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Orthogonality Inner Product, Length, Orthogonality

Subsection 1

Inner Product, Length, Orthogonality
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Orthogonality Inner Product, Length, Orthogonality

The Inner Product

@ If u and v are vectors in R", then we regard u and v as n x 1

matrices.

@ The transpose u” is a 1 x n matrix, and the matrix product u’ v is a

1 x 1 matrix, which we write as a single real number (a scalar)

without brackets.

@ The number u' v is called the inner product of u and v, and often

it is written as u - v.
@ This inner product is also referred to as a dot product.

@ The inner product of u and v is
Vi
-
u-v=u'v=J[ugu - up| . = uivi + Vo + - -+ UpV,.

Vn
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Orthogonality Inner Product, Length, Orthogonality

Example
2 3
@ Computeu-vandv-uforu=| —5 | and v = 2
-1 -3
@ We have
3
u-v = ulv=[2 -5 —1] 2
-3
= 2:34(-5):-2+(-1)-(-3)= —-1;
2
v-u = viu=[32 -3]| -5
-1

= 3.242-(-5)+(-3)-(-1)= — 1.

George Voutsadakis (LSSU) Linear Algebra August 2017 5/49



Orthogonality Inner Product, Length, Orthogonality

Properties of Inner Product

Theorem

Let u, v and w be vectors in R”, and let ¢ be a scalar. Then:
(a) u-v=v-u;

(b) (u+v) - w=u-w+v-w,

(c) (cu)-v=c(u-v)=u-(cv),

(d)

d) u-u>0,and u-u=0if and only if u = 0.

@ Properties (b) and (c) can be combined several times to produce the
following useful rule:

(aur+ -+ cpup) - w=ci(ug - w)+ -+ cp(up - w).
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Orthogonality Inner Product, Length, Orthogonality

Length of a Vector

o If vis in R", with entries vy,..., v,, then the square root of v - v is
defined because v - v is nonnegative.

The length (or norm) of v is the nonnegative scalar ||v|| defined by

Wi=vvv=y/d+vd+-+3 and [v[P=v-v.

@ Suppose v is in R?, say, v = [ 2 ] If
b (a, b)

we identify v with a geometric point in the
plane, as usual, then ||v|| coincides with bl

the standard notion of the length of the
line segment from the origin to v. lal |0
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Orthogonality Inner Product, Length, Orthogonality

Unit Vectors and Normalization

@ For any scalar c, the length of cv is |c| times the length of v.

@ That is,
[ev]l = Ielllv.

@ A vector whose length is 1 is called a unit vector.

@ If we divide a nonzero vector v by its length - that is, multiply by m

- we obtain a unit vector u because the length of u is ﬁHVH

@ The process of creating u = %v from v is sometimes called

vl
normalizing v.

@ We say that u is a unit in the same direction as v.
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Orthogonality Inner Product, Length, Orthogonality

Example

@ Let v =(1,—2,2,0). Find a unit vector u in the same direction as v.

@ First, compute the length of v:

VP = v ov=1+(-22+2+0=9,

V9 =3.

=<
|

1

1 3

1 1| -2 —
u=—v=-— =

2

lvil~ 3 3 :

0

George Voutsadakis (LSSU) Linear Algebra August 2017 9/49



Orthogonality Inner Product, Length, Orthogonality

Example

@ Let W be the subspace of R? spanned by x = (%, 1). Find a unit
vector z that is a basis for W.

@ W consists of all multiples of x.
Any nonzero vector in W is a basis for W'.

To simplify the calculation, “scale” x to eliminate fractions, i.e.,
: 2
multiply x by 3 to get y = 3 |

Now compute |ly||?> = 22 + 32 = 13. So |ly| = V13.
We normalize y to get

w w
|

=g [3]-
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Orthogonality Inner Product, Length, Orthogonality

Distance Between Two Vectors

@ Recall that if a and b are real numbers, the distance on the number
line between a and b is the number |a — b|.

Definition
For u and v in R", the distance between u and v, written as dist(u, v),
is the length of the vector u — v. That is,

dist(u,v) = [ju — v]||.
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Orthogonality Inner Product, Length, Orthogonality

Example

@ Compute the distance between the vectors u = (7,1) and v = (3,2).

o Calculate
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Orthogonality Inner Product, Length, Orthogonality

Example

o If u=(u1,u2,u3) and v = (vq, v2, v3), then
dist(u,v) = |u—v|
= V) @)
= V(= vi)2 + (u2 — v2)2 + (u3 — v3)2.
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Orthogonality Inner Product, Length, Orthogonality

Orthogonality and Pythagorean Theorem

Definition
Two vectors u and v in R"” are orthogonal (to each other) if u-v = 0.
@ The zero vector is orthogonal to every vector in R" because
0" -v=0forall v.

Theorem (The Pythagorean Theorem)

Two vectors u and v are orthogonal if and only if ||u+ v||? = ||ul|? + ||v]|]?.

@ We have

lut+v|®> = (u+v) (u+tv)
= uWU-ut+u-v+v-u+t+v-v
= ull* +2u-v+ v

So we get that ||u+ v|> = ||u||? + ||v||? if and only if u- v = 0 if and
only if u and v are orthogonal.
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Orthogonality Inner Product, Length, Orthogonality

Orthogonal Complements

@ If a vector z is orthogonal to every vector in a subspace W of R”,
then z is said to be orthogonal to W'.

@ The set of all vectors z that are orthogonal to W is called the
orthogonal complement of W.

@ The orthogonal complement of W is denoted by W+ (and read as
“W perpendicular” or simply “W perp").
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Orthogonality Inner Product, Length, Orthogonality

Example

@ Let W be a plane through the origin in R3.
@ Let L be the line through the origin and perpendicular to W.

@ If z and w are nonzero, zison L, and wis in W,

then
w

the line segment from 0 to z is perpendicular to  —_
the line segment from 0 to w, thatis, z- w = 0. 0 z
W

@ So each vector on L is orthogonal to every w in W.

@ In fact, L consists of all vectors that are orthogonal to the w's in W,
and W consists of all vectors orthogonal to the z's in L.

@ Thatis, L= W<, and W = L+,
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Orthogonality Inner Product, Length, Orthogonality

Properties of Orthogonal Complements

Theorem
Let W be a subspace of R".

1. A vector x is in W if and only if x is orthogonal to every vector in a
set that spans W.

2. W+ is a subspace of R".

1. Let W = Span{wy,...,wp}.

We must show that W+ = {wy,...,w,}+.

Suppose x is in W=, Since wy,...,w, € W, we have
x-w;=0,...,x-wp,=0. This shows that x is in {wl,...,wp}L.
Hence W C {wy,...,wp}t.
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Orthogonality Inner Product, Length, Orthogonality

Properties of Orthogonal Complements (Part 1 Cont'd)

@ Suppose conversely, that x is in {w1,...,w,}1. Let w bein W.
Since W = Span{wy,...,w,}, there exist ¢y, ..., cp, in R, such that

w=cwi+- -+ CpWp.
Then we have

x-w = x-(aqwi+---+cpwp)
c(x-wi) 4+ cp(x-wp)
= C1-0+---+Cp-0:0.

Therefore x is in W=. We conclude that {wy,...,w,}+ C W+

Combining both inclusions we get

W = {wy,...,wy}t.
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Orthogonality Inner Product, Length, Orthogonality

Properties of Orthogonal Complements (Part 2)

2. Recall that to see that W is a subspace of R”, we must show that it
contains 0 and that it is closed under addition and scalar
multiplication.

That 0 is in W is obvious, since, for all w in W, 0-w = 0.
Suppose, next that x1, x5 are in W-. Then we have, for all w in W,

(x1+x2) - w=(x1-w)+(x2-w)=0+0=0.

This proves that x; + x2 is in WL, So W is closed under addition.
Next let x be in W= and ¢ in R.
Then we get, for all w in W,

(ex) - w=c(x-w)=c-0=0.
This shows that cx is in W=, Therefore, W is also closed under

scalar multiplication.
We now conclude that W= is a subspace of R”".
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Orthogonality Inner Product, Length, Orthogonality

Row Space, Null Space and Complements

Theorem

Let A be an m x n matrix. The orthogonal complement of the row space
of A is the null space of A, and the orthogonal complement of the column
space of A is the null space of AT:

(RowA): = NulA and (ColA)* = NulAT.

@ The row-column rule for computing Ax shows that if x is in NulA,
then x is orthogonal to each row of A (with the rows treated as
vectors in R"). Since the rows of A span the row space, x is
orthogonal to RowA.

Conversely, if x is orthogonal to RowA, then x is certainly orthogonal
to each row of A. Hence Ax = 0.

Since this statement is true for any matrix, it is true for AT That is,
the orthogonal complement of the row space of AT is the null space
of AT. This proves the second statement, because RowA” = ColA.
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Orthogonality Orthogonal Sets

Subsection 2

Orthogonal Sets
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Orthogonality Orthogonal Sets

Orthogonal Set of Vectors

o A set of vectors {uy,...,up} in R" is said to be an orthogonal set if
each pair of distinct vectors from the set is orthogonal, that is, if
u; - u;j = 0 whenever | # j.
Example: Show that {uj, up, us} is an orthogonal set, where

3 -1 ~3
ui=|11|, wu= 2 |, uz=| -2
1 1 z
We check the pairwise inner products:
up-uy = 3(-1)+1-241-1=0;
ur-uz = 3(-3)+1(-2)+1-2=0;
u-uz = —1(-3)+2(-2)+1-()=0.

Each pair of distinct vectors is orthogonal, and so {u, up, us} is an
orthogonal set.
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Orthogonality Orthogonal Sets

Orthogonality and Linear Independence

If S ={u1,...,up} is an orthogonal set of nonzero vectors in R”, then S
is linearly independent and hence is a basis for the subspace spanned by S.

o If 0 = ciuy + - - - + cpup for some scalars ¢y, ..., cp, then

0 = 0- u;

= (au+ouy+--+cpup)-up
(cur) - ui + (cup) - up + -+ (cpup) - uy
ci(ur- )+ oo(uz-ur)+ -+ cp(up - uy)
= C1(U1 . u1).

Since uy is nonzero, uy - Uy is not zero. So ¢; = 0.
Similarly, o, ..., c, must be zero.
Thus S is linearly independent.
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Orthogonality Orthogonal Sets

Orthogonal Basis

Definition
An orthogonal basis for a subspace W of R" is a basis for W that is also
an orthogonal set.

@ An orthogonal basis is much nicer than other bases because the
weights in a linear combination can be computed easily:

Let {uq,...,up} be an orthogonal basis for a subspace W of R". For
each y in W, the weights in the linear combination y = ciu; + -+ + cup
are gi
given by oy -
Cj_—a J_laap
uj-uj
@ The orthogonality of {uy,...,up,} shows that

y-up = (cui+ cuy+ -+ cpup) - up = ci(uy - uy). Since uy - uy is
not zero, the equation above can be solved for ¢;. To find ¢; for
Jj=2,...,p, compute y - u; and solve for ¢;.
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Orthogonality Orthogonal Sets

Example
1
2
o S={ui,up,uz}, withu; = | 1 |, up = 2 |, uz=1| -2 |,
1 1 z
is an orthogonal basis for R3.
6
Express the vector y = 1 | as a linear combination of the
-8

vectors in S.
@ We compute:
y'U]_:].]., .Y'U2:*127 .Y'U3:*33a

U1-U1:11, U2‘U2:6, U3-U3:%.
Now we have you you yu
_ yu U 3
y = u1u1”+u2u2"+usus3
11

11u1+—uz+ 3 U3
2
= U]_*2U2*2U3.
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Orthogonality Orthogonal Sets

An Orthogonal Projection

@ Given a nonzero vector u in IR"”, consider the problem of decomposing
a vector y in R" into the sum of two vectors, one a multiple of u and
the other orthogonal to u.

@ We wish to write y =y + z, where y = au for some scalar « and z
is some vector orthogonal to u.

@ Given any scalar o, let z=y — au.

@ Then z = y — y is orthogonal to u if and only if

O=(y—au)-u=y-u—(au)-u=y-u—ao(u-u).

@ Soy =y + z, with z orthogonal to u if and only if

y -u Y y -u
a==—— and y="—u.
u-u u-u
@ The vector y is called the orthogonal projection of y onto u;
@ The vector z is called the component of y orthogonal to u.
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Orthogonality Orthogonal Sets

Alternative Notation

@ If c is any nonzero scalar and if u is replaced by cu in the definition
of y, then the orthogonal projection of y onto cu is exactly the same
as the orthogonal projection of y onto w.

@ Hence this projection is determined by the subspace L spanned by u
(the line through u and 0).

@ Sometimes y is denoted by proj,; y and is called the orthogonal
projection of y onto L.

@ That is,
= . y - u
y =proj y =—u.
u-u
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Orthogonality Orthogonal Sets

Example

iy [1]o- 1]

Find the orthogonal projection of y onto w.
Then write y as the sum of two orthogonal vectors, one in Span{u}
and one orthogonal to u.
@ We compute: y-u =40, u-u=20.
The orthogonal projection of y onto u is
P= e m (2] = 4]
Y=uw" " 2027 [4]"

The component of y orthogonal to u is
7 18-t
|6 4 | 2 |
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Orthogonality Orthogonal Sets

Distance from y to Span{u}

@ The line segment between y and y is perpendicular to L = Span{u},
by construction of y:

\ L=Span{u}

@ So the point identified with y is the closest point of L to y.

@ |t follows that the distance from y to L is the length of the
perpendicular line segment from y to the orthogonal projection y,

ie, |ly =yl
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Orthogonality Orthogonal Sets

Orthonormal Sets

@ A set {uy,...,up} is an orthonormal set if it is an orthogonal set of
unit vectors.

o If W is the subspace spanned by such a set, then {uy,...,up} is an
orthonormal basis for W, since the set is automatically linearly
independent.

@ The simplest example of an orthonormal set is the standard basis
{e1,...,ep} for R".
@ Any nonempty subset of {e1,...,e,} is orthonormal, too.
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Orthogonality Orthogonal Sets

Example

@ Show that {v1, v, v3} is an orthonormal basis of R3, where

3 _ 1 __1
vy = Vi | vy = 75| va= Y
Vi1 V6 V66
@ We first check that {vi, vy, v3} is orthogonal:
: _ 3 .2 .1 _yg
Vitva = Ve T Ve T Ve = O
ViV — 3 4 i 7 _ 0
3 V726 726 726 ’
Vo V3 = L _ B aF L_—0
V396 /396 ' /396 :

Now we check that {vi, vy, v3} consists of unit vectors:

9 1 .1 _ 4.
vi-vi = F+4ﬁ—|£ﬁ—1.
Vo-Vy = 6+6+€:1v

— 1,16 , 49 _
V3-V3 = g T T = L

It follows that {v1, va, v3} form an orthonormal basis for R3.
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Orthogonality Orthogonal Sets

Matrix With Orthonormal Columns

Theorem

An m x n matrix U has orthonormal columns if and only if UT U = |.

@ To simplify notation, we suppose that U has only three columns, each
a vector in R™. The proof of the general case is similar.

Let U = [u1 up u3z]. Compute

T T T T
Uu'vu= u2T [ur Uy us] = u2Tu1 U2TU2 U2TU3

The entries in the matrix at the right are inner products, using
transpose notation. The columns of U are orthogonal if and only if
ufu, =u]u; =0, ufus =u]u; =0and u]u; = ulu, =0. The
columns of U all have unit length if and only if u] u; =1, uJuy =1
and u3TU3 = 1. The theorem now follows by looking at the matrix.

George Voutsadakis (LSSU) Linear Algebra August 2017 32 /49



Orthogonality Orthogonal Sets

Properties of Matrices With Orthonormal Columns

Theorem

Let U be an m X n matrix with orthonormal columns, and let x and y be
in R". Then:

(@) lux|l =[xl
(b) (Ux)-(Uy)=x"-y;
(c) (Ux)-(Uy)=0ifandonly if x -y = 0.

(b) We have (Ux) - (Uy) = (Ux)T(Uy) =xTUTUy =xTy =x-y.
o Note that

@ Property (a) says that the linear mapping x — Ux preserves length;

@ Property (b) says that the linear mapping x — Ux preserves inner
products;

o Property (c) says that the linear mapping x — Ux preserves
orthogonality.
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Orthogonality Orthogonal Sets

Example

o Let U= 3

o§|"‘§|"‘
\

x= 7]

W= WIN WIN

(a) Check that U has orthonormal columns by computing U U.
(b) Verify that ||Ux|| = ||x||.

(a)
1 1 % %
L L 9 10
;
UU:[@@A]%% :[01]
3 3 3 0 1
(b) 3
1 2 3
Ux = f 3 [ﬁ]— -1
- L -2 | = ,
o 1 1
|Ux|| = VO+1+1=+11=|x|.
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Orthogonality Orthogonal Sets

Orthogonal Matrices

@ An orthogonal matrix is a square invertible matrix U such that
Ufl _ UT

@ By a previous theorem, such a matrix has orthonormal columns.

@ It is easy to see that any square matrix with orthonormal columns is
an orthogonal matrix.

@ Surprisingly, such a matrix must have orthonormal rows, too.
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Orthogonality Orthogonal Projections

Subsection 3

Orthogonal Projections
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Orthogonality Orthogonal Projections

Orthogonal Projection

@ Consider a vector y and a subspace W in R".
@ There is a vector y in W such that:

(1) y is the unique vector in W for which y — y is orthogonal to W;

~ .

(2) y is the unique vector in W closest to y.

=
=
%L"'%
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Orthogonality Orthogonal Projections

Decompositions

@ Whenever a vector y is written as a linear combination of vectors
uy,...,u,in R",

y=oqau; +cus+ -+ chp,

the terms in the sum for y can be grouped into two parts.
@ So y can be written as
Y =21+ zy,
where z;1 is a linear combination of some of the u; and z5 is a linear
combination of the rest of the u;.

@ This idea is particularly useful when {uy, ..., u,} is an orthogonal
basis.

@ Recall that W+ denotes the set of all vectors orthogonal to a
subspace W.
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Orthogonality Orthogonal Projections

Example

o Let {uy,...,us} be an orthogonal basis for R® and let
y=cqcu;+ -+ Csus.
Consider the subspace W = Span{ui, u,}, and write y as the sum of
a vector z; in W and a vector z5 in W,
@ Write
y = ciuy + QU+ C3U3 + CuUy + CsUs,
Z, Z

where z; = qqu; + cuy is in Span{u;, up} and

Zzp = c3u3 + cquy + csus is in Span{us, uy, us}.

To show that z, is in W, it suffices to show that z5 is orthogonal to
the vectors in the basis {u1, up} for W.

Using properties of the inner product, we compute:

zy-uy = (c3uz+ caus+ csus) - Uy
= QU3 -U|+ cquy-uy+ csus - up = 0.

A similar calculation shows that z; - u, = 0.
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Orthogonality Orthogonal Projections

The Orthogonal Decomposition Theorem

Theorem (The Orthogonal Decomposition Theorem)

Let W be a subspace of R". Then each y in R" can be written uniquely
in the form

y=y+z,
where y is in W and z is in W™. In fact, if {u1,...,up} is any
orthogonal basis of W, then
~ ‘u ‘u
y:uul_i__l_y pup
u - u; up-up

andz=y—y.

@ The vector y is called the orthogonal projection of y onto W and
often is written as projy,y.
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Orthogonality Orthogonal Projections

The Orthogonal Decomposition Theorem (Illustration)

= projy,y
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Orthogonality Orthogonal Projections

Proof of the Theorem (Existence)

o Let {uy,...,up} be any orthogonal basis for W.
Define y by
. -u -u
gL e LBy,
ui - uy Uup-up
Then y is in W because y is a linear combination of the basis
uy,...,up Let z=y —y. Since u; is orthogonal to uy, ..., up, it
follows that
zouy = (y-y) u=y u—(FEu u—0-—0

= y-ur—y-u;=0.

Thus z is orthogonal to u;.
Similarly, z is orthogonal to each u; in the basis for W.

Hence z is orthogonal to every vector in W. That is, z is in W=.
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Orthogonality Orthogonal Projections

Proof of the Theorem (Uniqueness)

@ To show that the decomposition is unique, suppose y can also be
written as

y = ./y\l + Zi,
with y; in W and z; in W+, Then y +z = y; + z; (since both sides
equal y). So
y-y,=2z1—2z
This equality shows that the vector v =y — y; is in W and in W=
(because z; and z are both in W+, and W+ is a subspace). Hence

v - v = 0, which shows that v = 0. This proves that y = y; and also
zZ1 = 2Z.
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Orthogonality Orthogonal Projections

Example
2 -2 1
o Let u; = 5|, u = 1|, y=1| 2 |. Observe that
-1 1 3

{u1,us} is an orthogonal basis for W = Span{uy, us}. Write y as
the sum of a vector in W and a vector orthogonal to W.

@ The orthogonal projection of y onto W is

~ Uy -u;
y = iyl.ul u; + Y u3

ux-u; 9
30 6 N 1|

—1_ | 1 5
B 2 7 7
R 1 ~5 5
y—-y = 2 | — 2 | = 0
3 1 14
| 5 5

The desired decomposition of yisy =y + (y — ¥).
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Orthogonality Orthogonal Projections

The Best Approximation Theorem

Theorem (The Best Approximation Theorem)

Let W be a subspace of R", let y be any vector in R", and let y be the
orthogonal projection of y onto W. Then y is the closest point in W to
Y, in the sense that

ly =yl <lly —vll

for all v in W distinct from y.

@ The vector y is called the best approximation to y by elements of
w.

@ The distance from y to v, given by ||y — v||, can be regarded as the
“error” of using v in place of y.

@ Then the theorem says that this error is minimized when v =y.
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Orthogonality Orthogonal Projections

Proof of Best Approximation Theorem

@ Take v in W distinct from y. Theny — v isin W.

W lly —vll -

By the Orthogonal Decomposition Theorem, y — y is orthogonal to
W. In particular, y — y is orthogonal to y — v (which is in W).

Sincey —v=(y —y)+ (¥ — v) the Pythagorean Theorem gives
ly = vI>=lly =[P+ ly — v|*.
Now ||y — v||?> > 0 because ¥ — v # 0. So the inequality follows.
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Example
2
o Let u; = 5
—1

Orthogonality Orthogonal Projections

—2 1
, Uy = 1 Yy = 2
1 3

W = Span{ui, us}.
Find the closest point in W to y.
@ We have, by the theorem,

y

George Voutsadakis (LSSU)

y-u y-u>
u,;-u; uy + u>-u, uz

2 )
9 3
= 2 1
0| 2|76 [
3
3 1

3 1
2 i
10 2
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Orthogonality Orthogonal Projections

Example

@ The distance from a point y in R"” to a subspace W is defined as the
distance from y to the nearest point in W.
Find the distance from y to W = Span{uj, u>}, where

-1 5 1
y=| 5|, mi=| -2 |, u= 2
10 1 =1

@ By the theorem, the distance from y to W is ||y — y|| where
y = projyyy. Since {u1,us} is an orthogonal basis for W,

~ 15 -21 1 7
y = —um+—u==-|-2|-= 2 | = -8 |,
30 6 2 1 2 1 4
-1 -1 0
y-y = S 8 =13],
10 4 6

ly-3I = VEFE-VE.
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Orthogonality Orthogonal Projections

The Case of Orthonormal Bases

@ We finally see how the formula for projy,y is simplified when the
basis for W is an orthonormal set:

If {u1,...,up} is an orthonormal basis for a subspace W of R”, then

projwy = (y - u)ur + (y - u2)uz + -+ (y - up)up.
If U= [uy ux --- up], then

projywy = UUTy, forall y in R".

@ The first formula follows immediately from the Orthogonal
Decomposition Theorem. Also, it shows that proj, y is a linear
combination of the columns of U using the weights y - uy, y - uo, ...,
y - up. The weights can be written as ufy, ...; uly, ..., uly,
showing that they are the entries in UTy.
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