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Subsection 1

Inner Product, Length, Orthogonality
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Orthogonality Inner Product, Length, Orthogonality

The Inner Product

If u and v are vectors in Rn, then we regard u and v as n × 1
matrices.

The transpose u
T is a 1× n matrix, and the matrix product u

T
v is a

1× 1 matrix, which we write as a single real number (a scalar)
without brackets.

The number u
T
v is called the inner product of u and v , and often

it is written as u · v .
This inner product is also referred to as a dot product.

The inner product of u and v is

u · v = u
T
v = [u1 u2 · · · un]




v1
v2
...
vn


 = u1v1 + u2v2 + · · ·+ unvn.
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Orthogonality Inner Product, Length, Orthogonality

Example

Compute u · v and v · u for u =




2
−5
−1


 and v =




3
2

−3


.

We have

u · v = u
T
v = [2 − 5 − 1]




3
2

−3




= 2 · 3 + (−5) · 2 + (−1) · (−3) = − 1;

v · u = v
T
u = [3 2 − 3]




2
−5
−1




= 3 · 2 + 2 · (−5) + (−3) · (−1) = − 1.
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Orthogonality Inner Product, Length, Orthogonality

Properties of Inner Product

Theorem

Let u, v and w be vectors in Rn, and let c be a scalar. Then:

(a) u · v = v · u;
(b) (u + v) · w = u · w + v · w ;

(c) (cu) · v = c(u · v) = u · (cv );
(d) u · u ≥ 0, and u · u = 0 if and only if u = 0.

Properties (b) and (c) can be combined several times to produce the
following useful rule:

(c1u1 + · · ·+ cpup) · w = c1(u1 · w) + · · · + cp(up · w).

George Voutsadakis (LSSU) Linear Algebra August 2017 6 / 49



Orthogonality Inner Product, Length, Orthogonality

Length of a Vector

If v is in Rn, with entries v1, . . . , vn, then the square root of v · v is
defined because v · v is nonnegative.

Definition

The length (or norm) of v is the nonnegative scalar ‖v‖ defined by

‖v‖ =
√

v · v =
√

v21 + v22 + · · ·+ v2n , and ‖v‖2 = v · v .

Suppose v is in R2, say, v =

[
a

b

]
. If

we identify v with a geometric point in the
plane, as usual, then ‖v‖ coincides with
the standard notion of the length of the
line segment from the origin to v .
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Orthogonality Inner Product, Length, Orthogonality

Unit Vectors and Normalization

For any scalar c , the length of cv is |c | times the length of v .

That is,
‖cv‖ = |c |‖v‖.

A vector whose length is 1 is called a unit vector.

If we divide a nonzero vector v by its length - that is, multiply by 1
‖v‖

- we obtain a unit vector u because the length of u is 1
‖v‖‖v‖.

The process of creating u = 1
‖v‖v from v is sometimes called

normalizing v .

We say that u is a unit in the same direction as v .
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Orthogonality Inner Product, Length, Orthogonality

Example

Let v = (1,−2, 2, 0). Find a unit vector u in the same direction as v .

First, compute the length of v :

‖v‖2 = v · v = 12 + (−2)2 + 22 + 02 = 9;

‖v‖ =
√
9 = 3.

Then, multiply v by 1
‖v‖ to obtain

u =
1

‖v‖v =
1

3




1
−2
2
0


 =




1
3

−2
3
2
3

0



.
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Orthogonality Inner Product, Length, Orthogonality

Example

Let W be the subspace of R2 spanned by x = (23 , 1). Find a unit
vector z that is a basis for W .

W consists of all multiples of x .

Any nonzero vector in W is a basis for W .

To simplify the calculation, “scale” x to eliminate fractions, i.e.,

multiply x by 3 to get y =

[
2
3

]
.

Now compute ‖y‖2 = 22 + 32 = 13. So ‖y‖ =
√
13.

We normalize y to get

z =
1√
13

[
2
3

]
=

[ 2√
13
3√
13

]
.

George Voutsadakis (LSSU) Linear Algebra August 2017 10 / 49



Orthogonality Inner Product, Length, Orthogonality

Distance Between Two Vectors

Recall that if a and b are real numbers, the distance on the number
line between a and b is the number |a − b|.

Definition

For u and v in Rn, the distance between u and v , written as dist(u, v),
is the length of the vector u − v . That is,

dist(u, v) = ‖u − v‖.
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Orthogonality Inner Product, Length, Orthogonality

Example

Compute the distance between the vectors u = (7, 1) and v = (3, 2).

Calculate

u − v =

[
7
1

]
−
[
3
2

]
=

[
4

−1

]
;

‖u − v‖ =
√

42 + (−1)2 =
√
17.
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Orthogonality Inner Product, Length, Orthogonality

Example

If u = (u1, u2, u3) and v = (v1, v2, v3), then

dist(u, v) = ‖u − v‖

=
√

(u − v) · (u − v)

=
√

(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2.
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Orthogonality Inner Product, Length, Orthogonality

Orthogonality and Pythagorean Theorem

Definition

Two vectors u and v in Rn are orthogonal (to each other) if u · v = 0.

The zero vector is orthogonal to every vector in Rn because
0T · v = 0 for all v .

Theorem (The Pythagorean Theorem)

Two vectors u and v are orthogonal if and only if ‖u +v‖2 = ‖u‖2+‖v‖2.

We have

‖u + v‖2 = (u + v) · (u + v)
= u · u + u · v + v · u + v · v
= ‖u‖2 + 2u · v + ‖v‖2.

So we get that ‖u + v‖2 = ‖u‖2 + ‖v‖2 if and only if u · v = 0 if and
only if u and v are orthogonal.
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Orthogonality Inner Product, Length, Orthogonality

Orthogonal Complements

If a vector z is orthogonal to every vector in a subspace W of Rn,
then z is said to be orthogonal to W .

The set of all vectors z that are orthogonal to W is called the
orthogonal complement of W .

The orthogonal complement of W is denoted by W⊥ (and read as
“W perpendicular” or simply “W perp”).
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Orthogonality Inner Product, Length, Orthogonality

Example

Let W be a plane through the origin in R3.

Let L be the line through the origin and perpendicular to W .

If z and w are nonzero, z is on L, and w is in W ,
then

the line segment from 0 to z is perpendicular to
the line segment from 0 to w , that is, z ·w = 0.

So each vector on L is orthogonal to every w in W .

In fact, L consists of all vectors that are orthogonal to the w ’s in W ,
and W consists of all vectors orthogonal to the z ’s in L.

That is, L = W⊥ and W = L⊥.
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Orthogonality Inner Product, Length, Orthogonality

Properties of Orthogonal Complements

Theorem

Let W be a subspace of Rn.

1. A vector x is in W⊥ if and only if x is orthogonal to every vector in a
set that spans W .

2. W⊥ is a subspace of Rn.

1. Let W = Span{w 1, . . . ,wp}.
We must show that W⊥ = {w1, . . . ,wp}⊥.
Suppose x is in W⊥. Since w1, . . . ,w p ∈ W , we have
x · w1 = 0, . . . , x · wp = 0. This shows that x is in {w1, . . . ,w p}⊥.
Hence W⊥ ⊆ {w 1, . . . ,wp}⊥.
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Orthogonality Inner Product, Length, Orthogonality

Properties of Orthogonal Complements (Part 1 Cont’d)

Suppose conversely, that x is in {w1, . . . ,wp}⊥. Let w be in W .
Since W = Span{w1, . . . ,w p}, there exist c1, . . . , cp in R, such that

w = c1w1 + · · ·+ cpwp.

Then we have

x · w = x · (c1w1 + · · ·+ cpwp)
= c1(x · w1) + · · · + cp(x · wp)
= c1 · 0 + · · ·+ cp · 0 = 0.

Therefore x is in W⊥. We conclude that {w1, . . . ,w p}⊥ ⊆ W⊥.

Combining both inclusions we get

W⊥ = {w 1, . . . ,wp}⊥.
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Orthogonality Inner Product, Length, Orthogonality

Properties of Orthogonal Complements (Part 2)

2. Recall that to see that W⊥ is a subspace of Rn, we must show that it
contains 0 and that it is closed under addition and scalar
multiplication.

That 0 is in W⊥ is obvious, since, for all w in W , 0 · w = 0.

Suppose, next that x1, x2 are in W⊥. Then we have, for all w in W ,

(x1 + x2) · w = (x1 · w) + (x2 · w) = 0 + 0 = 0.

This proves that x1 + x2 is in W⊥. So W⊥ is closed under addition.

Next let x be in W⊥ and c in R.

Then we get, for all w in W ,

(cx) · w = c(x · w) = c · 0 = 0.

This shows that cx is in W⊥. Therefore, W⊥ is also closed under
scalar multiplication.

We now conclude that W⊥ is a subspace of Rn.

George Voutsadakis (LSSU) Linear Algebra August 2017 19 / 49



Orthogonality Inner Product, Length, Orthogonality

Row Space, Null Space and Complements

Theorem

Let A be an m × n matrix. The orthogonal complement of the row space
of A is the null space of A, and the orthogonal complement of the column
space of A is the null space of AT :

(RowA)⊥ = NulA and (ColA)⊥ = NulAT
.

The row-column rule for computing Ax shows that if x is in NulA,
then x is orthogonal to each row of A (with the rows treated as
vectors in Rn). Since the rows of A span the row space, x is
orthogonal to RowA.
Conversely, if x is orthogonal to RowA, then x is certainly orthogonal
to each row of A. Hence Ax = 0.
Since this statement is true for any matrix, it is true for AT . That is,
the orthogonal complement of the row space of AT is the null space
of AT . This proves the second statement, because RowAT = ColA.
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Orthogonality Orthogonal Sets

Subsection 2

Orthogonal Sets
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Orthogonality Orthogonal Sets

Orthogonal Set of Vectors

A set of vectors {u1, . . . ,up} in Rn is said to be an orthogonal set if
each pair of distinct vectors from the set is orthogonal, that is, if
u i · u j = 0 whenever i 6= j .

Example: Show that {u1,u2,u3} is an orthogonal set, where

u1 =




3
1
1


 , u2 =




−1
2
1


 , u3 =




−1
2

−2
7
2


 .

We check the pairwise inner products:

u1 · u2 = 3(−1) + 1 · 2 + 1 · 1 = 0;

u1 · u3 = 3(−1
2 ) + 1(−2) + 1 · 7

2 = 0;
u2 · u3 = − 1(−1

2) + 2(−2) + 1 · (72 ) = 0.

Each pair of distinct vectors is orthogonal, and so {u1,u2,u3} is an
orthogonal set.
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Orthogonality Orthogonal Sets

Orthogonality and Linear Independence

Theorem

If S = {u1, . . . ,up} is an orthogonal set of nonzero vectors in Rn, then S

is linearly independent and hence is a basis for the subspace spanned by S .

If 0 = c1u1 + · · ·+ cpup for some scalars c1, . . . , cp , then

0 = 0 · u1

= (c1u1 + c2u2 + · · ·+ cpup) · u1

= (c1u1) · u1 + (c2u2) · u1 + · · · + (cpup) · u1

= c1(u1 · u1) + c2(u2 · u1) + · · · + cp(up · u1)
= c1(u1 · u1).

Since u1 is nonzero, u1 · u1 is not zero. So c1 = 0.

Similarly, c2, . . . , cp must be zero.

Thus S is linearly independent.
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Orthogonality Orthogonal Sets

Orthogonal Basis

Definition

An orthogonal basis for a subspace W of Rn is a basis for W that is also
an orthogonal set.

An orthogonal basis is much nicer than other bases because the
weights in a linear combination can be computed easily:

Theorem

Let {u1, . . . ,up} be an orthogonal basis for a subspace W of Rn. For
each y in W , the weights in the linear combination y = c1u1 + · · ·+ cpup

are given by
cj =

y · u j

u j · u j

, j = 1, . . . , p.

The orthogonality of {u1, . . . ,up} shows that
y · u1 = (c1u1 + c2u2 + · · ·+ cpup) · u1 = c1(u1 · u1). Since u1 · u1 is
not zero, the equation above can be solved for c1. To find cj for
j = 2, . . . , p, compute y · u j and solve for cj .
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Orthogonality Orthogonal Sets

Example

S = {u1,u2,u3}, with u1 =




3
1
1


, u2 =




−1
2
1


, u3 =




−1
2

−2
7
2


,

is an orthogonal basis for R3.

Express the vector y =




6
1

−8


 as a linear combination of the

vectors in S .

We compute:
y · u1 = 11, y · u2 = − 12, y · u3 = − 33,

u1 · u1 = 11, u2 · u2 = 6, u3 · u3 =
33
2 .

Now we have
y =

y ·u1

u1·u1
u1 +

y ·u2

u2·u2
u2 +

y ·u3

u3·u3
u3

= 11
11u1 +

−12
6 u2 +

−33
33
2

u3

= u1 − 2u2 − 2u3.
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Orthogonality Orthogonal Sets

An Orthogonal Projection

Given a nonzero vector u in Rn, consider the problem of decomposing
a vector y in Rn into the sum of two vectors, one a multiple of u and
the other orthogonal to u.

We wish to write y = ŷ + z , where ŷ = αu for some scalar α and z

is some vector orthogonal to u.

Given any scalar α, let z = y − αu.

Then z = y − ŷ is orthogonal to u if and only if

0 = (y − αu) · u = y · u − (αu) · u = y · u − α(u · u).

So y = ŷ + z , with z orthogonal to u if and only if

α =
y · u
u · u and ŷ =

y · u
u · u u.

The vector ŷ is called the orthogonal projection of y onto u;

The vector z is called the component of y orthogonal to u.
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Orthogonality Orthogonal Sets

Alternative Notation

If c is any nonzero scalar and if u is replaced by cu in the definition
of ŷ , then the orthogonal projection of y onto cu is exactly the same
as the orthogonal projection of y onto u.

Hence this projection is determined by the subspace L spanned by u

(the line through u and 0).

Sometimes ŷ is denoted by projLy and is called the orthogonal

projection of y onto L.

That is,

ŷ = projLy =
y · u
u · u u.
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Orthogonality Orthogonal Sets

Example

Let y =

[
7
6

]
, u =

[
4
2

]
.

Find the orthogonal projection of y onto u.

Then write y as the sum of two orthogonal vectors, one in Span{u}
and one orthogonal to u.

We compute: y · u = 40, u · u = 20.

The orthogonal projection of y onto u is

ŷ =
y · u
u · u u =

40

20

[
4
2

]
=

[
8
4

]
.

The component of y orthogonal to u is

z = y − ŷ =

[
7
6

]
−

[
8
4

]
=

[
−1
2

]
.

So

[
4
2

]
= ŷ + z =

[
8
4

]
+

[
−1
2

]
.
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Orthogonality Orthogonal Sets

Distance from y to Span{u}

The line segment between y and ŷ is perpendicular to L = Span{u},
by construction of ŷ :

So the point identified with ŷ is the closest point of L to y .

It follows that the distance from y to L is the length of the
perpendicular line segment from y to the orthogonal projection ŷ ,
i.e., ‖y − ŷ‖.
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Orthogonality Orthogonal Sets

Orthonormal Sets

A set {u1, . . . ,up} is an orthonormal set if it is an orthogonal set of
unit vectors.

If W is the subspace spanned by such a set, then {u1, . . . ,up} is an
orthonormal basis for W , since the set is automatically linearly
independent.

The simplest example of an orthonormal set is the standard basis
{e1, . . . , en} for Rn.

Any nonempty subset of {e1, . . . , en} is orthonormal, too.
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Orthogonality Orthogonal Sets

Example

Show that {v1, v2, v3} is an orthonormal basis of R3, where

v1 =




3
√

11
1

√

11
1

√

11


 , v 2 =




− 1
√

6
2
√

6
1
√

6


 , v 3 =




− 1
√

66

− 4
√

66
7

√

66


 .

We first check that {v1, v2, v3} is orthogonal:

v1 · v2 = − 3√
66

+ 2√
66

+ 1√
66

= 0;

v1 · v3 = − 3√
726

− 4√
726

+ 7√
726

= 0;

v2 · v3 = 1√
396

− 8√
396

+ 7√
396

= 0.

Now we check that {v 1, v2, v3} consists of unit vectors:

v1 · v1 = 9
11 + 1

11 +
1
11 = 1;

v2 · v2 = 1
6 +

4
6 + 1

6 = 1;
v3 · v3 = 1

66 + 16
66 +

49
66 = 1.

It follows that {v1, v2, v3} form an orthonormal basis for R3.
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Orthogonality Orthogonal Sets

Matrix With Orthonormal Columns

Theorem

An m × n matrix U has orthonormal columns if and only if UTU = I .

To simplify notation, we suppose that U has only three columns, each
a vector in Rm. The proof of the general case is similar.

Let U = [u1 u2 u3]. Compute

UTU =




u
T
1

u
T
2

u
T
3


 [u1 u2 u3] =




u
T
1 u1 u

T
1 u2 u

T
1 u3

u
T
2 u1 u

T
2 u2 u

T
2 u3

u
T
3 u1 u

T
3 u2 u

T
3 u3


 .

The entries in the matrix at the right are inner products, using
transpose notation. The columns of U are orthogonal if and only if
u
T
1 u2 = u

T
2 u1 = 0, u

T
1 u3 = u

T
3 u1 = 0 and u

T
2 u3 = u

T
3 u2 = 0. The

columns of U all have unit length if and only if u
T
1 u1 = 1, u

T
2 u2 = 1

and u
T
3 u3 = 1. The theorem now follows by looking at the matrix.
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Orthogonality Orthogonal Sets

Properties of Matrices With Orthonormal Columns

Theorem

Let U be an m × n matrix with orthonormal columns, and let x and y be
in Rn. Then:

(a) ‖Ux‖ = ‖x‖;
(b) (Ux) · (Uy) = x · y ;
(c) (Ux) · (Uy) = 0 if and only if x · y = 0.

(b) We have (Ux) · (Uy) = (Ux)T (Uy) = x
TUTUy = x

T
y = x · y .

Note that

Property (a) says that the linear mapping x 7→ Ux preserves length;
Property (b) says that the linear mapping x 7→ Ux preserves inner
products;
Property (c) says that the linear mapping x 7→ Ux preserves
orthogonality.
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Orthogonality Orthogonal Sets

Example

Let U =




1√
2

2
3

1√
2

−2
3

0 1
3


, x =

[ √
2
3

]
.

(a) Check that U has orthonormal columns by computing UTU .
(b) Verify that ‖Ux‖ = ‖x‖.

(a)

UTU =

[
1√
2

1√
2

0
2
3 −2

3
1
3

]


1√
2

2
3

1√
2

−2
3

0 1
3


 =

[
1 0
0 1

]
.

(b)

Ux =




1√
2

2
3

1√
2

−2
3

0 1
3



[ √

2
3

]
=




3
−1
1


 ;

‖Ux‖ =
√
9 + 1 + 1 =

√
11 = ‖x‖.
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Orthogonality Orthogonal Sets

Orthogonal Matrices

An orthogonal matrix is a square invertible matrix U such that

U−1 = UT
.

By a previous theorem, such a matrix has orthonormal columns.

It is easy to see that any square matrix with orthonormal columns is
an orthogonal matrix.

Surprisingly, such a matrix must have orthonormal rows, too.
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Orthogonality Orthogonal Projections

Subsection 3

Orthogonal Projections
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Orthogonality Orthogonal Projections

Orthogonal Projection

Consider a vector y and a subspace W in Rn.

There is a vector ŷ in W such that:

(1) ŷ is the unique vector in W for which y − ŷ is orthogonal to W ;
(2) ŷ is the unique vector in W closest to y .
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Orthogonality Orthogonal Projections

Decompositions

Whenever a vector y is written as a linear combination of vectors
u1, . . . ,un in Rn,

y = c1u1 + c2u2 + · · ·+ cnun,

the terms in the sum for y can be grouped into two parts.

So y can be written as
y = z1 + z2,

where z1 is a linear combination of some of the u i and z2 is a linear
combination of the rest of the u i .

This idea is particularly useful when {u1, . . . ,un} is an orthogonal
basis.

Recall that W⊥ denotes the set of all vectors orthogonal to a
subspace W .
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Orthogonality Orthogonal Projections

Example

Let {u1, . . . ,u5} be an orthogonal basis for R5 and let
y = c1u1 + · · ·+ c5u5.

Consider the subspace W = Span{u1,u2}, and write y as the sum of
a vector z1 in W and a vector z2 in W⊥.
Write

y = c1u1 + c2u2︸ ︷︷ ︸
z 1

+ c3u3 + c4u4 + c5u5︸ ︷︷ ︸
z 2

,

where z1 = c1u1 + c2u2 is in Span{u1,u2} and
z2 = c3u3 + c4u4 + c5u5 is in Span{u3,u4,u5}.
To show that z2 is in W⊥, it suffices to show that z2 is orthogonal to
the vectors in the basis {u1,u2} for W .

Using properties of the inner product, we compute:

z2 · u1 = (c3u3 + c4u4 + c5u5) · u1

= c3u3 · u1 + c4u4 · u1 + c5u5 · u1 = 0.

A similar calculation shows that z2 · u2 = 0.
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Orthogonality Orthogonal Projections

The Orthogonal Decomposition Theorem

Theorem (The Orthogonal Decomposition Theorem)

Let W be a subspace of Rn. Then each y in Rn can be written uniquely
in the form

y = ŷ + z ,

where ŷ is in W and z is in W⊥. In fact, if {u1, . . . ,up} is any
orthogonal basis of W , then

ŷ =
y · u1

u1 · u1
u1 + · · · + y · up

up · up

up

and z = y − ŷ .

The vector ŷ is called the orthogonal projection of y onto W and
often is written as projW y .
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Orthogonality Orthogonal Projections

The Orthogonal Decomposition Theorem (Illustration)

George Voutsadakis (LSSU) Linear Algebra August 2017 41 / 49



Orthogonality Orthogonal Projections

Proof of the Theorem (Existence)

Let {u1, . . . ,up} be any orthogonal basis for W .

Define ŷ by

ŷ =
y · u1

u1 · u1
u1 + · · ·+ y · up

up · up

up.

Then ŷ is in W because ŷ is a linear combination of the basis
u1, . . . ,up. Let z = y − ŷ . Since u1 is orthogonal to u2, . . . ,up, it
follows that

z · u1 = (y − ŷ) · u1 = y · u1 − (
y ·u1

u1·u1
)u1 · u1 − 0 · · · − 0

= y · u1 − y · u1 = 0.

Thus z is orthogonal to u1.

Similarly, z is orthogonal to each u j in the basis for W .

Hence z is orthogonal to every vector in W . That is, z is in W⊥.
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Orthogonality Orthogonal Projections

Proof of the Theorem (Uniqueness)

To show that the decomposition is unique, suppose y can also be
written as

y = ŷ1 + z1,

with ŷ1 in W and z1 in W⊥. Then ŷ + z = ŷ1 + z1 (since both sides
equal y). So

ŷ − ŷ1 = z1 − z .

This equality shows that the vector v = ŷ − ŷ1 is in W and in W⊥

(because z1 and z are both in W⊥, and W⊥ is a subspace). Hence
v · v = 0, which shows that v = 0. This proves that ŷ = ŷ1 and also
z1 = z .
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Orthogonality Orthogonal Projections

Example

Let u1 =




2
5

−1


, u2 =




−2
1
1


, y =




1
2
3


. Observe that

{u1,u2} is an orthogonal basis for W = Span{u1,u2}. Write y as
the sum of a vector in W and a vector orthogonal to W .

The orthogonal projection of y onto W is

ŷ =
y ·u1

u1·u1
u1 +

y ·u2

u2·u2
u2

=
9

30




2
5

−1


+

3

6




−2
1
1


 =




−2
5
2
1
5


 ;

y − ŷ =




1
2
3


−




−2
5
2
1
5


 =




7
5
0

14
5


 .

The desired decomposition of y is y = ŷ + (y − ŷ).
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Orthogonality Orthogonal Projections

The Best Approximation Theorem

Theorem (The Best Approximation Theorem)

Let W be a subspace of Rn, let y be any vector in Rn, and let ŷ be the
orthogonal projection of y onto W . Then ŷ is the closest point in W to
y , in the sense that

‖y − ŷ‖ < ‖y − v‖
for all v in W distinct from ŷ .

The vector ŷ is called the best approximation to y by elements of

W .

The distance from y to v , given by ‖y − v‖, can be regarded as the
“error” of using v in place of y .

Then the theorem says that this error is minimized when v = ŷ .
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Orthogonality Orthogonal Projections

Proof of Best Approximation Theorem

Take v in W distinct from ŷ . Then ŷ − v is in W .

By the Orthogonal Decomposition Theorem, y − ŷ is orthogonal to
W . In particular, y − ŷ is orthogonal to ŷ − v (which is in W ).

Since y − v = (y − ŷ) + (ŷ − v) the Pythagorean Theorem gives

‖y − v‖2 = ‖y − ŷ‖2 + ‖ŷ − v‖2.
Now ‖ŷ − v‖2 > 0 because ŷ − v 6= 0. So the inequality follows.
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Orthogonality Orthogonal Projections

Example

Let u1 =




2
5

−1


, u2 =




−2
1
1


, y =




1
2
3


 and

W = Span{u1,u2}.
Find the closest point in W to y .

We have, by the theorem,

ŷ =
y ·u1

u1·u1
u1 +

y ·u2

u2·u2
u2

=
9

30




2
5

−1


+

3

6




−2
1
1




=




3
5
3
2

− 3
10


+




−1
1
2
1
2


 =




−2
5
2
1
5


 .
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Orthogonality Orthogonal Projections

Example

The distance from a point y in Rn to a subspace W is defined as the
distance from y to the nearest point in W .
Find the distance from y to W = Span{u1,u2}, where

y =




−1
−5
10


 , u1 =




5
−2
1


 , u2 =




1
2

−1


 .

By the theorem, the distance from y to W is ‖y − ŷ‖ where
ŷ = projW y . Since {u1,u2} is an orthogonal basis for W ,

ŷ =
15

30
u1 +

−21

6
u2 =

1

2




5
−2
1


− 7

2




1
2

−1


 =




−1
−8
4


 ,

y − ŷ =




−1
−5
10


−




−1
−8
4


 =




0
3
6


 ,

‖y − ŷ‖ =
√
32 + 62 =

√
45.
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Orthogonality Orthogonal Projections

The Case of Orthonormal Bases

We finally see how the formula for projW y is simplified when the
basis for W is an orthonormal set:

Theorem

If {u1, . . . ,up} is an orthonormal basis for a subspace W of Rn, then

projW y = (y · u1)u1 + (y · u2)u2 + · · · + (y · up)up .

If U = [u1 u2 · · · up], then

projW y = UUT
y , for all y in Rn.

The first formula follows immediately from the Orthogonal
Decomposition Theorem. Also, it shows that projW y is a linear
combination of the columns of U using the weights y · u1, y · u2, . . .,
y · up . The weights can be written as u

T
1 y , . . .; u

T
2 y , . . ., u

T
p y ,

showing that they are the entries in UT
y .
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