# Introduction to Linear Algebra 

## George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science

Lake Superior State University

## LSSU Math 305

(1) Orthogonality

- Inner Product, Length, Orthogonality
- Orthogonal Sets
- Orthogonal Projections


## Subsection 1

## Inner Product, Length, Orthogonality

## The Inner Product

- If $\boldsymbol{u}$ and $\boldsymbol{v}$ are vectors in $\mathbb{R}^{n}$, then we regard $\boldsymbol{u}$ and $\boldsymbol{v}$ as $n \times 1$ matrices.
- The transpose $\boldsymbol{u}^{T}$ is a $1 \times n$ matrix, and the matrix product $\boldsymbol{u}^{T} \boldsymbol{v}$ is a $1 \times 1$ matrix, which we write as a single real number (a scalar) without brackets.
- The number $\boldsymbol{u}^{T} \boldsymbol{v}$ is called the inner product of $\boldsymbol{u}$ and $\boldsymbol{v}$, and often it is written as $\boldsymbol{u} \cdot \boldsymbol{v}$.
- This inner product is also referred to as a dot product.
- The inner product of $\boldsymbol{u}$ and $\boldsymbol{v}$ is

$$
\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

## Example

- Compute $\boldsymbol{u} \cdot \boldsymbol{v}$ and $\boldsymbol{v} \cdot \boldsymbol{u}$ for $\boldsymbol{u}=\left[\begin{array}{r}2 \\ -5 \\ -1\end{array}\right]$ and $\boldsymbol{v}=\left[\begin{array}{r}3 \\ 2 \\ -3\end{array}\right]$.
- We have

$$
\begin{aligned}
\boldsymbol{u} \cdot \boldsymbol{v} & =\boldsymbol{u}^{T} \boldsymbol{v}=\left[\begin{array}{ll}
2 & -5
\end{array}-1\right]\left[\begin{array}{r}
3 \\
2 \\
-3
\end{array}\right] \\
& =2 \cdot 3+(-5) \cdot 2+(-1) \cdot(-3)=-1 \\
\boldsymbol{v} \cdot \boldsymbol{u} & =\boldsymbol{v}^{T} \boldsymbol{u}=\left[\begin{array}{ll}
3 & 2
\end{array}-3\right]\left[\begin{array}{r}
2 \\
-5 \\
-1
\end{array}\right] \\
& =3 \cdot 2+2 \cdot(-5)+(-3) \cdot(-1)=-1
\end{aligned}
$$

## Properties of Inner Product

## Theorem

Let $\boldsymbol{u}, \boldsymbol{v}$ and $\boldsymbol{w}$ be vectors in $\mathbb{R}^{n}$, and let $c$ be a scalar. Then:
(a) $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{u}$;
(b) $(\boldsymbol{u}+\boldsymbol{v}) \cdot \boldsymbol{w}=\boldsymbol{u} \cdot \boldsymbol{w}+\boldsymbol{v} \cdot \boldsymbol{w}$;
(c) $(c \boldsymbol{u}) \cdot \boldsymbol{v}=c(\boldsymbol{u} \cdot \boldsymbol{v})=\boldsymbol{u} \cdot(c \boldsymbol{v})$;
(d) $\boldsymbol{u} \cdot \boldsymbol{u} \geq 0$, and $\boldsymbol{u} \cdot \boldsymbol{u}=0$ if and only if $\boldsymbol{u}=\mathbf{0}$.

- Properties (b) and (c) can be combined several times to produce the following useful rule:

$$
\left(c_{1} \boldsymbol{u}_{1}+\cdots+c_{p} \boldsymbol{u}_{p}\right) \cdot \boldsymbol{w}=c_{1}\left(\boldsymbol{u}_{1} \cdot \boldsymbol{w}\right)+\cdots+c_{p}\left(\boldsymbol{u}_{p} \cdot \boldsymbol{w}\right) .
$$

## Length of a Vector

- If $\boldsymbol{v}$ is in $\mathbb{R}^{n}$, with entries $v_{1}, \ldots, v_{n}$, then the square root of $\boldsymbol{v} \cdot \boldsymbol{v}$ is defined because $\boldsymbol{v} \cdot \boldsymbol{v}$ is nonnegative.


## Definition

The length (or norm) of $\boldsymbol{v}$ is the nonnegative scalar $\|\boldsymbol{v}\|$ defined by

$$
\|\boldsymbol{v}\|=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}, \quad \text { and } \quad\|\boldsymbol{v}\|^{2}=\boldsymbol{v} \cdot \boldsymbol{v}
$$

- Suppose $\boldsymbol{v}$ is in $\mathbb{R}^{2}$, say, $\boldsymbol{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$. If we identify $v$ with a geometric point in the plane, as usual, then $\|\boldsymbol{v}\|$ coincides with the standard notion of the length of the line segment from the origin to $\boldsymbol{v}$.



## Unit Vectors and Normalization

- For any scalar $c$, the length of $c \boldsymbol{v}$ is $|c|$ times the length of $\boldsymbol{v}$.
- That is,

$$
\|c \boldsymbol{v}\|=|c|\|\boldsymbol{v}\|
$$

- A vector whose length is 1 is called a unit vector.
- If we divide a nonzero vector $\boldsymbol{v}$ by its length - that is, multiply by $\frac{1}{\|\boldsymbol{v}\|}$ - we obtain a unit vector $\boldsymbol{u}$ because the length of $\boldsymbol{u}$ is $\frac{1}{\|\boldsymbol{v}\|}\|\boldsymbol{v}\|$.
- The process of creating $\boldsymbol{u}=\frac{1}{\|\boldsymbol{v}\|} \boldsymbol{v}$ from $\boldsymbol{v}$ is sometimes called normalizing $v$.
- We say that $\boldsymbol{u}$ is a unit in the same direction as $\boldsymbol{v}$.


## Example

- Let $\boldsymbol{v}=(1,-2,2,0)$. Find a unit vector $\boldsymbol{u}$ in the same direction as $\boldsymbol{v}$.
- First, compute the length of $\boldsymbol{v}$ :

$$
\begin{aligned}
\|\boldsymbol{v}\|^{2} & =\boldsymbol{v} \cdot \boldsymbol{v}=1^{2}+(-2)^{2}+2^{2}+0^{2}=9 \\
\|\boldsymbol{v}\| & =\sqrt{9}=3
\end{aligned}
$$

Then, multiply $\boldsymbol{v}$ by $\frac{1}{\|\boldsymbol{v}\|}$ to obtain

$$
\boldsymbol{u}=\frac{1}{\|\boldsymbol{v}\|} \boldsymbol{v}=\frac{1}{3}\left[\begin{array}{r}
1 \\
-2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{r}
\frac{1}{3} \\
-\frac{2}{3} \\
\frac{2}{3} \\
0
\end{array}\right]
$$

## Example

- Let $W$ be the subspace of $\mathbb{R}^{2}$ spanned by $\boldsymbol{x}=\left(\frac{2}{3}, 1\right)$. Find a unit vector $\boldsymbol{z}$ that is a basis for $W$.
- $W$ consists of all multiples of $\boldsymbol{x}$.

Any nonzero vector in $W$ is a basis for $W$.
To simplify the calculation, "scale" $\boldsymbol{x}$ to eliminate fractions, i.e., multiply $\boldsymbol{x}$ by 3 to get $\boldsymbol{y}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
Now compute $\|\boldsymbol{y}\|^{2}=2^{2}+3^{2}=13$. So $\|\boldsymbol{y}\|=\sqrt{13}$.
We normalize $\boldsymbol{y}$ to get

$$
z=\frac{1}{\sqrt{13}}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{\sqrt{13}} \\
\frac{3}{\sqrt{13}}
\end{array}\right]
$$

## Distance Between Two Vectors

- Recall that if $a$ and $b$ are real numbers, the distance on the number line between $a$ and $b$ is the number $|a-b|$.


## Definition

For $\boldsymbol{u}$ and $\boldsymbol{v}$ in $\mathbb{R}^{n}$, the distance between $\boldsymbol{u}$ and $\boldsymbol{v}$, written as $\operatorname{dist}(\boldsymbol{u}, \boldsymbol{v})$, is the length of the vector $\boldsymbol{u}-\boldsymbol{v}$. That is,

$$
\operatorname{dist}(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|
$$

## Example

- Compute the distance between the vectors $\boldsymbol{u}=(7,1)$ and $\boldsymbol{v}=(3,2)$.
- Calculate

$$
\begin{aligned}
\boldsymbol{u}-\boldsymbol{v} & =\left[\begin{array}{l}
7 \\
1
\end{array}\right]-\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{r}
4 \\
-1
\end{array}\right] \\
\|\boldsymbol{u}-\boldsymbol{v}\| & =\sqrt{4^{2}+(-1)^{2}}=\sqrt{17}
\end{aligned}
$$

## Example

- If $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$, then

$$
\begin{aligned}
\operatorname{dist}(\boldsymbol{u}, \boldsymbol{v}) & =\|\boldsymbol{u}-\boldsymbol{v}\| \\
& =\sqrt{(\boldsymbol{u}-\boldsymbol{v}) \cdot(\boldsymbol{u}-\boldsymbol{v})} \\
& =\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\left(u_{3}-v_{3}\right)^{2}} .
\end{aligned}
$$

## Orthogonality and Pythagorean Theorem

## Definition

Two vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ in $\mathbb{R}^{n}$ are orthogonal (to each other) if $\boldsymbol{u} \cdot \boldsymbol{v}=0$.

- The zero vector is orthogonal to every vector in $\mathbb{R}^{n}$ because $\mathbf{0}^{T} \cdot \boldsymbol{v}=0$ for all $\boldsymbol{v}$.


## Theorem (The Pythagorean Theorem)

Two vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ are orthogonal if and only if $\|\boldsymbol{u}+\boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}$.

- We have

$$
\begin{aligned}
\|\boldsymbol{u}+\boldsymbol{v}\|^{2} & =(\boldsymbol{u}+\boldsymbol{v}) \cdot(\boldsymbol{u}+\boldsymbol{v}) \\
& =\boldsymbol{u} \cdot \boldsymbol{u}+\boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{v} \cdot \boldsymbol{u}+\boldsymbol{v} \cdot \boldsymbol{v} \\
& =\|\boldsymbol{u}\|^{2}+2 \boldsymbol{u} \cdot \boldsymbol{v}+\|\boldsymbol{v}\|^{2} .
\end{aligned}
$$

So we get that $\|\boldsymbol{u}+\boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}$ if and only if $\boldsymbol{u} \cdot \boldsymbol{v}=0$ if and only if $\boldsymbol{u}$ and $\boldsymbol{v}$ are orthogonal.

## Orthogonal Complements

- If a vector $\boldsymbol{z}$ is orthogonal to every vector in a subspace $W$ of $\mathbb{R}^{n}$, then $\boldsymbol{z}$ is said to be orthogonal to $W$.
- The set of all vectors $\boldsymbol{z}$ that are orthogonal to $W$ is called the orthogonal complement of $W$.
- The orthogonal complement of $W$ is denoted by $W^{\perp}$ (and read as " $W$ perpendicular" or simply " $W$ perp").


## Example

- Let $W$ be a plane through the origin in $\mathbb{R}^{3}$.
- Let $L$ be the line through the origin and perpendicular to $W$.
- If $\boldsymbol{z}$ and $\boldsymbol{w}$ are nonzero, $\boldsymbol{z}$ is on $L$, and $\boldsymbol{w}$ is in $W$, then
the line segment from $\mathbf{0}$ to $\boldsymbol{z}$ is perpendicular to the line segment from $\mathbf{0}$ to $\boldsymbol{w}$, that is, $\boldsymbol{z} \cdot \boldsymbol{w}=0$.

- So each vector on $L$ is orthogonal to every $\boldsymbol{w}$ in $W$.
- In fact, $L$ consists of all vectors that are orthogonal to the $\boldsymbol{w}$ 's in $W$, and $W$ consists of all vectors orthogonal to the $z$ 's in $L$.
- That is, $L=W^{\perp}$ and $W=L^{\perp}$.


## Properties of Orthogonal Complements

## Theorem

Let $W$ be a subspace of $\mathbb{R}^{n}$.

1. A vector $\boldsymbol{x}$ is in $W^{\perp}$ if and only if $\boldsymbol{x}$ is orthogonal to every vector in a set that spans $W$.
2. $W^{\perp}$ is a subspace of $\mathbb{R}^{n}$.
3. Let $W=\operatorname{Span}\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{p}\right\}$.

We must show that $W^{\perp}=\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{p}\right\}^{\perp}$.
Suppose $\boldsymbol{x}$ is in $W^{\perp}$. Since $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{p} \in W$, we have $\boldsymbol{x} \cdot \boldsymbol{w}_{1}=0, \ldots, \boldsymbol{x} \cdot \boldsymbol{w}_{p}=0$. This shows that $\boldsymbol{x}$ is in $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{p}\right\}^{\perp}$. Hence $W^{\perp} \subseteq\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{p}\right\}^{\perp}$.

## Properties of Orthogonal Complements (Part 1 Cont'd)

- Suppose conversely, that $\boldsymbol{x}$ is in $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{p}\right\}^{\perp}$. Let $\boldsymbol{w}$ be in $W$. Since $W=\operatorname{Span}\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{p}\right\}$, there exist $c_{1}, \ldots, c_{p}$ in $\mathbb{R}$, such that

$$
\boldsymbol{w}=c_{1} \boldsymbol{w}_{1}+\cdots+c_{p} \boldsymbol{w}_{p}
$$

Then we have

$$
\begin{aligned}
\boldsymbol{x} \cdot \boldsymbol{w} & =\boldsymbol{x} \cdot\left(c_{1} \boldsymbol{w}_{1}+\cdots+c_{p} \boldsymbol{w}_{p}\right) \\
& =c_{1}\left(\boldsymbol{x} \cdot \boldsymbol{w}_{1}\right)+\cdots+c_{p}\left(\boldsymbol{x} \cdot \boldsymbol{w}_{p}\right) \\
& =c_{1} \cdot 0+\cdots+c_{p} \cdot 0=0 .
\end{aligned}
$$

Therefore $\boldsymbol{x}$ is in $W^{\perp}$. We conclude that $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{p}\right\}^{\perp} \subseteq W^{\perp}$.
Combining both inclusions we get

$$
\boldsymbol{W}^{\perp}=\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{p}\right\}^{\perp}
$$

## Properties of Orthogonal Complements (Part 2)

2. Recall that to see that $W^{\perp}$ is a subspace of $\mathbb{R}^{n}$, we must show that it contains $\mathbf{0}$ and that it is closed under addition and scalar multiplication.
That $\mathbf{0}$ is in $W^{\perp}$ is obvious, since, for all $\boldsymbol{w}$ in $W, \mathbf{0} \cdot \boldsymbol{w}=0$. Suppose, next that $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ are in $W^{\perp}$. Then we have, for all $\boldsymbol{w}$ in $W$,

$$
\left(x_{1}+x_{2}\right) \cdot w=\left(x_{1} \cdot w\right)+\left(x_{2} \cdot w\right)=0+0=0
$$

This proves that $x_{1}+x_{2}$ is in $W^{\perp}$. So $W^{\perp}$ is closed under addition. Next let $\boldsymbol{x}$ be in $W^{\perp}$ and $c$ in $\mathbb{R}$.
Then we get, for all $\boldsymbol{w}$ in $W$,

$$
(c \boldsymbol{x}) \cdot \boldsymbol{w}=c(\boldsymbol{x} \cdot \boldsymbol{w})=c \cdot 0=0
$$

This shows that $c \boldsymbol{x}$ is in $W^{\perp}$. Therefore, $W^{\perp}$ is also closed under scalar multiplication.
We now conclude that $W^{\perp}$ is a subspace of $\mathbb{R}^{n}$.

## Row Space, Null Space and Complements

## Theorem

Let $A$ be an $m \times n$ matrix. The orthogonal complement of the row space of $A$ is the null space of $A$, and the orthogonal complement of the column space of $A$ is the null space of $A^{T}$ :

$$
(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A \quad \text { and } \quad(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}
$$

- The row-column rule for computing $A \boldsymbol{x}$ shows that if $\boldsymbol{x}$ is in $\operatorname{Nul} A$, then $\boldsymbol{x}$ is orthogonal to each row of $A$ (with the rows treated as vectors in $\mathbb{R}^{n}$ ). Since the rows of $A$ span the row space, $\boldsymbol{x}$ is orthogonal to Row $A$.
Conversely, if $\boldsymbol{x}$ is orthogonal to Row $A$, then $\boldsymbol{x}$ is certainly orthogonal to each row of $A$. Hence $A \boldsymbol{x}=\mathbf{0}$.
Since this statement is true for any matrix, it is true for $A^{T}$. That is, the orthogonal complement of the row space of $A^{T}$ is the null space of $A^{T}$. This proves the second statement, because $\operatorname{Row} A^{T}=\operatorname{Col} A$.


## Subsection 2

## Orthogonal Sets

## Orthogonal Set of Vectors

- A set of vectors $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right\}$ in $\mathbb{R}^{n}$ is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if $\boldsymbol{u}_{i} \cdot \boldsymbol{u}_{j}=0$ whenever $i \neq j$.
Example: Show that $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ is an orthogonal set, where

$$
\boldsymbol{u}_{1}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], \quad \boldsymbol{u}_{2}=\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right], \quad \boldsymbol{u}_{3}=\left[\begin{array}{r}
-\frac{1}{2} \\
-2 \\
\frac{7}{2}
\end{array}\right]
$$

We check the pairwise inner products:

$$
\begin{aligned}
& \boldsymbol{u}_{1} \cdot \boldsymbol{u}_{2}=3(-1)+1 \cdot 2+1 \cdot 1=0 \\
& \boldsymbol{u}_{1} \cdot \boldsymbol{u}_{3}=3\left(-\frac{1}{2}\right)+1(-2)+1 \cdot \frac{7}{2}=0 \\
& \boldsymbol{u}_{2} \cdot \boldsymbol{u}_{3}=-1\left(-\frac{1}{2}\right)+2(-2)+1 \cdot\left(\frac{7}{2}\right)=0
\end{aligned}
$$

Each pair of distinct vectors is orthogonal, and so $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ is an orthogonal set.

## Orthogonality and Linear Independence

## Theorem

If $S=\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right\}$ is an orthogonal set of nonzero vectors in $\mathbb{R}^{n}$, then $S$ is linearly independent and hence is a basis for the subspace spanned by $S$.

- If $\mathbf{0}=c_{1} \boldsymbol{u}_{1}+\cdots+c_{p} \boldsymbol{u}_{p}$ for some scalars $c_{1}, \ldots, c_{p}$, then

$$
\begin{aligned}
0 & =\mathbf{0} \cdot \boldsymbol{u}_{1} \\
& =\left(c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\cdots+c_{p} \boldsymbol{u}_{p}\right) \cdot \boldsymbol{u}_{1} \\
& =\left(c_{1} \boldsymbol{u}_{1}\right) \cdot \boldsymbol{u}_{1}+\left(c_{2} \boldsymbol{u}_{2}\right) \cdot \boldsymbol{u}_{1}+\cdots+\left(c_{p} \boldsymbol{u}_{p}\right) \cdot \boldsymbol{u}_{1} \\
& =c_{1}\left(\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}\right)+c_{2}\left(\boldsymbol{u}_{2} \cdot \mathbf{u}_{1}\right)+\cdots+c_{p}\left(\boldsymbol{u}_{p} \cdot \boldsymbol{u}_{1}\right) \\
& =c_{1}\left(\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}\right) .
\end{aligned}
$$

Since $\boldsymbol{u}_{1}$ is nonzero, $\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}$ is not zero. So $c_{1}=0$.
Similarly, $c_{2}, \ldots, c_{p}$ must be zero.
Thus $S$ is linearly independent.

## Orthogonal Basis

## Definition

An orthogonal basis for a subspace $W$ of $\mathbb{R}^{n}$ is a basis for $W$ that is also an orthogonal set.

- An orthogonal basis is much nicer than other bases because the weights in a linear combination can be computed easily:


## Theorem

Let $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right\}$ be an orthogonal basis for a subspace $W$ of $\mathbb{R}^{n}$. For each $\boldsymbol{y}$ in $W$, the weights in the linear combination $\boldsymbol{y}=c_{1} \boldsymbol{u}_{1}+\cdots+c_{p} \boldsymbol{u}_{p}$ are given by

$$
c_{j}=\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{j}}{\boldsymbol{u}_{j} \cdot \mathbf{u}_{j}}, \quad j=1, \ldots, p
$$

- The orthogonality of $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right\}$ shows that $\boldsymbol{y} \cdot \boldsymbol{u}_{1}=\left(c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\cdots+c_{p} \boldsymbol{u}_{p}\right) \cdot \boldsymbol{u}_{1}=c_{1}\left(\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}\right)$. Since $\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}$ is not zero, the equation above can be solved for $c_{1}$. To find $c_{j}$ for $j=2, \ldots, p$, compute $\boldsymbol{y} \cdot \boldsymbol{u}_{j}$ and solve for $c_{j}$.


## Example

- $S=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$, with $\boldsymbol{u}_{1}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \boldsymbol{u}_{2}=\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right], \boldsymbol{u}_{3}=\left[\begin{array}{r}-\frac{1}{2} \\ -2 \\ \frac{7}{2}\end{array}\right]$, is an orthogonal basis for $\mathbb{R}^{3}$.
Express the vector $\boldsymbol{y}=\left[\begin{array}{r}6 \\ 1 \\ -8\end{array}\right]$ as a linear combination of the vectors in $S$.
- We compute:

$$
\begin{array}{lll}
\boldsymbol{y} \cdot \boldsymbol{u}_{1}=11, & \boldsymbol{y} \cdot \boldsymbol{u}_{2}=-12, & \boldsymbol{y} \cdot \boldsymbol{u}_{3}=-33 \\
\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}=11, & \boldsymbol{u}_{2} \cdot \boldsymbol{u}_{2}=6, & \boldsymbol{u}_{3} \cdot \boldsymbol{u}_{3}=\frac{33}{2}
\end{array}
$$

Now we have

$$
\begin{aligned}
\boldsymbol{y} & =\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{1}}{\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}} \boldsymbol{u}_{1}+\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{2}}{\boldsymbol{u}_{2} \cdot \boldsymbol{u}_{2}} \boldsymbol{u}_{2}+\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{3}}{\boldsymbol{u}_{3} \cdot \boldsymbol{u}_{3}} \boldsymbol{u}_{3} \\
& =\frac{11}{11} \boldsymbol{u}_{1}+\frac{-12}{6} \boldsymbol{u}_{2}+\frac{-33}{\frac{33}{2}} \boldsymbol{u}_{3} \\
& =\boldsymbol{u}_{1}-2 \boldsymbol{u}_{2}-2 \boldsymbol{u}_{3} .
\end{aligned}
$$

## An Orthogonal Projection

- Given a nonzero vector $\boldsymbol{u}$ in $\mathbb{R}^{n}$, consider the problem of decomposing a vector $\boldsymbol{y}$ in $\mathbb{R}^{n}$ into the sum of two vectors, one a multiple of $\boldsymbol{u}$ and the other orthogonal to $\boldsymbol{u}$.
- We wish to write $\boldsymbol{y}=\widehat{\boldsymbol{y}}+\boldsymbol{z}$, where $\widehat{\boldsymbol{y}}=\alpha \boldsymbol{u}$ for some scalar $\alpha$ and $\boldsymbol{z}$ is some vector orthogonal to $\boldsymbol{u}$.
- Given any scalar $\alpha$, let $\boldsymbol{z}=\boldsymbol{y}-\alpha \boldsymbol{u}$.
- Then $\boldsymbol{z}=\boldsymbol{y}-\widehat{\boldsymbol{y}}$ is orthogonal to $\boldsymbol{u}$ if and only if

$$
0=(\boldsymbol{y}-\alpha \mathbf{u}) \cdot \boldsymbol{u}=\boldsymbol{y} \cdot \boldsymbol{u}-(\alpha u) \cdot \boldsymbol{u}=\boldsymbol{y} \cdot \boldsymbol{u}-\alpha(\boldsymbol{u} \cdot \boldsymbol{u}) .
$$

- So $\boldsymbol{y}=\widehat{\boldsymbol{y}}+\boldsymbol{z}$, with $\boldsymbol{z}$ orthogonal to $\boldsymbol{u}$ if and only if

$$
\alpha=\frac{\boldsymbol{y} \cdot \boldsymbol{u}}{\boldsymbol{u} \cdot \boldsymbol{u}} \quad \text { and } \quad \widehat{\boldsymbol{y}}=\frac{\boldsymbol{y} \cdot \boldsymbol{u}}{\boldsymbol{u} \cdot \boldsymbol{u}} \boldsymbol{u} .
$$

- The vector $\hat{\boldsymbol{y}}$ is called the orthogonal projection of $\boldsymbol{y}$ onto $\boldsymbol{u}$;
- The vector $\boldsymbol{z}$ is called the component of $\boldsymbol{y}$ orthogonal to $\boldsymbol{u}$.


## Alternative Notation

- If $c$ is any nonzero scalar and if $\boldsymbol{u}$ is replaced by $c \boldsymbol{u}$ in the definition of $\hat{\boldsymbol{y}}$, then the orthogonal projection of $\boldsymbol{y}$ onto $c \boldsymbol{u}$ is exactly the same as the orthogonal projection of $\boldsymbol{y}$ onto $\boldsymbol{u}$.
- Hence this projection is determined by the subspace $L$ spanned by $\boldsymbol{u}$ (the line through $\boldsymbol{u}$ and $\mathbf{0}$ ).
- Sometimes $\widehat{\boldsymbol{y}}$ is denoted by $\operatorname{proj}_{L} \boldsymbol{y}$ and is called the orthogonal projection of $\boldsymbol{y}$ onto $L$.
- That is,

$$
\widehat{\boldsymbol{y}}=\operatorname{proj}_{L} \boldsymbol{y}=\frac{\boldsymbol{y} \cdot \boldsymbol{u}}{\boldsymbol{u} \cdot \boldsymbol{u}} \boldsymbol{u}
$$

## Example

- Let $\boldsymbol{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right], \boldsymbol{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$.

Find the orthogonal projection of $\boldsymbol{y}$ onto $\boldsymbol{u}$.
Then write $\boldsymbol{y}$ as the sum of two orthogonal vectors, one in $\operatorname{Span}\{\boldsymbol{u}\}$ and one orthogonal to $\boldsymbol{u}$.

- We compute: $\boldsymbol{y} \cdot \boldsymbol{u}=40, \boldsymbol{u} \cdot \boldsymbol{u}=20$.

The orthogonal projection of $\boldsymbol{y}$ onto $\boldsymbol{u}$ is

$$
\widehat{\boldsymbol{y}}=\frac{\boldsymbol{y} \cdot \boldsymbol{u}}{\boldsymbol{u} \cdot \boldsymbol{u}} \boldsymbol{u}=\frac{40}{20}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right] .
$$

The component of $\boldsymbol{y}$ orthogonal to $\boldsymbol{u}$ is

$$
z=y-\widehat{y}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] .
$$

So $\left[\begin{array}{l}4 \\ 2\end{array}\right]=\widehat{\boldsymbol{y}}+\boldsymbol{z}=\left[\begin{array}{l}8 \\ 4\end{array}\right]+\left[\begin{array}{r}-1 \\ 2\end{array}\right]$.

## Distance from $\boldsymbol{y}$ to $\operatorname{Span}\{\boldsymbol{u}\}$

- The line segment between $\boldsymbol{y}$ and $\widehat{\boldsymbol{y}}$ is perpendicular to $L=\operatorname{Span}\{\boldsymbol{u}\}$, by construction of $\widehat{\boldsymbol{y}}$ :

- So the point identified with $\widehat{\boldsymbol{y}}$ is the closest point of $L$ to $\boldsymbol{y}$.
- It follows that the distance from $\boldsymbol{y}$ to $L$ is the length of the perpendicular line segment from $\boldsymbol{y}$ to the orthogonal projection $\widehat{\boldsymbol{y}}$, i.e., $\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|$.


## Orthonormal Sets

- A set $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right\}$ is an orthonormal set if it is an orthogonal set of unit vectors.
- If $W$ is the subspace spanned by such a set, then $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right\}$ is an orthonormal basis for $W$, since the set is automatically linearly independent.
- The simplest example of an orthonormal set is the standard basis $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ for $\mathbb{R}^{n}$.
- Any nonempty subset of $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ is orthonormal, too.


## Example

- Show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is an orthonormal basis of $\mathbb{R}^{3}$, where

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
\frac{3}{\sqrt{11}} \\
\frac{1}{\sqrt{11}} \\
\frac{1}{\sqrt{11}}
\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right], \quad \boldsymbol{v}_{3}=\left[\begin{array}{c}
-\frac{1}{\sqrt{66}} \\
-\frac{4}{\sqrt{66}} \\
\frac{7}{\sqrt{66}}
\end{array}\right] .
$$

- We first check that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is orthogonal:

$$
\begin{aligned}
& \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2}=-\frac{3}{\sqrt{66}}+\frac{2}{\sqrt{66}}+\frac{1}{\sqrt{66}}=0 ; \\
& \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{3}=-\frac{3}{\sqrt{726}}-\frac{4}{\sqrt{726}}+\frac{7}{\sqrt{726}}=0 ; \\
& \boldsymbol{v}_{2} \cdot \boldsymbol{v}_{3}=\frac{1}{\sqrt{396}}-\frac{8}{\sqrt{396}}+\frac{7}{\sqrt{396}}=0 .
\end{aligned}
$$

Now we check that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ consists of unit vectors:

$$
\begin{aligned}
& \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1}=\frac{9}{11}+\frac{1}{11}+\frac{1}{11}=1 \\
& \boldsymbol{v}_{2} \cdot \boldsymbol{v}_{2}=\frac{1}{6}+\frac{4}{6}+\frac{1}{6}=1 ; \\
& \boldsymbol{v}_{3} \cdot \boldsymbol{v}_{3}=\frac{1}{66}+\frac{16}{66}+\frac{49}{66}=1
\end{aligned}
$$

It follows that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ form an orthonormal basis for $\mathbb{R}^{3}$.

## Matrix With Orthonormal Columns

## Theorem

An $m \times n$ matrix $U$ has orthonormal columns if and only if $U^{T} U=I$.

- To simplify notation, we suppose that $U$ has only three columns, each a vector in $\mathbb{R}^{m}$. The proof of the general case is similar. Let $U=\left[\begin{array}{lll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \boldsymbol{u}_{3}\end{array}\right]$. Compute

$$
U^{T} U=\left[\begin{array}{c}
\boldsymbol{u}_{1}^{T} \\
\boldsymbol{u}_{2}^{T} \\
\boldsymbol{u}_{3}^{T}
\end{array}\right]\left[\begin{array}{lll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \boldsymbol{u}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{u}_{1}^{T} \boldsymbol{u}_{1} & \boldsymbol{u}_{1}^{T} \boldsymbol{u}_{2} & \boldsymbol{u}_{1}^{T} \boldsymbol{u}_{3} \\
\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1} & \boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2} & \boldsymbol{u}_{2}^{T} \boldsymbol{u}_{3} \\
\boldsymbol{u}_{3}^{T} \boldsymbol{u}_{1} & \boldsymbol{u}_{3}^{T} \boldsymbol{u}_{2} & \boldsymbol{u}_{3}^{T} \boldsymbol{u}_{3}
\end{array}\right]
$$

The entries in the matrix at the right are inner products, using transpose notation. The columns of $U$ are orthogonal if and only if $\boldsymbol{u}_{1}^{T} \boldsymbol{u}_{2}=\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1}=0, \boldsymbol{u}_{1}^{T} \boldsymbol{u}_{3}=\boldsymbol{u}_{3}^{T} \boldsymbol{u}_{1}=0$ and $\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{3}=\boldsymbol{u}_{3}^{T} \boldsymbol{u}_{2}=0$. The columns of $U$ all have unit length if and only if $\boldsymbol{u}_{1}^{T} \boldsymbol{u}_{1}=1, \boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2}=1$ and $\boldsymbol{u}_{3}^{T} \boldsymbol{u}_{3}=1$. The theorem now follows by looking at the matrix.

## Properties of Matrices With Orthonormal Columns

## Theorem

Let $U$ be an $m \times n$ matrix with orthonormal columns, and let $\boldsymbol{x}$ and $\boldsymbol{y}$ be in $\mathbb{R}^{n}$. Then:
(a) $\|U \boldsymbol{x}\|=\|\boldsymbol{x}\|$;
(b) $(U \boldsymbol{x}) \cdot(U \boldsymbol{y})=\boldsymbol{x} \cdot \boldsymbol{y}$;
(c) $(U \boldsymbol{x}) \cdot(U \boldsymbol{y})=0$ if and only if $\boldsymbol{x} \cdot \boldsymbol{y}=0$.
(b) We have $(U \boldsymbol{x}) \cdot(U \boldsymbol{y})=(U \boldsymbol{x})^{T}(U \boldsymbol{y})=\boldsymbol{x}^{T} U^{T} U \boldsymbol{y}=\boldsymbol{x}^{T} \boldsymbol{y}=\boldsymbol{x} \cdot \boldsymbol{y}$.

- Note that
- Property (a) says that the linear mapping $x \mapsto U x$ preserves length;
- Property (b) says that the linear mapping $x \mapsto U x$ preserves inner products;
- Property (c) says that the linear mapping $\boldsymbol{x} \mapsto U \mathbf{x}$ preserves orthogonality.


## Example

- Let $U=\left[\begin{array}{rr}\frac{1}{\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{2}{3} \\ 0 & \frac{1}{3}\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}\sqrt{2} \\ 3\end{array}\right]$.
(a) Check that $U$ has orthonormal columns by computing $U^{\top} U$.
(b) Verify that $\|U \boldsymbol{x}\|=\|\boldsymbol{x}\|$.
(a)
(b)

$$
\begin{gathered}
U^{T} U=\left[\begin{array}{rrr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{2}{3} & -\frac{2}{3} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{2}{3} \\
\frac{1}{\sqrt{2}} & -\frac{2}{3} \\
0 & \frac{1}{3}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] . \\
U \boldsymbol{x}=\left[\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{2}{3} \\
\frac{1}{\sqrt{2}} & -\frac{2}{3} \\
0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
\sqrt{2} \\
3
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1 \\
1
\end{array}\right] \\
\|U \boldsymbol{x}\|=\sqrt{9+1+1}=\sqrt{11}=\|\boldsymbol{x}\| .
\end{gathered}
$$

## Orthogonal Matrices

- An orthogonal matrix is a square invertible matrix $U$ such that

$$
U^{-1}=U^{T} .
$$

- By a previous theorem, such a matrix has orthonormal columns.
- It is easy to see that any square matrix with orthonormal columns is an orthogonal matrix.
- Surprisingly, such a matrix must have orthonormal rows, too.


## Subsection 3

## Orthogonal Projections

## Orthogonal Projection

- Consider a vector $\boldsymbol{y}$ and a subspace $W$ in $\mathbb{R}^{n}$.
- There is a vector $\hat{\boldsymbol{y}}$ in $W$ such that:
(1) $\hat{\boldsymbol{y}}$ is the unique vector in $W$ for which $\boldsymbol{y}-\hat{\boldsymbol{y}}$ is orthogonal to $W$;
(2) $\widehat{\boldsymbol{y}}$ is the unique vector in $W$ closest to $\boldsymbol{y}$.


W

## Decompositions

- Whenever a vector $\boldsymbol{y}$ is written as a linear combination of vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ in $\mathbb{R}^{n}$,

$$
\boldsymbol{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{n} \boldsymbol{u}_{n}
$$

the terms in the sum for $\boldsymbol{y}$ can be grouped into two parts.

- So $\boldsymbol{y}$ can be written as

$$
\boldsymbol{y}=\boldsymbol{z}_{1}+\boldsymbol{z}_{2},
$$

where $\boldsymbol{z}_{1}$ is a linear combination of some of the $\boldsymbol{u}_{i}$ and $\boldsymbol{z}_{2}$ is a linear combination of the rest of the $\boldsymbol{u}_{i}$.

- This idea is particularly useful when $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right\}$ is an orthogonal basis.
- Recall that $W^{\perp}$ denotes the set of all vectors orthogonal to a subspace $W$.


## Example

- Let $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{5}\right\}$ be an orthogonal basis for $\mathbb{R}^{5}$ and let $\boldsymbol{y}=c_{1} \boldsymbol{u}_{1}+\cdots+c_{5} \boldsymbol{u}_{5}$.
Consider the subspace $W=\operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$, and write $\boldsymbol{y}$ as the sum of a vector $\boldsymbol{z}_{1}$ in $W$ and a vector $\boldsymbol{z}_{2}$ in $W^{\perp}$.
- Write

$$
\boldsymbol{y}=\underbrace{c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}}_{\boldsymbol{z}_{1}}+\underbrace{c_{3} \boldsymbol{u}_{3}+c_{4} \boldsymbol{u}_{4}+c_{5} \boldsymbol{u}_{5}}_{\boldsymbol{z}_{2}}
$$

where $\boldsymbol{z}_{1}=c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}$ is in $\operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ and $\boldsymbol{z}_{2}=c_{3} \boldsymbol{u}_{3}+c_{4} \boldsymbol{u}_{4}+c_{5} \boldsymbol{u}_{5}$ is in $\operatorname{Span}\left\{\boldsymbol{u}_{3}, \boldsymbol{u}_{4}, \boldsymbol{u}_{5}\right\}$.
To show that $\boldsymbol{z}_{2}$ is in $W^{\perp}$, it suffices to show that $\boldsymbol{z}_{2}$ is orthogonal to the vectors in the basis $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ for $W$.
Using properties of the inner product, we compute:

$$
\begin{aligned}
\boldsymbol{z}_{2} \cdot \boldsymbol{u}_{1} & =\left(c_{3} \boldsymbol{u}_{3}+c_{4} \boldsymbol{u}_{4}+c_{5} \boldsymbol{u}_{5}\right) \cdot \boldsymbol{u}_{1} \\
& =c_{3} \boldsymbol{u}_{3} \cdot \boldsymbol{u}_{1}+c_{4} \boldsymbol{u}_{4} \cdot \boldsymbol{u}_{1}+c_{5} \boldsymbol{u}_{5} \cdot \boldsymbol{u}_{1}=0
\end{aligned}
$$

A similar calculation shows that $\boldsymbol{z}_{2} \cdot \boldsymbol{u}_{2}=0$.

## The Orthogonal Decomposition Theorem

## Theorem (The Orthogonal Decomposition Theorem)

Let $W$ be a subspace of $\mathbb{R}^{n}$. Then each $\boldsymbol{y}$ in $\mathbb{R}^{n}$ can be written uniquely in the form

$$
\boldsymbol{y}=\widehat{\boldsymbol{y}}+\boldsymbol{z}
$$

where $\widehat{\boldsymbol{y}}$ is in $W$ and $\boldsymbol{z}$ is in $W^{\perp}$. In fact, if $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right\}$ is any orthogonal basis of $W$, then

$$
\widehat{\boldsymbol{y}}=\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{1}}{\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}} \boldsymbol{u}_{1}+\cdots+\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{p}}{\boldsymbol{u}_{p} \cdot \boldsymbol{u}_{p}} \boldsymbol{u}_{p}
$$

and $\boldsymbol{z}=\boldsymbol{y}-\widehat{\boldsymbol{y}}$.

- The vector $\widehat{\boldsymbol{y}}$ is called the orthogonal projection of $\boldsymbol{y}$ onto $W$ and often is written as $\operatorname{proj}_{w} \boldsymbol{y}$.


## The Orthogonal Decomposition Theorem (Illustration)



W

## Proof of the Theorem (Existence)

- Let $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right\}$ be any orthogonal basis for $W$.

Define $\hat{\boldsymbol{y}}$ by

$$
\widehat{\boldsymbol{y}}=\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{1}}{\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}} \boldsymbol{u}_{1}+\cdots+\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{p}}{\boldsymbol{u}_{p} \cdot \boldsymbol{u}_{p}} \boldsymbol{u}_{p}
$$

Then $\widehat{\boldsymbol{y}}$ is in $W$ because $\widehat{\boldsymbol{y}}$ is a linear combination of the basis $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}$. Let $\boldsymbol{z}=\boldsymbol{y}-\hat{\boldsymbol{y}}$. Since $\boldsymbol{u}_{1}$ is orthogonal to $\boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{p}$, it follows that

$$
\begin{aligned}
\boldsymbol{z} \cdot \boldsymbol{u}_{1} & =(\boldsymbol{y}-\widehat{\boldsymbol{y}}) \cdot \boldsymbol{u}_{1}=\boldsymbol{y} \cdot \boldsymbol{u}_{1}-\left(\frac{\boldsymbol{y} \cdot \mathbf{u}_{1}}{\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}}\right) \boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}-0 \cdots-0 \\
& =\boldsymbol{y} \cdot \boldsymbol{u}_{1}-\boldsymbol{y} \cdot \boldsymbol{u}_{1}=0
\end{aligned}
$$

Thus $\boldsymbol{z}$ is orthogonal to $\boldsymbol{u}_{1}$.
Similarly, $\boldsymbol{z}$ is orthogonal to each $\boldsymbol{u}_{j}$ in the basis for $W$. Hence $\boldsymbol{z}$ is orthogonal to every vector in $W$. That is, $\boldsymbol{z}$ is in $W^{\perp}$.

## Proof of the Theorem (Uniqueness)

- To show that the decomposition is unique, suppose $\boldsymbol{y}$ can also be written as

$$
\boldsymbol{y}=\widehat{\boldsymbol{y}}_{1}+\boldsymbol{z}_{1}
$$

with $\widehat{\boldsymbol{y}}_{1}$ in $W$ and $\boldsymbol{z}_{1}$ in $W^{\perp}$. Then $\widehat{\boldsymbol{y}}+\boldsymbol{z}=\widehat{\boldsymbol{y}}_{1}+\boldsymbol{z}_{1}$ (since both sides equal $\boldsymbol{y}$ ). So

$$
\widehat{\boldsymbol{y}}-\widehat{\boldsymbol{y}}_{1}=\boldsymbol{z}_{1}-\boldsymbol{z}
$$

This equality shows that the vector $\boldsymbol{v}=\widehat{\boldsymbol{y}}-\widehat{\boldsymbol{y}}_{1}$ is in $W$ and in $W^{\perp}$ (because $z_{1}$ and $\boldsymbol{z}$ are both in $W^{\perp}$, and $W^{\perp}$ is a subspace). Hence $\boldsymbol{v} \cdot \boldsymbol{v}=0$, which shows that $\boldsymbol{v}=\mathbf{0}$. This proves that $\widehat{\boldsymbol{y}}=\widehat{\boldsymbol{y}}_{1}$ and also $z_{1}=z$.

## Example

- Let $\boldsymbol{u}_{1}=\left[\begin{array}{r}2 \\ 5 \\ -1\end{array}\right], \boldsymbol{u}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right], \boldsymbol{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Observe that
$\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$. Write $\boldsymbol{y}$ as the sum of a vector in $W$ and a vector orthogonal to $W$.
- The orthogonal projection of $\boldsymbol{y}$ onto $W$ is

$$
\begin{aligned}
\widehat{\boldsymbol{y}} & =\frac{\boldsymbol{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \boldsymbol{u}_{1}} \boldsymbol{u}_{1}+\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{2}}{\mathbf{u}_{2} \cdot \boldsymbol{u}_{2}} \boldsymbol{u}_{2} \\
& =\frac{9}{30}\left[\begin{array}{r}
2 \\
5 \\
-1
\end{array}\right]+\frac{3}{6}\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-\frac{2}{5} \\
2 \\
\frac{1}{5}
\end{array}\right] ; \\
\boldsymbol{y}-\widehat{\boldsymbol{y}} & =\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{r}
-\frac{2}{5} \\
2 \\
\frac{1}{5}
\end{array}\right]=\left[\begin{array}{r}
\frac{7}{5} \\
0 \\
\frac{14}{5}
\end{array}\right] .
\end{aligned}
$$

The desired decomposition of $\boldsymbol{y}$ is $\boldsymbol{y}=\widehat{\boldsymbol{y}}+(\boldsymbol{y}-\widehat{\boldsymbol{y}})$.

## The Best Approximation Theorem

## Theorem (The Best Approximation Theorem)

Let $W$ be a subspace of $\mathbb{R}^{n}$, let $\boldsymbol{y}$ be any vector in $\mathbb{R}^{n}$, and let $\widehat{\boldsymbol{y}}$ be the orthogonal projection of $\boldsymbol{y}$ onto $W$. Then $\widehat{\boldsymbol{y}}$ is the closest point in $W$ to $\boldsymbol{y}$, in the sense that

$$
\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|<\|\boldsymbol{y}-\boldsymbol{v}\|
$$

for all $\boldsymbol{v}$ in $W$ distinct from $\widehat{\boldsymbol{y}}$.

- The vector $\widehat{\boldsymbol{y}}$ is called the best approximation to $\boldsymbol{y}$ by elements of W.
- The distance from $\boldsymbol{y}$ to $\boldsymbol{v}$, given by $\|\boldsymbol{y}-\boldsymbol{v}\|$, can be regarded as the "error" of using $\boldsymbol{v}$ in place of $\boldsymbol{y}$.
- Then the theorem says that this error is minimized when $\boldsymbol{v}=\widehat{\boldsymbol{y}}$.


## Proof of Best Approximation Theorem

- Take $\boldsymbol{v}$ in $W$ distinct from $\widehat{y}$. Then $\widehat{\boldsymbol{y}}-\boldsymbol{v}$ is in $W$.


By the Orthogonal Decomposition Theorem, $\boldsymbol{y}-\hat{\boldsymbol{y}}$ is orthogonal to $W$. In particular, $\boldsymbol{y}-\widehat{\boldsymbol{y}}$ is orthogonal to $\widehat{\boldsymbol{y}}-\boldsymbol{v}$ (which is in $W$ ).
Since $\boldsymbol{y}-\boldsymbol{v}=(\boldsymbol{y}-\widehat{\boldsymbol{y}})+(\hat{\boldsymbol{y}}-\boldsymbol{v})$ the Pythagorean Theorem gives

$$
\|\boldsymbol{y}-\boldsymbol{v}\|^{2}=\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|^{2}+\|\widehat{\boldsymbol{y}}-\boldsymbol{v}\|^{2} .
$$

Now $\|\widehat{\boldsymbol{y}}-\boldsymbol{v}\|^{2}>0$ because $\widehat{\boldsymbol{y}}-\boldsymbol{v} \neq \mathbf{0}$. So the inequality follows.

## Example

- Let $\boldsymbol{u}_{1}=\left[\begin{array}{r}2 \\ 5 \\ -1\end{array}\right], \boldsymbol{u}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right], \boldsymbol{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $W=\operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$.
Find the closest point in $W$ to $\boldsymbol{y}$.
- We have, by the theorem,

$$
\begin{aligned}
\widehat{\boldsymbol{y}} & =\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{1}}{\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}} \boldsymbol{u}_{1}+\frac{\boldsymbol{y} \cdot \boldsymbol{u}_{2}}{\boldsymbol{u}_{2} \cdot \boldsymbol{u}_{2}} \boldsymbol{u}_{2} \\
& =\frac{9}{30}\left[\begin{array}{r}
2 \\
5 \\
-1
\end{array}\right]+\frac{3}{6}\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
\frac{3}{5} \\
\frac{3}{2} \\
-\frac{3}{10}
\end{array}\right]+\left[\begin{array}{r}
-1 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{r}
-\frac{2}{5} \\
2 \\
\frac{1}{5}
\end{array}\right] .
\end{aligned}
$$

## Example

- The distance from a point $\boldsymbol{y}$ in $\mathbb{R}^{n}$ to a subspace $W$ is defined as the distance from $\boldsymbol{y}$ to the nearest point in $W$.
Find the distance from $\boldsymbol{y}$ to $W=\operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$, where

$$
\boldsymbol{y}=\left[\begin{array}{r}
-1 \\
-5 \\
10
\end{array}\right], \quad \boldsymbol{u}_{1}=\left[\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right], \quad \boldsymbol{u}_{2}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] .
$$

- By the theorem, the distance from $\boldsymbol{y}$ to $W$ is $\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|$ where $\widehat{\boldsymbol{y}}=\operatorname{proj}_{W} \boldsymbol{y}$. Since $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ is an orthogonal basis for $W$,

$$
\begin{aligned}
\widehat{\boldsymbol{y}} & =\frac{15}{30} \boldsymbol{u}_{1}+\frac{-21}{6} \boldsymbol{u}_{2}=\frac{1}{2}\left[\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right]-\frac{7}{2}\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-8 \\
4
\end{array}\right] \\
\boldsymbol{y}-\hat{\boldsymbol{y}} & =\left[\begin{array}{r}
-1 \\
-5 \\
10
\end{array}\right]-\left[\begin{array}{r}
-1 \\
-8 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
6
\end{array}\right] \\
\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\| & =\sqrt{3^{2}+6^{2}}=\sqrt{45} .
\end{aligned}
$$

## The Case of Orthonormal Bases

- We finally see how the formula for $\operatorname{proj}_{W} \boldsymbol{y}$ is simplified when the basis for $W$ is an orthonormal set:


## Theorem

If $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right\}$ is an orthonormal basis for a subspace $W$ of $\mathbb{R}^{n}$, then

$$
\operatorname{proj}_{W} \boldsymbol{y}=\left(\boldsymbol{y} \cdot \boldsymbol{u}_{1}\right) \boldsymbol{u}_{1}+\left(\boldsymbol{y} \cdot \boldsymbol{u}_{2}\right) \boldsymbol{u}_{2}+\cdots+\left(\boldsymbol{y} \cdot \boldsymbol{u}_{p}\right) \boldsymbol{u}_{p}
$$

If $U=\left[\begin{array}{llll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{p}\end{array}\right]$, then

$$
\operatorname{proj}_{w} \boldsymbol{y}=U U^{T} \boldsymbol{y}, \quad \text { for all } y \text { in } \mathbb{R}^{n} .
$$

- The first formula follows immediately from the Orthogonal Decomposition Theorem. Also, it shows that $\operatorname{proj}_{w} \boldsymbol{y}$ is a linear combination of the columns of $U$ using the weights $\boldsymbol{y} \cdot \boldsymbol{u}_{1}, \boldsymbol{y} \cdot \boldsymbol{u}_{2}, \ldots$, $\boldsymbol{y} \cdot \boldsymbol{u}_{p}$. The weights can be written as $\boldsymbol{u}_{1}^{T} \boldsymbol{y}, \ldots ; \boldsymbol{u}_{2}^{T} \boldsymbol{y}, \ldots, \boldsymbol{u}_{p}^{T} \boldsymbol{y}$, showing that they are the entries in $U^{T} \boldsymbol{y}$.

