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Introduction Automata, Computability and Complexity

Theory of Computation

The theory of computation includes three central areas:
automata;
computability;
complexity.

They are linked by the question:

What are the fundamental capabilities and limitations of
computers?

The question goes back to the 1930s when mathematical logicians
first began to explore the meaning of computation.

Technological advances have increased computing capabilities and
have made this question of significant practical concern.

In each of the three areas the question is interpreted differently, and
the answers vary according to the interpretation.

This set of notes deals primarily with automata and computability;
complexity is dealt with in another companion set.
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Introduction Automata, Computability and Complexity

Complexity Theory

Some computer problems are easy, and some are hard.

The sorting problem is an easy one: Even a small computer can sort a
million numbers very quickly.
Scheduling problems are hard: Finding a schedule of classes for the
entire university to satisfy some reasonable constraints (e.g., no two
classes take place in the same room at the same time) seems to be
much harder than the sorting problem. Finding the best schedule may
require centuries, even with a supercomputer.

What makes some problems computationally hard and others easy?
This is the central question of complexity theory.

Even though the answer to this question is still not known,
researchers have discovered an elegant scheme for classifying
problems according to their computational difficulty.

This may be viewed as analogous to the periodic table for classifying
elements according to their chemical properties.
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Introduction Automata, Computability and Complexity

Hard Problems: Options and Advantages

If a problem appears to be computationally hard:
By understanding which aspect of the problem is at the root of the
difficulty, alter it so that the problem is more easily solvable.
Settle for less than a perfect solution to the problem, e.g., an
approximate rather than a perfect solution.
If the problem is hard only in the worst case situation, but easy most of
the time, depending on the application, devise a procedure that is
occasionally slow but usually runs quickly.
Consider alternative types of computation, such as randomized
computation, that can speed up certain tasks.

Complexity theory has affected the ancient field of cryptography:
In most fields, an easy computational problem is preferable to a hard
one because easy ones are cheaper to solve.
Cryptography, on the contrary, requires computational problems that
are hard, rather than easy, because secret codes should be hard to
break without the secret key or password. Complexity theory has
pointed cryptographers in the direction of computationally hard
problems around which they have designed revolutionary new codes.
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Introduction Automata, Computability and Complexity

Computability Theory

During the first half of the twentieth century, mathematicians such as
Kurt Gödel, Alan Turing, and Alonzo Church discovered that certain
basic problems cannot be solved by computers.

One example of this phenomenon is the problem of determining
whether a mathematical statement is true or false. It seems like a
natural for solution by computer because it lies strictly within the realm
of mathematics. But no computer algorithm can perform this task.

This result led to the development of theoretical models of computers
that, later, resulted in the construction of actual computers.

The theories of computability and complexity are closely related.

In complexity theory, the objective is to classify problems as easy ones
and hard ones;
In computability theory the classification of problems is by those that
are solvable and those that are not.
Computability theory introduces several of the concepts used in
complexity theory.
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Introduction Automata, Computability and Complexity

Automata Theory

Automata theory deals with the definitions and properties of
mathematical models of computation.

These models play a role in several applied areas of computer science.

One model, called the finite automaton, is used in text processing,
compilers, and hardware design.
Another model, called the context-free grammar, is used in
programming languages and artificial intelligence.

The theories of computability and complexity require a precise
definition of a computer and automata theory provides a good
starting point.

George Voutsadakis (LSSU) Languages and Computation July 2014 8 / 55



Introduction Mathematical Notions and Terminology

Subsection 2

Mathematical Notions and Terminology

George Voutsadakis (LSSU) Languages and Computation July 2014 9 / 55



Introduction Mathematical Notions and Terminology

Sets

A set is a group of objects represented as a unit.

The objects in a set are called its elements or members.

One way to describe a set is by listing its elements inside braces.

Example: The set {7, 21, 57} contains the elements 7, 21, and 57.

The symbols ∈ and 6∈ denote set membership and nonmembership.

Example: We write 7 ∈ {7, 21, 57} and 8 6∈ {7, 21, 57}.
For two sets A and B , we say that A is a subset of B, written A ⊆ B ,
if every member of A also is a member of B .

We say that A is a proper subset of B , written A ( B , if A is a
subset of B and not equal to B .

Order of describing a set or repetitions do not matter.

Example: We get the same set by writing {57, 7, 7, 7, 21}.
If we do want to take the number of occurrences of members into
account we call the group a multiset instead of a set.

Example: {7} and {7, 7} are different as multisets but identical as
sets.
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Introduction Mathematical Notions and Terminology

Infinite Sets and Properties Defining Sets

An infinite set contains infinitely many elements.

Since we cannot list all the elements of an infinite set, we sometimes
use the “. . .” notation to mean “continue the sequence forever”.

Example: The set of natural numbers N is written N = {1, 2, 3, . . .}.
The set of integers Z is written Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
The set with 0 members is called the empty set and is written ∅.
When we want to describe a set containing elements according to
some rule, we write {n : rule about n}.
Example: {n : n = m2 for some m ∈ N} means the set of perfect
squares.
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Introduction Mathematical Notions and Terminology

Union, Intersection and Complements of Sets

If we have two sets A and B , the union of A and B , written A ∪ B , is
the set consisting of all the elements in A or in B .

The intersection of A and B , written A ∩ B , is the set of elements
that are in both A and B .

The complement of A, written A, is the set of all elements under
consideration that are not in A.

To illustrate concepts involving sets, we use Venn diagrams.

Example: Let START-t be the set of all English words that start with
the letter “t” and END-z the set of English words that end with “z”:
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Introduction Mathematical Notions and Terminology

Venn Diagrams

To represent both sets in the same Venn diagram we must draw them
so that they overlap, indicating that they share some elements, e.g.,
the word “topaz” is in both sets.

The figure also contains a circle for the set START-j. This circle does
not overlap the circle for START-t because no word lies in both sets.

The two Venn diagrams on the right depict the union and intersection
of sets A and B .
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Introduction Mathematical Notions and Terminology

Sequences and Tuples

A sequence of objects is a list of these objects in some order. We
usually designate a sequence by writing the list within parentheses.

Example: The sequence 7, 21, 57 would be written (7, 21, 57).

Unlike in a set, in a sequence the order does matter.

Example: The sequence (7, 21, 57) is not the same as (57, 7, 21).

Similarly, repetition does matter in a sequence, but it does not matter
in a set.

Example: (7, 7, 21, 57) is different from both (7, 21, 57) and
(57, 7, 21), whereas the set {7, 21, 57} is identical to the set
{7, 7, 21, 57}.
Finite sequences often are called tuples. A sequence with k elements
is a k-tuple.

Example: (7, 21, 57) is a 3-tuple. A 2-tuple is also called a pair.

Sets and sequences may appear as elements of other sets and
sequences.

George Voutsadakis (LSSU) Languages and Computation July 2014 14 / 55



Introduction Mathematical Notions and Terminology

Power Sets and Cartesian Products

The power set of A is the set of all subsets of A.

Example: If A = {0, 1}, the power set of A is {∅, {0}, {1}, {0, 1}}.
If A and B are two sets, the Cartesian product or cross product of
A and B , written A× B , is the set of all pairs with first element in A

and second element in B .

Example: If A = {1, 2} and B = {x , y , z},
A× B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}.
The Cartesian product of k sets, A1,A2, . . . ,Ak , written A1 × A2

× · · · × Ak , is the set of all k-tuples (a1, a2, . . . , ak), where ai ∈ Ai .
Example: If A and B are as above,

A× B × A = {(1, x , 1), (1, x , 2), (1, y , 1), (1, y , 2), (1, z , 1), (1, z , 2),
(2, x , 1), (2, x , 2), (2, y , 1), (2, y , 2), (2, z , 1), (2, z , 2)}.

If we have the Cartesian product of A with itself (k factors), we use
the shorthand A× A× · · · × A = Ak .

Example: The set N2 equals N×N. It consists of all pairs of natural
numbers. We also may write it as {(i , j) : i , j ≥ 1}.
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Introduction Mathematical Notions and Terminology

Functions

A function is an object that sets up an input-output relationship; it
takes an input and produces a unique output.

f (a) = b means that f produces output b when the input is a.

A function is also called a mapping, and, if f (a) = b, we say that f

maps a to b and write a
f7→ b.

Example: The absolute value function abs takes a number x as
input and returns x , if x is positive, and −x , if x is negative. Thus
abs(2) = abs(−2) = 2.

Example: Addition is a function, written add. The input to the
addition function is a pair of numbers, and the output is the sum of
those numbers.

The set of possible inputs to the function is called its domain.

The outputs of a function come from a set called its range.

The notation for saying that f is a function with domain D and range
R is f : D → R .
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Introduction Mathematical Notions and Terminology

More on Functions

Example:

In the case of the function abs, if we are working with integers, the
domain and the range are Z, so we write abs : Z → Z.
In the case of the addition function for integers, the domain is the set
of pairs of integers Z×Z and the range is Z, so we write
add : Z×Z → Z.

Note that a function may not necessarily use all the elements of the
specified range. The function abs never takes on the value −1 even
though −1 ∈ Z.

A function that does use all the elements of the range is said to be
onto the range.
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Introduction Mathematical Notions and Terminology

Using Tables to Describe Functions

One way to describe a function is with a procedure for computing an
output from a specified input.

Another way is with a table that lists all possible inputs and gives the
output for each input.

Example: Consider the function f : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4}:
n f (n)

0 1
1 2
2 3
3 4
4 0

This function adds 1 to its input and outputs the result modulo 5.

A number modulo m is the remainder after division by m. When we
do modular arithmetic we define Zm = {0, 1, 2, . . . ,m− 1}. With this
notation, the aforementioned function f has the form f : Z5 → Z5.
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Introduction Mathematical Notions and Terminology

Two-Dimensional Tables

Sometimes a two-dimensional table is used if the domain of the
function is the Cartesian product of two sets.

Example: Consider a function g : Z4 ×Z4 → Z4. The entry at the
row labeled i and the column labeled j in the table is the value of
g(i , j).

g 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

The function g is the addition function modulo 4.
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Introduction Mathematical Notions and Terminology

k-ary Functions

When the domain of a function f is A1 × · · · × Ak for some sets
A1, . . . ,Ak , the input to f is a k-tuple (a1, a2, . . . , ak) and we call the
ai the arguments to f .

A function with k arguments is called a k-ary function, and k is
called the arity of the function.

If k = 1, f has a single argument and f is called a unary function.

If k = 2, f is a binary function.

Certain familiar binary functions are written in a special infix
notation, with the symbol for the function placed between its two
arguments, rather than in prefix notation, with the symbol preceding.

Example: The addition function add is usually written in infix
notation, with the + symbol between its two arguments, as in a + b,
instead of in prefix notation add(a, b).
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Introduction Mathematical Notions and Terminology

Predicates (or Properties) and Relations

A predicate or property is a function whose range is
{TRUE,FALSE}.
Example: Let even be a property that is TRUE if its input is an even
number and FALSE if its input is an odd number. Thus,
even(4) = TRUE and even(5) = FALSE.

A property whose domain is a set of k-tuples A× · · · × A is called a
relation, a k-ary relation, or a k-ary relation on A.

A common case is a 2-ary relation, called a binary relation. When
writing an expression involving a binary relation, we customarily use
infix notation.

Example: “less than” is a relation, usually written with the infix
operation symbol <. “Equality”, written with the = symbol, is
another familiar relation.

If R is a binary relation, a R b means a R b = TRUE.

If R is a k-ary relation, R(a1, . . . , ak) means R(a1, . . . , ak) = TRUE.
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Introduction Mathematical Notions and Terminology

Scissors-Paper-Stone

In Scissors-Paper-Stone, two players simultaneously select a member
of the set {SCISSORS,PAPER, STONE} and indicate their selections
with hand signals. If the two selections are the same, the game starts
over. If the selections differ, one player wins, according to the relation
beats.

beats SCISSORS PAPER STONE
SCISSORS FALSE TRUE FALSE
PAPER FALSE FALSE TRUE
STONE TRUE FALSE FALSE

From this table we determine that SCISSORS beats PAPER is TRUE
and that PAPER beats SCISSORS is FALSE.
Sometimes describing predicates with sets instead of functions is more
convenient. The predicate P : D → {TRUE,FALSE} may be written
(D,S), where S = {a ∈ D : P(a) = TRUE}, or, simply S , if the
domain D is obvious from the context. Hence beats may be written
{(SCISSORS,PAPER), (PAPER,STONE), (STONE,SCISSORS)}.
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Introduction Mathematical Notions and Terminology

Equivalence Relations

A special type of binary relation, called an equivalence relation,
captures the notion of “two objects being equal in some feature”.

A binary relation R is an equivalence relation if R satisfies three
conditions:

1 R is reflexive if, for every x , x R x ;
2 R is symmetric if, for every x , y , x R y implies y R x ;
3 R is transitive if, for every x , y , z , x R y and y R z implies x R z .

Example: Define an equivalence relation on the natural numbers,
written ≡7. For i , j ∈ N, say that i ≡7 j , if i − j is a multiple of 7.
This is an equivalence relation because it satisfies the three
conditions:

1 It is reflexive, as i − i = 0, which is a multiple of 7.
2 It is symmetric, as j − i is a multiple of 7 if i − j is a multiple of 7.
3 It is transitive, as whenever i − j is a multiple of 7 and j − k is a

multiple of 7, then i − k = (i − j) + (j − k) is the sum of two multiples
of 7 and, hence, also a multiple of 7.
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Introduction Mathematical Notions and Terminology

Graphs

An undirected graph, or simply a graph, is a set of points with lines
connecting some of the points.

The points are called nodes or
vertices, and the lines are called
edges. The number of edges at
a particular node is the degree of
that node.

Example: In the graph on the left, all the nodes have degree 2. In the
graph on the right all the nodes have degree 3.

No more than one edge is allowed between any two nodes.

In a graph G that contains nodes i and j , the pair (i , j) represents the
edge that connects i and j . The order of i and j does not matter in
an undirected graph, i.e., (i , j) and (j , i) represent the same edge.
Sometimes we describe edges with sets, as in {i , j}, instead of pairs,
if the order of the nodes is unimportant.
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Introduction Mathematical Notions and Terminology

Representing Graphs

If V is the set of nodes and E of edges of G , we say G = (V ,E ).

We can describe a graph formally by specifying V and E .

Example: A formal description of the graph
on the right is:
({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4),
(4, 5), (5, 1)}).

Graphs frequently are used to represent data.
Nodes might be cities and edges the connecting highways;
Nodes might be electrical components and edges wires between them.

Sometimes, for convenience, we label the nodes and/or edges of a
graph, which then is called a labeled graph.

On the right is a graph whose nodes are cities
and whose edges are labeled with the cost of
the cheapest nonstop air fare, if flying non-
stop between the cities is possible.
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Introduction Mathematical Notions and Terminology

(Induced) Subgraphs

We say that graph G is a (induced) subgraph of graph H if the
nodes of G form a subset of the nodes of H, and the edges of G are
the edges of H on the corresponding nodes.

The following figure shows a graph H and a subgraph G .
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Introduction Mathematical Notions and Terminology

Paths, Cycles and Trees

A path in a graph is a sequence of nodes connected by edges.
A simple path is a path that does not repeat any nodes.
A graph is connected if every two nodes have a path between them.
A path is a cycle if it starts and ends in the same node.
A simple cycle is one that contains at least three nodes and repeats
only the first and last nodes.

A graph is a tree if it is connected and has no simple cycles. A tree
may contain a specially designated node called the root. The nodes
of degree 1 in a tree, other than the root, are called the leaves of the
tree.

George Voutsadakis (LSSU) Languages and Computation July 2014 27 / 55



Introduction Mathematical Notions and Terminology

Directed Graphs

If a graph has arrows instead of lines, the graph is a directed graph

The number of arrows pointing from
a particular node is the outdegree of
that node, and the number of arrows
pointing to a particular node is the in-
degree.

In a directed graph we represent an edge from i to j as a pair (i , j).

The formal description of a directed graph G is (V ,E ), where V is
the set of nodes and E is the set of edges.
Example: The formal description of the graph above is

({1, 2, 3, 4, 5, 6}, {(1, 2), (1, 5), (2, 1), (2, 4), (5, 4), (5, 6), (6, 1), (6, 3)}).
A path in which all the arrows point in the same direction as its steps
is called a directed path.

A directed graph is strongly connected if every two nodes are
connected by a directed path.
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Introduction Mathematical Notions and Terminology

Directed Graphs and Relations

Directed graphs are a handy way of depicting binary relations.

If R is a binary relation whose domain is D × D, a labeled graph
G = (D,E ) represents R , where E = {(x , y) : x R y}.
The binary relation beats recalled on the left is represented (or can be
depicted) by the graph on the right:

beats SCISSORS PAPER STONE

SCISSORS FALSE TRUE FALSE
PAPER FALSE FALSE TRUE
STONE TRUE FALSE FALSE
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Introduction Mathematical Notions and Terminology

Alphabets and Strings

An alphabet is any nonempty finite set. The members of the
alphabet are the symbols of the alphabet.

Capital Greek letters Σ and Γ are used to designate alphabets and a
typewriter font to designate symbols from an alphabet.

Example: The following are a few examples of alphabets.

Σ1 = {0, 1};
Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l, m,

n, o, p, q, r, s, t, u, v, w, x, y, z};
Γ = {0, 1, x, y, z}.

A string over an alphabet is a finite sequence of symbols from that
alphabet, written next to one another and not separated by commas.

Example: If Σ1 = {0, 1}, then 01001 is a string over Σ1. If
Σ2 = {a, b, c, . . . , z}, then abracadabra is a string over Σ2.
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Introduction Mathematical Notions and Terminology

Length, Reverse and Substrings of Strings

If w is a string over Σ, the length of w , written |w |, is the number of
symbols that it contains.

The string of length zero is called the empty string and is written ε.
The empty string plays the role of 0 in a number system.

If w has length n, we can write w = w1w2 . . .wn, where each wi ∈ Σ.

The reverse of w , written wR, is the string obtained by writing w in
the opposite order, i.e., wR = wnwn−1 . . .w1.

String z is a substring of w if z appears consecutively within w .

Example: cad is a substring of abracadabra.
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Introduction Mathematical Notions and Terminology

Concatenation, Lexicographic Ordering and Languages

If we have string x of length m and string y of length n, the
concatenation of x and y , written xy , is the string obtained by
appending y to the end of x , as in x1 . . . xmy1 . . . yn.

To concatenate a string with itself many times we use the superscript

notation

k times
︷ ︸︸ ︷
xx · · · x = xk .

The lexicographic ordering of strings is the same as the familiar
dictionary ordering, except that shorter strings precede longer strings.

Example: The lexicographic ordering of all strings over the alphabet
{0, 1} is (ε, 0, 1, 00, 01, 10, 11, 000, . . .).

A language is a set of strings.
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Introduction Mathematical Notions and Terminology

Boolean Values

Boolean logic is built around the two values TRUE and FALSE.

It was originally conceived of as a pure mathematical construct to
model the laws of thought.

Later, it became the foundation of digital electronics and computer
design.

The values TRUE and FALSE are called the Boolean values and are
often represented by the values 1 and 0.

We use Boolean values in situations with two possibilities, such as

a wire that may have a high or a low voltage;
a proposition that may be true or false;
a question that may be answered yes or no.

We can manipulate Boolean values with specially designed operations,
called the Boolean operations.
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Introduction Mathematical Notions and Terminology

Boolean Operations

The negation or NOT operation, designated with the symbol ¬. The
negation of a Boolean value is the opposite value.

The conjunction, or AND, operation is designated with the symbol
∧. The conjunction of two Boolean values is 1 if both of those values
are 1.

The disjunction, or OR, operation is designated with the symbol ∨.
The disjunction of two Boolean values is 1 if either of those values is
1.

P ¬P
0 1
1 0

P Q P ∧ Q

0 0 0
0 1 0
1 0 0
1 1 1

P Q P ∨ Q

0 0 0
0 1 1
1 0 1
1 1 1
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Introduction Mathematical Notions and Terminology

Operands and Functionality

We use Boolean operations for combining simple statements into
more complex Boolean expressions, just as we use the arithmetic
operations + and × to construct complex arithmetic expressions.

Example: If P is the Boolean value representing the truth of the
statement “the sun is shining” and Q represents the truth of the
statement “today is Monday”, we may write:

P ∧ Q to represent the truth value of the statement
“the sun is shining and today is Monday”;
P ∨ Q to represent the truth value of the statement
“the sun is shining or today is Monday”

The values P and Q are called the operands of the operation.
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Introduction Mathematical Notions and Terminology

Additional Boolean Operations

Several other Boolean operations occasionally appear.

The exclusive or, or XOR, operation is designated by the ⊕ symbol.
It is 1 if either but not both of its two operands are 1.
The equivalence or equality operation, written with the symbol ↔.
It is 1 if both of its operands have the same value.
The implication operation is designated by the symbol →. It is 0 if
its first operand is 1 and its second operand is 0; otherwise → is 1.

P Q P ⊕ Q

0 0 0
0 1 1
1 0 1
1 1 0

P Q P ↔ Q

0 0 1
0 1 0
1 0 0
1 1 1

P Q P → Q

0 0 1
0 1 1
1 0 0
1 1 1
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Introduction Mathematical Notions and Terminology

Logical Equivalences

We can express all Boolean operations in terms of the AND and NOT
operations using some equivalences.

Each row in the following table of equivalences expresses the operation
in the left in terms of operations above it and AND and NOT:

P ∨ Q ≡ ¬(¬P ∧ ¬Q)
P → Q ≡ ¬P ∨ Q

P ↔ Q ≡ (P → Q) ∧ (Q → P)
P ⊕ Q ≡ ¬(P ↔ Q)

The distributive law for AND and OR comes in handy in manipulating
Boolean expressions

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R).
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Subsection 3

Definitions, Theorems and Proofs
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Introduction Definitions, Theorems and Proofs

Definitions, Statements, Proofs, Theorems

Definitions describe the objects and notions that we use. Precision is
essential to any mathematical definition. When defining some object
we must make clear what constitutes that object and what does not.

After we have defined various objects and notions, we usually make
mathematical statements about them. The statement may or may
not be true, but like a definition, it must be precise.

A proof is a convincing logical argument that a statement is true. In
mathematics an argument must be convincing in an absolute sense.
In everyday life or in the law, the standard of proof is lower.

A murder trial demands proof ”beyond any reasonable doubt.” A
mathematician demands proof beyond any doubt.

A theorem is a mathematical statement proved true.

A statement that assists in the proof of another, more significant
statement is called a lemma.

A statement whose truth follows easily from a theorem or its proof is
called a corollary.
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Introduction Definitions, Theorems and Proofs

Some Strategies for Producing Proofs I

Carefully read the statement to be proven.
Break it down and consider each part separately.

A common multipart statement has the form “P if and only if Q”,
often written “P iff Q”, where both P and Q are mathematical
statements. This notation is shorthand for a two-part statement.

The first part is “P only if Q”, which means: If P is true, then Q is
true, written P ⇒ Q.
The second is “P if Q”, which means: If Q is true, then P is true,
written P ⇐ Q.

The first of these parts is the forward direction of the original
statement and the second is the reverse direction. We write “P if and
only if Q” as P ⇔ Q. To prove a statement of this form we must
prove each of the two directions.
Another type of multipart statement states that sets A and B are
equal.

The first part states that A is a subset of B;
the second part states that B is a subset of A.

One way to prove that A = B is to prove that every member of A is
also a member of B and that every member of B is also a member of A.
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Some Strategies for Producing Proofs II

Try to get an intuitive feeling of why a statement should be true.
Experimenting with examples is especially helpful.

If the statement says that all objects of a certain type have a particular
property, pick a few objects of that type and observe that they actually
do have that property.
After doing so, try to find an object that fails to have the property,
called a counterexample.

If the statement is actually true, we will not be able to find a
counterexample.
Seeing where we run into difficulty when attempting to find a
counterexample can help in understanding why the statement is true.
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Comprehending a Mathematical Statement

Suppose we want to prove that, for every graph G , the sum of the
degrees of all the nodes in G is an even number.

First, pick a few graphs and observe this statement in action.

Next, try to find a counterexample, that is, a graph in which the sum
is an odd number.

Can you see why the statement is true and how to prove it?
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Looking at a Special Case of a Statement

If we get stuck trying to prove a statement, we may try something
easier.

Attempt to prove a special case of the statement.

For example, if we are trying to prove that some property is true for
every k > 0, we first try to prove it for k = 1. If we succeed, we try
for k = 2, and so on until we can understand the more general case.

If a special case is hard to prove, we try a different special case or
perhaps a special case of the special case.

Finally, when we believe that we have found the proof, we must

write it up properly. A well-written proof is a sequence of
statements, wherein each one follows by simple reasoning from
previous statements in the sequence.

Carefully writing a proof is important, both to enable a reader to
understand it and to make sure that it is free from errors.
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Tips for Producing a Proof

Be patient: Finding proofs takes time. If we do not see how to do it
right away, we should not worry.

Come back to it: Look over the statement to be proved, think about
it a bit, leave it, and then return a few minutes or hours later. Give
the unconscious, intuitive part of the mind a chance to work.

Be neat: When building an intuition for the statement we are trying
to prove, we should use simple, clear pictures and/or text. In trying
to develop an insight into the statement, sloppiness gets in the way of
insight. Furthermore, when we are writing a solution for another
person to read, neatness will help that person understand it.

Be concise: Brevity helps express high-level ideas without getting lost
in details. Good mathematical notation is useful for expressing ideas
concisely. But we must include enough of the reasoning when writing
up a proof so that the reader can easily understand the argument.
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A Proof of DeMorgan’s Law

Theorem (DeMorgan’s Law)

For any two sets A and B ,

A ∪ B = A ∩ B .

We must show that the two sets A ∪ B and A ∩ B are equal. We may
prove that two sets are equal by showing that every member of one
set is also a member of the other and vice versa.

Suppose that x is an element of A ∪ B. Then x is not in A ∪ B from
the definition of the complement of a set. Therefore x is not in A and
x is not in B, from the definition of the union of two sets. In other
words, x is in A and x is in B. Hence, by the definition of the
intersection of two sets, x is in A ∩ B.
For the other direction, suppose that x is in A ∩ B . Then x is in both
A and B. Therefore x is not in A and x is not in B, and, thus, not in
the union of these two sets. Hence x is in the complement of the union
of these sets; in other words, x is in A ∪ B.
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The Sum of Degrees of Vertices

Theorem

For every graph G , the sum of the degrees of all the nodes in G is an even
number.

Every edge in G is connected to two nodes. Each edge contributes 1
to the degree of each node to which it is connected. Therefore, each
edge contributes 2 to the sum of the degrees of all the nodes. Hence,
if G contains e edges, then the sum of the degrees of all the nodes of
G is 2e, which is an even number.
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Subsection 4

Types of Proof
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Proof by Construction

Many theorems state that a particular type of object exists.

One way to prove such a theorem is by demonstrating how to
construct the object.

This technique is a proof by construction.

Definition (k-Regular Graph)

A graph is called k-regular if every node in the graph has degree k .

Theorem

For each even number n > 2, there exists a 3-regular graph with n nodes.

Let n be an even number greater than 2. Construct graph
G = (V ,E ) with n nodes as follows:

The set of nodes of G is V = {0, 1, . . . , n − 1};
The set of edges of G is the set

E = {{i , i + 1} : 0 < i < n − 2} ∪ {{n− 1, 0}}
∪{{i , i + n

2} : 0 < i < n

2 − 1}.
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Illustration of the Proof

Picture the nodes of this graph written consecutively around the
circumference of a circle.

The edges described in the top line of E go between adjacent pairs
around the circle.
The edges described in the bottom line of E go between nodes on
opposite sides of the circle.

This mental picture clearly shows that every node in G has degree 3.
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Proof by Contradiction

In one common form of argument for proving a theorem, we assume
that the theorem is false and then show that this assumption leads to
an obviously false consequence, called a contradiction.

Example: Jack sees Jill, who has just come in from outdoors. On
observing that she is completely dry, he knows that it is not raining.
His “proof” that it is not raining is:

If it were raining (the assumption that the statement is false),
Jill would be wet (the obviously false consequence).
Therefore it must not be raining.

Definition (Rational and Irrational Numbers)

A number is rational if it is a fraction m

n
, where m and n are integers,

with n 6= 0, i.e., a rational number is the ratio of integers m and n. A
number is irrational if it is not rational.
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Example of Proof by Contradiction

Theorem
√
2 is irrational.

Assume that
√
2 is rational. Thus

√
2 = m

n
, where both m and n are

integers. If both m and n are divisible by the same integer greater
than 1, divide both by that integer. Doing so does not change the
value of the fraction. Now, at least one of m and n must be an odd
number. We multiply both sides of the equation by n and obtain
n
√
2 = m. We square both sides and obtain 2n2 = m2. Because m2

is 2 times the integer n2, we know that m2 is even. Therefore m too,
is even, as the square of an odd number always is odd. So we can
write m = 2k for some integer k . Then, substituting 2k for m, we get
2n2 = (2k)2 = 4k2. Dividing both sides by 2 we obtain n2 = 2k2.
But this result shows that n2 is even and, hence, that n is even. Thus
we have established that both m and n are even. We had earlier
reduced m and n so that they were not both even, a contradiction.
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Proof by Induction

Proof by induction is an advanced method used to show that all
elements of an infinite set have a specified property.

Take the infinite set to be the natural numbers N = {1, 2, 3, . . .}, and
say that the property is called P. Our goal is to prove that P(k) is
true for each natural number k , i.e., we want to prove that P(1) is
true, as well as P(2),P(3),P(4), and so on.

A proof by induction consists of two parts, the basis and the induction
step:

The basis proves that P(1) is true.
The induction step proves that for each i ≥ 1, if P(i) is true, then so is
P(i + 1).

There are variations and generalizations of the same idea:

E.g., the basis does not necessarily need to start with 1; it may start
with any value b. In that case the induction proof shows that P(k) is
true for every k that is at least b.
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Writing Induction Proofs

In the induction step the assumption that P(i) is true is called the
induction hypothesis.

Sometimes having the stronger induction hypothesis that P(j) is true
for every j < i is useful.

The format for writing down a proof by induction is as follows:

Basis: Prove that P(1) is true.
Induction step: For each i ≥ 1:

Assume that P(i) is true;
Use this assumption to show that P(i + 1) is true.
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Monthly Payments of Home Mortgages I

Set up the names and meanings of several variables:
Let P be the principal, the amount of the original loan.
Let I > 0 be the yearly interest rate of the loan, where I = 0.06
indicates a 6% rate of interest.
Let Y be the monthly payment.
Define another variable M from I , for the monthly multiplier. It is the
rate at which the loan changes each month due to the interest on it.
Assuming monthly compounding, we get M = 1 + I

12 .

Two things happen each month.
First, the amount of the loan tends to increase because of the monthly
multiplier.
Second, the amount tends to decrease because of the monthly
payment.

Let Pt be the outstanding amount of the loan after the t-th month.
Then P0 = P is the amount of the original loan;
P1 = MP0 − Y is the amount of the loan after one month;
P2 = MP1 − Y is the amount of the loan after two months, and so on.
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Monthly Payments of Home Mortgages II

Theorem

For each t ≥ 0,
Pt = PMt − Y

(
Mt − 1

M − 1

)

.

Basis: The formula is true for t = 0. If t = 0, then the formula states

that P0 = PM0 − Y
(
M0−1
M−1

)

. We can simplify the right-hand side to

get P0 = P , which holds because we have defined P0 to be P .
Induction step: For each k ≥ 0 assume that the formula is true for
t = k and show that it is true for t = k + 1. Induction hypothesis:

Pk = PMk − Y
(
M

k
−1

M−1

)

. We need: Pk+1 = PMk+1 − Y
(
M

k+1
−1

M−1

)

.

From the definition of Pk+1, from Pk , we know that Pk+1 = PkM − Y ;
Therefore, using the induction hypothesis to calculate Pk ,

Pk+1 =
[

PMk − Y
(

M
k
−1

M−1

)]

M − Y .

Multiplying through by M and rewriting Y yields

Pk+1 = PMk+1 − Y M
k+1

−M

M−1 − Y M−1
M−1 = PMk+1 − Y

(
M

k+1
−1

M−1

)

.
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