T, where \mathcal{B} is the basis $\left\{1, t, t^{2}\right\}$.
(b) Verify that $[T(\boldsymbol{p})]_{\mathcal{B}}=[T]_{\mathcal{B}}[\boldsymbol{p}]_{\mathcal{B}}$ for each \boldsymbol{p} in \mathbb{P}_{2}.
(a) Compute the images of the basis vectors:

$$
T(1)=0, \quad T(t)=1, \quad T\left(t^{2}\right)=2 t
$$

Then write the \mathcal{B}-coordinate vectors of $T(1), T(t)$ and $T\left(t^{2}\right)$ (which are found by inspection in this example): and place them together as the \mathcal{B}-matrix for T :

$$
[T(1)]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad[T(t)]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[T\left(t^{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]
$$

Example (Cont'd)

We place the coordinate vectors together to form

$$
\begin{aligned}
& {[T]_{\mathcal{B}}=\left[[T(1)]_{\mathcal{B}}[T(t)]_{\mathcal{B}}\left[T\left(t^{2}\right)\right]_{\mathcal{B}}\right]:} \\
& {\left[[T]_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] .\right.}
\end{aligned}
$$

(b) For a general $\boldsymbol{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}$,

$$
\begin{aligned}
{[T(\boldsymbol{p})]_{\mathcal{B}} } & =\left[a_{1}+2 a_{2} t\right]_{\mathcal{B}}=\left[\begin{array}{c}
a_{1} \\
2 a_{2} \\
0
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=[T]_{\mathcal{B}}[\boldsymbol{p}]_{\mathcal{B}} .
\end{aligned}
$$

Diagonal Matrix Representation

Theorem (Diagonal Matrix Representation)

Suppose $A=P D P^{-1}$, where D is a diagonal $n \times n$ matrix. If \mathcal{B} is the basis for \mathbb{R}^{n} formed from the columns of P, then D is the \mathcal{B}-matrix for the transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}$.

- Denote the columns of P by $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$, so that $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\}$ and $P=\left[\begin{array}{lll}\boldsymbol{b}_{1} & \cdots & \boldsymbol{b}_{n}\end{array}\right]$.
In this case, P is the change-of-coordinates matrix $P_{\mathcal{B}}$ where

$$
P[\boldsymbol{x}]_{\mathcal{B}}=\boldsymbol{x} \quad \text { and } \quad[\boldsymbol{x}]_{\mathcal{B}}=P^{-1} \boldsymbol{x}
$$

Diagonal Matrix Representation (Cont'd)

- If $T(\boldsymbol{x})=A \boldsymbol{x}$ for \boldsymbol{x} in \mathbb{R}^{n}, then

$$
\begin{aligned}
& {[T]_{\mathcal{B}}=\left[\left[T\left(\boldsymbol{b}_{1}\right)\right]_{\mathcal{B}} \cdots\left[T\left(\boldsymbol{b}_{n}\right)\right]_{\mathcal{B}}\right]} \\
& =\left[\left[A \boldsymbol{b}_{1}\right]_{\mathcal{B}} \cdots\left[A \boldsymbol{b}_{n}\right]_{\mathcal{B}}\right] \\
& =\left[\begin{array}{llll}
P^{-1} A \boldsymbol{b}_{1} & \cdots & P^{-1} A \boldsymbol{b}_{n}
\end{array}\right] \\
& =P^{-1} A\left[\begin{array}{lll}
\boldsymbol{b}_{1} & \cdots & \boldsymbol{b}_{n}
\end{array}\right] \\
& =P^{-1} A P \text {. }
\end{aligned}
$$

Since $A=P D P^{-1}$, we have $[T]_{\mathcal{B}}=P^{-1} A P=D$.

Example

- Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\boldsymbol{x})=A \boldsymbol{x}$, where $A=\left[\begin{array}{rr}7 & 2 \\ -4 & 1\end{array}\right]$.

Find a basis \mathcal{B} for \mathbb{R}^{2} with the property that the \mathcal{B}-matrix for T is a diagonal matrix.

- We diagonalize A by finding its eigenvalues and the corresponding eigenvectors.

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
7-\lambda & 2 \\
-4 & 1-\lambda
\end{array}\right|=(7-\lambda)(1-\lambda)+8 \\
& =\lambda^{2}-8 \lambda+15=(\lambda-3)(\lambda-5) .
\end{aligned}
$$

- For $\lambda=3$:

$$
\begin{aligned}
& (A-3 /) \boldsymbol{v}=\mathbf{0} \Rightarrow\left[\begin{array}{rr}
4 & 2 \\
-4 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\mathbf{0} \\
& {\left[\begin{array}{rr|r}
4 & 2 & 0 \\
-4 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|r}
1 & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{\Rightarrow} \quad \boldsymbol{v}_{1}=\left[\begin{array}{r}
-\frac{1}{2} \\
1
\end{array}\right] .}
\end{aligned}
$$

Example

- For $\lambda=5$:

$$
\begin{aligned}
& (A-5 I) \boldsymbol{v}=\mathbf{0} \Rightarrow\left[\begin{array}{rr}
2 & 2 \\
-4 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\mathbf{0} \\
& {\left[\begin{array}{rr|r}
2 & 2 & 0 \\
-4 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lr|r}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \boldsymbol{v}_{2}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .}
\end{aligned}
$$

So we get $A=P D P^{-1}$, with $P=\left[\begin{array}{rr}-\frac{1}{2} & -1 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right]$.
Since the columns of P are eigenvectors of A, by the preceding theorem, D is the \mathcal{B}-matrix for T when $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$.
The mappings $\boldsymbol{x} \mapsto A \boldsymbol{x}$ and $\boldsymbol{u} \mapsto D \boldsymbol{u}$ describe the same linear transformation, relative to different bases.

Similarity of Matrix Representations

- If A is similar to a matrix C, with $A=P C P^{-1}$, then $C=P^{-1} A P$ is the \mathcal{B}-matrix for the transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}$ when the basis \mathcal{B} is formed from the columns of P.

- Conversely, if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by $T(\boldsymbol{x})=A \boldsymbol{x}$, and if \mathcal{B} is any basis for \mathbb{R}^{n}, then the \mathcal{B}-matrix for T is similar to A.
- Thus, the set of all matrices similar to a matrix A coincides with the set of all matrix representations of the transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}$.

Example

- Let $A=\left[\begin{array}{ll}4 & -9 \\ 4 & -8\end{array}\right], \boldsymbol{b}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], \boldsymbol{b}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

The characteristic polynomial of A is $(\lambda+2)^{2}$, but the eigenspace for the eigenvalue -2 is only one-dimensional; so A is not diagonalizable. However, the basis $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right\}$ has the property that the \mathcal{B}-matrix C for the transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}$ is a triangular matrix called the Jordan form of A. Find this \mathcal{B}-matrix C.

- If $P=\left[\begin{array}{ll}\boldsymbol{b}_{1} & \boldsymbol{b}_{2}\end{array}\right]$, then the \mathcal{B}-matrix is $C=P^{-1} A P$.

Compute

$$
\begin{aligned}
A P & =\left[\begin{array}{ll}
4 & -9 \\
4 & -8
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{rr}
-6 & -1 \\
-4 & 0
\end{array}\right] \\
C & =P^{-1} A P=\left[\begin{array}{rr}
-1 & 2 \\
2 & -3
\end{array}\right]\left[\begin{array}{rr}
-6 & -1 \\
-4 & 0
\end{array}\right]=\left[\begin{array}{rr}
-2 & 1 \\
0 & -2
\end{array}\right] .
\end{aligned}
$$

