
Introduction to Languages and Computation

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Languages and Computation July 2014 1 / 99

Outline

1 Regular Languages
Finite Automata
Nondeterminism
Regular Expressions
Nonregular Languages

George Voutsadakis (LSSU) Languages and Computation July 2014 2 / 99

Regular Languages

Computational Models as Ideal Computers

We begin with the question: “What is a computer?”

Real computers are too complicated to allow for a manageable
mathematical theory.

We replace a real computer by an idealized computer called a
computational model.

As with any scientific model, a computational model may be accurate
in some ways but perhaps not in others.

We will use several different computational models, depending on the
features we want to focus on.

We begin with the simplest model, called the finite state machine or
finite automaton.

George Voutsadakis (LSSU) Languages and Computation July 2014 3 / 99

Regular Languages Finite Automata

Subsection 1

Finite Automata

George Voutsadakis (LSSU) Languages and Computation July 2014 4 / 99

Regular Languages Finite Automata

Finite Automata and Control

Finite automata are good models for computers with an extremely
limited amount of memory.

Computers with such a small memory are still very useful.
Such computers are very common and lie at the heart of various
electromechanical devices.

The controller for an automatic door is an example.
An automatic door has a pad in front to detect the presence of a
person about to walk through the doorway.
Another pad is located to the rear so that the controller can hold the
door open long enough for the person to pass and also so that the door
does not strike someone standing behind it as it opens.

George Voutsadakis (LSSU) Languages and Computation July 2014 5 / 99

Regular Languages Finite Automata

Operation of the Door Controller

The controller is in either of two states: “OPEN” or “CLOSED”.

There are four possible input conditions:
“FRONT” (a person is standing on the pad in front of the doorway);
“REAR” (a person is standing on the pad to the rear of the doorway);
“BOTH” (people are standing on both pads)
“NEITHER” (no one is standing on either pad).

The controller moves from state to state, depending on the input:
When in the CLOSED state and receiving input NEITHER or REAR, it
remains in the CLOSED state. In addition, if the input BOTH is
received, it stays CLOSED. If the input FRONT arrives, it moves to the
OPEN state.
In the OPEN state,
if input FRONT, REAR, or BOTH
is received, it remains in OPEN. If
input NEITHER arrives, it returns
to CLOSED.

George Voutsadakis (LSSU) Languages and Computation July 2014 6 / 99

Regular Languages Finite Automata

Applications and Usefulness

The door controller may also be represented in tabular form:

NEITHER FRONT REAR BOTH

CLOSED CLOSED OPEN CLOSED CLOSED
OPEN CLOSED OPEN OPEN OPEN

It is a computer that has just a single bit of memory.
Other common devices have controllers with larger memories.

In an elevator controller a state may represent the floor the elevator is
on and the inputs might be the signals received from the buttons. This
computer might need several bits to keep track of this information.
Controllers for various household appliances such as dishwashers and
electronic thermostats, as well as parts of digital watches and
calculators, are also examples of computers with limited memories.

The design of such devices uses the methodology of finite automata.
Studying finite automata

clarifies what they are and what they can and cannot do;
allows practicing with mathematical definitions, theorems, and proofs
in a relatively simple setting.

George Voutsadakis (LSSU) Languages and Computation July 2014 7 / 99

Regular Languages Finite Automata

A Finite State Automaton M1

The following figure depicts a finite automaton M1:

It is called the state diagram of M1.

It has three states q1, q2 and q3.

The start state q1 is indicated by the sourceless arrow pointing at it.

The accept state q2 is the one with a double circle.

The arrows going from one state to another are called transitions.

When this automaton receives an input string such as 1101, it
processes that string and produces an output.

The output is either accept or reject.

George Voutsadakis (LSSU) Languages and Computation July 2014 8 / 99

Regular Languages Finite Automata

Operation of M1

The processing begins in M1’s start state.

The automaton receives the symbols from the input string one by one
from left to right.

After reading each symbol, M1 moves from one state to another
along the transition that has that symbol as its label.

When it reads the last symbol, M1 produces its output.

The output is accept if M1 is now in an accept state.
It is reject if it is not.

George Voutsadakis (LSSU) Languages and Computation July 2014 9 / 99

Regular Languages Finite Automata

An Example of the Operation of M1

Example: We feed 1101 to the machine M1:

1. Start in state q1.
2. Read 1, follow transition from q1 to q2.
3. Read 1, follow transition from q2 to q2.
4. Read 0, follow transition from q2 to q3.
5. Read 1, follow transition from q3 to q2.
6. Accept because M1 is in an accept state q2 at the end of the input.

George Voutsadakis (LSSU) Languages and Computation July 2014 10 / 99

Regular Languages Finite Automata

Language Accepted by M1

Experimenting with this machine on a variety of input strings reveals
that it accepts the strings 1, 01, 11, and 0101010101.

In fact, M1 accepts any string that ends with a 1, as it goes to its
accept state q2 whenever it reads the symbol 1.

It also accepts strings 100, 0100, 110000, and 0101000000, and any
string that ends with an even number of 0s following the last 1.

It rejects other strings, such as 0, 10, 101000.

What is the language consisting of all strings that M1 accepts?

George Voutsadakis (LSSU) Languages and Computation July 2014 11 / 99

Regular Languages Finite Automata

Formal Definition: Raison d’être and Components

We need a formal definition for finite automata:
A formal definition is precise. It resolves any uncertainties about what
is allowed in a finite automaton.
A formal definition provides notation. Good notation helps us think
and express thoughts clearly.

A finite automaton has several parts.
It has a set of states and rules for going from one state to another,
depending on the input symbol.
It has an input alphabet that indicates the allowed input symbols.
It has a start state and a set of accept states.

Formally, a finite automaton is a list of those five objects: set of
states, input alphabet, rules for moving, start state, and accept states.

We use a transition function, frequently denoted δ, to define the rules
for moving. If the finite automaton has an arrow from a state x to a
state y labeled with the input symbol 1, the transition function
imposes δ(x , 1) = y .

George Voutsadakis (LSSU) Languages and Computation July 2014 12 / 99

Regular Languages Finite Automata

Definition of Finite Automata

Definition (Finite Automaton)

A finite automaton is a 5-tuple (Q,Σ, δ, q0,F), where

1. Q is a finite set of states,

2. Σ is a finite set called the alphabet,

3. δ : Q × Σ → Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states or final states.

We can use the notation of the formal definition to describe individual
finite automata by specifying each of the five parts listed.

Example: M1 is described formally as M1 = (Q,Σ, δ, q1,F), where

1. Q = {q1, q2, q3},

2. Σ = {0, 1},

3. δ is described as

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

4. q1 is the start state, and

5. F = {q2}.

George Voutsadakis (LSSU) Languages and Computation July 2014 13 / 99

Regular Languages Finite Automata

Language Recognized by a Finite Automaton

If A is the set of all strings that machine M accepts, we say that A is
the language of machine M and write L(M) = A.

We say that M recognizes A or that M accepts A.

Because the term accept has different meanings when we refer to
machines accepting strings and machines accepting languages, we
prefer the term recognize for languages in order to avoid confusion.
A machine may accept several strings, but it always recognizes only
one language.

If the machine accepts no strings, it still recognizes one language, the
empty language ∅.

George Voutsadakis (LSSU) Languages and Computation July 2014 14 / 99

Regular Languages Finite Automata

Example of Language Recognized by a Finite Automaton

Consider again M1:

Let

A = {w : w contains at least one 1 and
an even number of 0s follow the last 1}.

Then L(M1) = A, or equivalently, M1 recognizes A.

George Voutsadakis (LSSU) Languages and Computation July 2014 15 / 99

Regular Languages Finite Automata

Another Example

Consider now the finite automaton M2.

δ 0 1

q1 q1 q2
q2 q1 q2

M2 = ({q1, q2}, {0, 1}, δ, q1 , {q2}), with δ shown above.

When we try the machine on some sample input strings, its method
of functioning often becomes apparent.

On the sample string 1101 the machine M2 starts in its start state q1
and proceeds first to state q2 after reading the first 1, and then to
states q2, q1 and q2 after reading 1, 0 and 1. The string is accepted
because q2 is an accept state.
But string 110 leaves M2 in state q1, so it is rejected.

After trying a few more examples, you would see that M2 accepts all
strings that end in a 1. Thus, L(M2) = {w : w ends in a 1}.

George Voutsadakis (LSSU) Languages and Computation July 2014 16 / 99

Regular Languages Finite Automata

Machine M3

Consider the finite automaton M3:

Machine M3 is similar to M2 except for the accept state.
As usual, the machine accepts all strings that leave it in an accept
state when it has finished reading.
Since the start state is also an accept state, M3 accepts the empty
string ε. As soon as a machine begins reading the empty string it is
at the end, so, if the start state is an accept state, ε is accepted.
In addition to the empty string, this machine accepts any string
ending with a 0:

L(M3) = {w : w is the empty string ε or ends in a 0}.

George Voutsadakis (LSSU) Languages and Computation July 2014 17 / 99

Regular Languages Finite Automata

Machine M4

The following figure shows a five-state machine M4:

M4 has two accept states, q1 and r1,
and operates over the alphabet Σ =
{a, b}.
Some experimentation shows that it ac-
cepts strings a, b, aa, bb and bab, but
not strings ab, ba, or bbba.

This machine begins in state s, and after it reads the first symbol, it
goes either left into the q states or right into the r states.

If the first symbol in the input string is a, then it goes left and accepts
when the string ends with an a.
Similarly, if the first symbol is a b, the machine goes right and accepts
when the string ends in b.

So M4 accepts all strings that start and end with a or that start and
end with b. In other words, M4 accepts strings that start and end
with the same symbol.

George Voutsadakis (LSSU) Languages and Computation July 2014 18 / 99

Regular Languages Finite Automata

Machine M5

Machine M5, shown below, has a four-symbol input alphabet,
Σ = {〈RESET〉, 0, 1, 2}.

Machine M5 keeps a running count of the sum of the numerical input
symbols it reads, modulo 3.

Every time it receives the 〈RESET〉 symbol it resets the count to 0.

It accepts if the sum is 0 modulo 3, i.e., if the sum is a multiple of 3.

George Voutsadakis (LSSU) Languages and Computation July 2014 19 / 99

Regular Languages Finite Automata

Formal Description of Finite Automata

If describing a finite automaton by state diagram is not possible,
either because of size or because the description depends on some
unspecified parameter, we resort to a formal description:
Example: Consider a generalization of M5, using the same
four-symbol alphabet Σ. For each i > 1 let Ai be the language of all
strings where the sum of the numbers is a multiple of i , except that
the sum is reset to 0 whenever the symbol 〈RESET〉 appears. For each
Ai we give a finite automaton Bi , recognizing Ai . Bi is described
formally as Bi = (Qi ,Σ, δi , q0, {q0}):

Qi is the set of i states {q0, q1, q2, . . . , qi−1}.
We design the transition function δi so that for each j , if Bi is in qj ,
the running sum is j , modulo i : For each qj let

δi (qj , 0) = qj ,
δi (qj , 1) = qk , where k = j + 1 (mod i),
δi (qj , 2) = qk , where k = j + 2 (mod i),

δi (qj , 〈RESET〉) = q0.

George Voutsadakis (LSSU) Languages and Computation July 2014 20 / 99

Regular Languages Finite Automata

Regular Languages

Let M = (Q,Σ, δ, q0,F) be a finite automaton and w = w1w2 · · ·wn

be a string where each wi is a member of the alphabet Σ.
Then M accepts w if there exists a sequence of states r0, r1, . . . , rn in
Q satisfying:
1. r0 = q0,
2. δ(ri ,wi+1) = ri+1, for i = 0, . . . , n − 1,
3. rn ∈ F .

Condition 1 says that the machine starts in the start state. Condition
2 says that the machine goes from state to state according to the
transition function. Condition 3 says that the machine accepts its
input if it ends up in an accept state.

We say that M recognizes language A if A = {w : M accepts w}.

Definition (Regular Language)

A language is called a regular language if it is the language recognized by
some finite automaton.

George Voutsadakis (LSSU) Languages and Computation July 2014 21 / 99

Regular Languages Finite Automata

An Example

Consider again machine M5. Let w be 10〈RESET〉22〈RESET〉012.

Then M5 accepts w according to the formal definition of computation
because the sequence of states it enters when computing on w is
q0, q1, q1, q0, q2, q1, q0, q0, q1, q0, which satisfies the three conditions.

The language of M5 is

L(M5) = {w : the sum of the symbols in w is 0 modulo 3
except that 〈RESET〉 resets the count to 0}.

Since M5 recognizes this language, it is a regular language.

George Voutsadakis (LSSU) Languages and Computation July 2014 22 / 99

Regular Languages Finite Automata

Tips for Designing an Automaton

Designing of an automaton is a creative process.

Imagine how a machine would go about performing the relevant task.

It receives an input string and must determine whether it is a member
of the language the automaton is supposed to recognize.
It gets to see the symbols in the string one by one.
After each symbol, it must decide whether the string seen so far is in
the language.
Since it does not know when the end of the string is coming, it must
always be ready with the answer.

In order to make these decisions, it has to remember some
characteristics of the string as it is reading it.

For many languages, it does not need to remember the entire input,
but only certain crucial information.

George Voutsadakis (LSSU) Languages and Computation July 2014 23 / 99

Regular Languages Finite Automata

Designing an Automaton: A Simple Example

Suppose that the alphabet is {0, 1} and that the language consists of
all strings with an odd number of 1s.

Start by getting an input string of 0s and 1s symbol by symbol.

We need to remember whether the number of 1s seen so far is even
or odd and keep track of this information as we read new symbols.

If we read a 1, we flip the answer, but if we read a 0, we leave it as is.

The start state corresponds to the possibility associated with having
seen 0 symbols so far, i.e., even number of 1’s.

The accept states are those corresponding to possibilities where we
want to accept the input string, i.e., odd number of 1s.

George Voutsadakis (LSSU) Languages and Computation July 2014 24 / 99

Regular Languages Finite Automata

Designing an Automaton: Another Example

We would like to design a finite automaton E2 to recognize the regular
language of all strings that contain the string 001 as a substring.

For example, 0010, 1001, 001 are in the language, but 11 and 0000

are not.

As symbols come in, we skip over all 1s.

If we come to a 0, then we note that we may have just seen the first
of the three symbols in the pattern 001 we are seeking.

If at this point we see a 1, there were too few 0s, so we go back to
skipping over 1s.

But if we see a 0 at that point, we remember that we have just seen
two symbols of the pattern.

Now we simply need to continue scanning until seeing a 1.

If we find it, we remember the success in finding the pattern and
continue reading the input string until we get to the end.

George Voutsadakis (LSSU) Languages and Computation July 2014 25 / 99

Regular Languages Finite Automata

Designing an Automaton: Another Example (Cont’d)

Summarizing, there are four possibilities:
1. Have not seen any symbols of the pattern.
2. Have just seen a 0.
3. Have just seen 00.
4. Have seen the entire pattern 001.

Assign the states q, q0, q00 and q001 to these possibilities.
Assign the transitions by observing that

in q reading a 1 we stay in q, but reading a 0 we move to q0;
in q0 reading a 1 we return to q, but reading a 0 we move to q00;
in q00, reading a 1 we move to q001, but reading a 0 leaves us in q00;
in q001 reading a 0 or a 1 leaves us in q001.

The start state is q, and the only accept state is q001.

George Voutsadakis (LSSU) Languages and Computation July 2014 26 / 99

Regular Languages Finite Automata

Regular Operations
We develop a toolbox of techniques to use for

designing automata;
proving that certain languages are nonregular.

In arithmetic, the basic objects are numbers and the tools are
operations, such as +, × etc.

In the theory of computation the objects are languages and the tools
include operations for manipulating them.

We define three operations on languages, called the regular

operations, and use them to study regular languages.
Definition (Regular Operations)

Let A and B be languages. We define the regular operations union,
concatenation and star as follows:

Union: A ∪ B = {x : x ∈ A or x ∈ B}.

Concatenation: A ◦ B = {xy : x ∈ A and y ∈ B}.

Star: A∗ = {x1x2 . . . xk : k ≥ 0 and each xi ∈ A}.

George Voutsadakis (LSSU) Languages and Computation July 2014 27 / 99

Regular Languages Finite Automata

Explanations and Examples

The union operation takes all the strings in both A and B and collects
them together into one language.

The concatenation operation attaches a string from A in front of a
string from B in all possible ways to get the strings in the new
language.

The star operation applies to a single language rather than to two
different languages. It works by attaching any number of strings in A
together to get a string in the new language.

Because “any number” includes 0 as a possibility, the empty string ε is
always a member of A∗, no matter what A is.

Example: Let the alphabet Σ be the standard 26 letters {a, b, . . . , z}.
If A = {good, bad} and B = {boy, girl}, then

A ∪ B = {good, bad, boy, girl},
A ◦ B = {goodboy, goodgirl, badboy, badgirl},
A∗ = {ε, good, bad, goodgood, goodbad, badgood, badbad,
goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, . . .}.

George Voutsadakis (LSSU) Languages and Computation July 2014 28 / 99

Regular Languages Finite Automata

Closure Under Operations

Example: Let N = {1, 2, 3, . . .} be the set of natural numbers.

When we say that N is closed under multiplication we mean that, for
any x and y in N, the product x × y is also in N.
N is not closed under division, as 1 and 2 are in N but 1/2 is not.

A collection of objects is closed under some operation if applying
that operation to members of the collection returns an object still in
the collection.

Our goal is to show that the collection of regular languages is closed
under all three regular operations.

George Voutsadakis (LSSU) Languages and Computation July 2014 29 / 99

Regular Languages Finite Automata

Closure Under Union

Theorem (Closure Under Union)

The class of regular languages is closed under the union operation, i.e., if
A1 and A2 are regular languages, so is A1 ∪ A2.

Since A1 and A2 are regular, we know that some finite automaton M1

recognizes A1 and some finite automaton M2 recognizes A2. To prove
that A1 ∪ A2 is regular, we construct a finite automaton M that
recognizes A1 ∪ A2. M works by simulating simultaneously both M1

and M2 and accepting if either of the simulations accept. We need to
remember the state that each machine would be in if it had read up
to this point in the input.

Since, we need to remember a pair of states, if M1 has k1 states and
M2 has k2 states, M has k1 × k2 states.
The transitions of M go from pair to pair, updating the current state
for both M1 and M2.
The accept states of M are those pairs wherein either M1 or M2 is in
an accept state.

George Voutsadakis (LSSU) Languages and Computation July 2014 30 / 99

Regular Languages Finite Automata

Formal Proof of Closure Under Union

Let M1 recognize A1, where M1 = (Q1,Σ, δ1, q1,F1), and M2

recognize A2, where M2 = (Q2,Σ, δ2, q2,F2). Construct M to
recognize A1 ∪ A2, where M = (Q,Σ, δ, q0,F):
1. Q = {(r1, r2) : r1 ∈ Q1 and r2 ∈ Q2}. This set is the Cartesian product

of sets Q1 and Q2, written Q1 × Q2.
2. The alphabet Σ is the same as in M1 and M2. For simplicity, we

assume that both M1 and M2 have the same input alphabet Σ. If they
have different alphabets, Σ1 and Σ2, we let Σ = Σ1 ∪ Σ2.

3. The transition function δ is defined as follows: For each (r1, r2) ∈ Q

and each a ∈ Σ, let δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a)).
4. q0 is the pair (q1, q2).
5. F is the set of pairs in which either member is an accept state of M1 or

M2, i.e., F = {(r1, r2) : r1 ∈ F1 or r2 ∈ F2} = (Fl × Q2) ∪ (Q1 × F2).

The construction is fairly simple, and, thus, its correctness is evident
from the strategy yielding the construction.

More complicated constructions often require additional discussion to
prove correctness.

George Voutsadakis (LSSU) Languages and Computation July 2014 31 / 99

Regular Languages Finite Automata

Closure Under Concatenation and Nondeterminism

Since the union of two regular languages is regular, the class of
regular languages is closed under union.

Theorem

The class of regular languages is closed under the concatenation operation,
i.e., if A1 and A2 are regular languages, then so is A1 ◦ A2.

To prove this theorem we can start with finite automata M1 and M2

recognizing the regular languages A1 and A2.

We need to construct an automaton M that accepts if its input can
be broken into two pieces, where M1 accepts the first piece and M2

accepts the second piece.

The problem is that M does not know where to break its input (i.e.,
where the first part ends and the second begins).

To solve this problem we introduce a new technique called
nondeterminism.

George Voutsadakis (LSSU) Languages and Computation July 2014 32 / 99

Regular Languages Nondeterminism

Subsection 2

Nondeterminism

George Voutsadakis (LSSU) Languages and Computation July 2014 33 / 99

Regular Languages Nondeterminism

Nondeterminism

In finite automata, every step of a computation follows in a unique
way from the preceding step.

When the machine is in a given state and reads the next input
symbol, we know what the next state will be - it is determined.

We call this deterministic computation.

In a nondeterministic machine, several choices may exist for the
next state at any point.

In a Nondeterministic Finite Automaton (NFA), a state may have zero,
one, or many exiting arrows for each alphabet symbol.
An NFA may have arrows labeled with members of the alphabet or ε.
Zero, one, or many arrows may exit from each state with the label ε.

George Voutsadakis (LSSU) Languages and Computation July 2014 34 / 99

Regular Languages Nondeterminism

Operation of a Nondeterministic Finite Automaton

Consider again the NFA N1:

Say that we are in state q1 and the next input symbol is a 1.

The machine splits into multiple copies of itself and follows all the
possibilities in parallel.

If there are subsequent choices, the machine splits again.

If the next input symbol does not appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy dies.

Finally, if any one of these copies of the machine is in an accept state
at the end of the input, the NFA accepts the input string.

In a state with an ε on an exiting arrow, without reading any input,
the machine splits following an ε-arrow or staying at current state.

George Voutsadakis (LSSU) Languages and Computation July 2014 35 / 99

Regular Languages Nondeterminism

Nondeterminism and Parallelism

Nondeterminism may be viewed as a kind of parallel computation
wherein multiple independent “processes” or “threads” can be
running concurrently.

The NFA splitting to follow several choices corresponds to a process
“forking” into several children, each proceeding separately.
If at least one of these processes accepts, then the entire computation
accepts.

Another way to think of a nondeterministic computation is as a tree
of possibilities:

The root of the tree corresponds to the start of the computation.
Every branching point in the tree corresponds to a point in the
computation at which the machine has multiple choices.
The machine accepts if at least one of the computation branches ends
in an accept state.

George Voutsadakis (LSSU) Languages and Computation July 2014 36 / 99

Regular Languages Nondeterminism

Deterministic versus Nondeterministic Computation

George Voutsadakis (LSSU) Languages and Computation July 2014 37 / 99

Regular Languages Nondeterminism

Sample Run of N1 on Input 010110

George Voutsadakis (LSSU) Languages and Computation July 2014 38 / 99

Regular Languages Nondeterminism

Sample Run of N1 on Input 010

In fact N1 accepts all strings that contain either 101 or 11 as a substring.

George Voutsadakis (LSSU) Languages and Computation July 2014 39 / 99

Regular Languages Nondeterminism

Nondeterminism: Advantages and Example

Nondeterministic finite automata are useful in several respects.

Every NFA can be converted into an equivalent DFA, and constructing
NFAs is sometimes easier than directly constructing DFAs.
An NFA may be much smaller than its deterministic counterpart, or its
functioning may be easier to understand.
Nondeterminism in finite automata is a good introduction to
nondeterminism in more powerful computational models because finite
automata are especially easy to understand.

Example: Let A be the language consisting of all strings over {0, 1}
containing a 1 in the third position from the end (e.g., 000100 is in A

but 0011 is not). The following four-state NFA N2 recognizes A: N2

stays in the start state q1, until it “guesses” that it is three places
from the end. At that point, if the input sym-

bol is a 1, it branches to state q2
and uses q3 and q4 to “check”
whether the guess was correct.

George Voutsadakis (LSSU) Languages and Computation July 2014 40 / 99

Regular Languages Nondeterminism

A DFA Recognizing A

Every NFA can be converted into an equivalent DFA, but sometimes
that DFA may have many more states.

The smallest DFA for A, the language consisting of all strings over
{0, 1} containing a 1 in the third position from the end, contains
eight states.

Understanding the functioning of the NFA is much easier.

George Voutsadakis (LSSU) Languages and Computation July 2014 41 / 99

Regular Languages Nondeterminism

An NFA with a Unary Alphabet

Consider the following NFA N3 that has an input alphabet {0}
consisting of a single symbol.

An alphabet containing only one sym-
bol is called a unary alphabet. This
machine demonstrates the convenience
of having ε arrows.

It accepts all strings of the form 0k where k is a multiple of 2 or 3.
E.g., N3 accepts ε, 00, 000, 0000 and 000000, but not 0 or 00000.
The machine operates by

initially guessing whether to test for a multiple of 2 or a multiple of 3
by branching into either the top loop or the bottom loop;
then checking whether its guess was correct.

George Voutsadakis (LSSU) Languages and Computation July 2014 42 / 99

Regular Languages Nondeterminism

The NFA N4

NFA N4 is given in the following figure:

It accepts the strings ε, a, baba and baa.

It does not accept the strings b, bb and babba.

George Voutsadakis (LSSU) Languages and Computation July 2014 43 / 99

Regular Languages Nondeterminism

Features of Nondeterministic Finite Automata

Like deterministic finite automata, nondeterministic ones have states,
an input alphabet, a transition function, a start state, and a collection
of accept states.

They differ from deterministic ones in the type of transition function.

In a DFA the transition function takes a state and an input symbol and
produces the next state.
In an NFA the transition function takes a state and an input symbol or
the empty string and produces the set of possible next states.

For any set Q we write P(Q) to be the collection of all subsets of Q,
called the power set of Q.

For any alphabet Σ we write Σε to be Σ ∪ {ε}.

The formal description of the type of the transition function in an
NFA is written δ : Q × Σε → P(Q).

George Voutsadakis (LSSU) Languages and Computation July 2014 44 / 99

Regular Languages Nondeterminism

Nondeterministic Finite Automata

Definition (Nondeterministic Finite Automaton)

A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0,F), where:

1 Q is a finite set of states,

2 Σ is a finite alphabet,

3 δ : Q × Σε → P(Q) is the transition function,

4 q0 ∈ Q is the start state, and

5 F ⊆ Q is the set of accept states.

George Voutsadakis (LSSU) Languages and Computation July 2014 45 / 99

Regular Languages Nondeterminism

Example of a Nondeterministic Finite Automaton

Example: Recall the NFA N1:

1 Q = {q1, q2, q3, q4},
2 Σ = {0, 1},
3 δ is given as 0 1 ε

q1 {q1} {q1, q2} ∅
q2 {q3} ∅ {q3}
q3 ∅ {q4} ∅
q4 {q4} {q4} ∅

4 q1 is the start state, and
5 F = {q4}.

George Voutsadakis (LSSU) Languages and Computation July 2014 46 / 99

Regular Languages Nondeterminism

Computation of an NFA

The formal definition of computation for an NFA is similar to that for
a DFA.

Let N = (Q,Σ, δ, q0,F) be an NFA and w a string over the alphabet
Σ. Then we say that N accepts w if w can be written in the form
w = y1y2 · · · ym, where each yi is a member of Σε, and a sequence of
states r0, r1, . . . , rm exists in Q, satisfying the three conditions:

1 r0 = q0;
2 ri+1 ∈ δ(ri , yi+1), for i = 0, . . . ,m − 1, and
3 rm ∈ F .

Condition 1 says that the machine starts out in the start state.
Condition 2 says that state ri+1 is one of the allowable next states
when N is in state ri and reading yi+1.
Condition 3 says that the machine accepts its input if the last state is
an accept state.

George Voutsadakis (LSSU) Languages and Computation July 2014 47 / 99

Regular Languages Nondeterminism

Equivalence of NFAs and DFAs: Proof Idea

Deterministic and nondeterministic finite automata recognize the
same class of languages.

This is surprising because NFAs appear to have more power than DFAs.
It is also useful because describing an NFA for a given language
sometimes is much easier than describing a DFA for that language.

We call two machines equivalent if they recognize the same language.

Theorem (Equivalence of DFAs and NFAs)

Every nondeterministic finite automaton has an equivalent deterministic
finite automaton.

Idea of Proof: The idea is to convert the NFA into an equivalent DFA
that simulates the NFA. For the simulation, we need to keep track of
the set of states in the parallel computation paths of the NFA. If the
NFA has k states, it has 2k subsets of states. Since the DFA must
remember the current set of states, it will have 2k states. We also
need to find the start and accept states and the transition function.

George Voutsadakis (LSSU) Languages and Computation July 2014 48 / 99

Regular Languages Nondeterminism

Proof of the Equivalence I

Let N = (Q,Σ, δ, q0,F) be the NFA recognizing some language A.
We construct a DFA M = (Q ′,Σ, δ′, q′0,F

′) recognizing A.
Before doing the full construction, we first consider the easier case
wherein N has no ε arrows. Later we take the ε arrows into account.

1 Q ′ = P(Q). Every state of M is a set of states of N .
2 For R ∈ Q ′ and a ∈ Σ let δ′(R , a) = {q ∈ Q : q ∈ δ(r , a), for some

r ∈ R}. If R is a state of M , it is also a set of states of N . When M

reads a symbol a in state R , it shows where a takes each state in R .
Because each state may go to a set of states, we take the union of all
these sets. i.e., δ′(R , a) =

⋃

r∈R δ(r , a).
3 q′0 = {q0}. M starts in the state corresponding to the collection

containing just the start state of N .
4 F ′ = {R ∈ Q ′ : R contains an accept state of N}. The machine M

accepts if one of the possible states that N could be in at this point is
an accept state.

George Voutsadakis (LSSU) Languages and Computation July 2014 49 / 99

Regular Languages Nondeterminism

Proof of the Equivalence II

Now we need to consider the ε arrows.

For any state R of M we define E (R) to be the collection of states
that can be reached from R by going only along ε arrows, including
the members of R themselves. Formally, for R ⊆ Q, let

E (R) = {q : q can be reached from R by
traveling along 0 or more ε arrows}.

We modify the transition function of M to place additional fingers on
all states that can be reached by going along ε arrows after every
step. Replacing δ(r , a) by E (δ(r , a)) achieves this effect. Thus,

δ′(R , a) = {q ∈ Q : q ∈ E (δ(r , a)), for some r ∈ R}.

We also modify the start state of M to move the fingers initially to all
possible states that can be reached from the start state of N along
the ε arrows. Changing q′0 to be E ({q0}) achieves this effect.

This completes the construction of the DFA M that simulates N.

George Voutsadakis (LSSU) Languages and Computation July 2014 50 / 99

Regular Languages Nondeterminism

Characterization of Regular Languages Using NFAs

The preceding theorem states that every NFA can be converted into
an equivalent DFA. Thus, nondeterministic finite automata give an
alternative way of characterizing the regular languages:

Corollary (Characterization of Regular Languages Using NFAs)

A language is regular if and only if some nondeterministic finite automaton
recognizes it.

One direction of the “if and only if” condition states that a language
is regular if some NFA recognizes it. The theorem shows that any
NFA can be converted into an equivalent DFA. Consequently, if an
NFA recognizes some language, so does some DFA, and hence the
language is regular.

The other direction of the “if and only if” condition states that if a
language is regular, some NFA must be recognizing it. Obviously, this
condition is true because a regular language has a DFA recognizing it
and any DFA is also an NFA.

George Voutsadakis (LSSU) Languages and Computation July 2014 51 / 99

Regular Languages Nondeterminism

Illustration of the Proof

Consider the machine N4:

The formal description is N4 = (Q, {a, b}, δ, 1, {1}). We construct a
DFA D that is equivalent to N4:

We first determine D’s states. Since N4 has three states, D has eight
states {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
The start state of D is E ({1}), the set of states that are reachable
from 1 by traveling along ε arrows, plus 1 itself. An ε arrow goes from
1 to 3, so E ({1}) = {1, 3}.
The new accept states are those containing N4’s accept state, i.e.,
{{1}, {1, 2}, {1, 3}, {1, 2, 3}}.

George Voutsadakis (LSSU) Languages and Computation July 2014 52 / 99

Regular Languages Nondeterminism

Illustration of the Proof (Transitions)

Finally, we determine D’s transition function.
Each of D’s states goes to one place on input a
and one place on input b.

E.g., in D, state {2} goes to {2, 3} on input a,
because in N4, state 2 goes to both 2 and 3 on
input a and we cannot go farther from 2 or 3
along ε arrows.

State {2} goes to state {3} on input b, because in N4, state 2 goes
only to state 3 on input b and we cannot go farther along ε arrows.

State {1} goes to ∅ on a. It goes to {2} on b.

State {3} goes to {1, 3} on a, because in N4, state 3 goes to 1 on a

and 1 in turn goes to 3 with an ε arrow. State {3} on b goes to ∅.

State {1, 2} on a goes to {2, 3} because 1 points at no states with a

arrows and 2 points at both 2 and 3 with a arrows and neither points
anywhere with ε arrows. State {1, 2} on b goes to {2, 3}.

George Voutsadakis (LSSU) Languages and Computation July 2014 53 / 99

Regular Languages Nondeterminism

Illustration of the Proof (Final Diagrams)

We can simplify the machine since no arrows point at {1} and {1, 2}:

George Voutsadakis (LSSU) Languages and Computation July 2014 54 / 99

Regular Languages Nondeterminism

Idea of Proof of Closure Under Union Using NFAs

We proved closure under union by simulating deterministically both
machines simultaneously via a Cartesian product construction.

We give a new proof using the technique of nondeterminism.

Theorem

The class of regular languages is closed under the union operation.

We have regular languages A1 and A2 and want to prove that A1 ∪A2

is regular. We take two NFAs, N1 and N2 for A1 and A2, and
combine them into one new NFA N. Machine N must accept its
input if either N1 or N2 accepts this input.

The new machine has a new start state that
branches to the start states of the old ma-
chines with ε arrows. Thus, the new ma-
chine nondeterministically guesses which of
the two machines accepts the input. If one
of them accepts the input, N also accepts.

George Voutsadakis (LSSU) Languages and Computation July 2014 55 / 99

Regular Languages Nondeterminism

Proof of Closure Under Union Using NFAs

Let N1 = (Q1,Σ, δ1, q1,F1) recognize A1, and N2 = (Q2,Σ, δ2, q2,F2)
recognize A2. Construct N = (Q,Σ, δ, q0,F) to recognize A1 ∪ A2:

1 Q = {q0} ∪ Q1 ∪ Q2. The states of N are all the states of N1 and N2,
with the addition of a new start state q0.

2 The state q0 is the start state of N .
3 The accept states F = F1 ∪ F2. The accept states of N are all the

accept states of N1 and N2. So N accepts if either N1 accepts or N2

accepts.
4 Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =







δ1(q, a), if q ∈ Q1

δ2(q, a), if q ∈ Q2

{q1, q2}, if q = q0 and a = ε
∅, if q = q0 and a 6= ε

George Voutsadakis (LSSU) Languages and Computation July 2014 56 / 99

Regular Languages Nondeterminism

Idea of Proof of Closure Under Concatenation

Theorem (Closure Under Concatenation)

The class of regular languages is closed under the concatenation operation.

Given regular languages A1 and A2, and want to prove that A1 ◦ A2 is
regular. The idea is to take two NFAs, N1 and N2 for A1 and A2, and
combine them into a new NFA N. Assign N’s start state to be the
start state of N1. The accept states of N1 have additional ε arrows
that nondeterministically allow branching to N2 whenever N1 is in an
accept state, i.e., when it has found an initial piece of the input that
constitutes a string in A1.

The accept states of N are the accept
states of N2 only. Therefore it accepts
when the input can be split into two
parts, the first accepted by N1 and the
second by N2.

George Voutsadakis (LSSU) Languages and Computation July 2014 57 / 99

Regular Languages Nondeterminism

Proof of Closure Under Concatenation

Let N1 = (Q1,Σ, δ1, q1,F1) recognize A1, and N2 = (Q2,Σ, δ2, q2,F2)
recognize A2. Construct N = (Q,Σ, δ, q1,F2) to recognize A1 ◦ A2:

1 Q = Q1 ∪ Q2. The states of N are all the states of N1 and N2.
2 The state q1, is the same as the start state of N1.
3 The accept states F2 are the same as the accept states of N2.
4 Define δ so that for any q ∈ Q and any a ∈ Σ,

δ(q, a) =







δ1(q, a), if q ∈ Q1 and q 6∈ F1

δ1(q, a), if q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q2}, if q ∈ F1 and a = ε
δ2(q, a), if q ∈ Q2

.

George Voutsadakis (LSSU) Languages and Computation July 2014 58 / 99

Regular Languages Nondeterminism

Idea of Proof of Closure Under Star

Theorem (Closure Under Star)

The class of regular languages is closed under the star operation.

We have a regular language A1 and want to prove that A∗

1 also is
regular. We take an NFA N1 for A1 and modify it to recognize A∗

1.
The resulting NFA N will accept its input whenever it can be broken
into several pieces and N1 accepts each piece.

We can construct N like N1 with additional ε arrows returning to the
start state from the accept states.

George Voutsadakis (LSSU) Languages and Computation July 2014 59 / 99

Regular Languages Nondeterminism

Idea of Proof of Closure Under Star

This way, when processing gets to the end of a piece that N1 accepts,
the machine N has the option of jumping back to the start state to
try to read in another piece that N1 accepts.

In addition we must modify N so that it accepts ε, which always is a
member of A∗

1. One (slightly bad) idea is simply to add the start state
to the set of accept states. This approach certainly adds ε to the
recognized language, but it may also add other, undesired strings. To
fix this, we add a new start state, which also is an accept state, and
which has an ε arrow to the old start state.

George Voutsadakis (LSSU) Languages and Computation July 2014 60 / 99

Regular Languages Nondeterminism

Proof of Closure Under Star

Let N1 = (Q1,Σ, δ1, q1,F1) recognize A1. Construct N = (Q,A, δ, q0,
F) to recognize A∗

1.
1 Q = {q0} ∪ Q1. The states of N are the states of N1 plus a new start

state.
2 The state q0 is the new start state.
3 F = {q0} ∪ F1. The accept states are the old accept states plus the

new start state.
4 Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =







δ1(q, a), if q ∈ Q1 and q 6∈ F1

δ1(q, a), if q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q1}, if q ∈ F1 and a = ε
{q1}, if q = q0 and a = ε
∅, if q = q0 and a 6= ε

.

George Voutsadakis (LSSU) Languages and Computation July 2014 61 / 99

Regular Languages Regular Expressions

Subsection 3

Regular Expressions

George Voutsadakis (LSSU) Languages and Computation July 2014 62 / 99

Regular Languages Regular Expressions

Introducing Regular Expressions

In arithmetic, we can use the operations + and x to build up
expressions such as (5 + 3)× 4.

In “language calculus” we can use the regular operations to build up
expressions describing languages, called regular expressions.
Example: (0 ∪ 1)0∗.

The value of a regular expression is a language.
In the example the value is the language consisting of all strings
starting with a 0 or a 1 followed by any number of 0s:

The symbols 0 and 1 are shorthand for the sets {0} and {1}. So (0∪ 1)
means ({0} ∪ {1}). The value of this part is the language {0, 1}.
The part 0∗ means {0}∗. Its value is the language consisting of all
strings containing any number of 0s.
The regular expressions (0 ∪ 1)0∗ actually is shorthand for (0 ∪ 1) ◦ 0∗.
The concatenation attaches the strings from the two parts to obtain
the value of the entire expression.

Regular expressions have an important role in computer science
applications, especially for describing text patterns.

George Voutsadakis (LSSU) Languages and Computation July 2014 63 / 99

Regular Languages Regular Expressions

Examples and Order of Regular Operations

Example: Another regular expression is (0 ∪ 1)∗.
It starts with the language (0 ∪ 1) and applies the ∗ operation. The
value of this expression is the language consisting of all possible
strings of 0s and 1s. If Σ = {0, 1}, we can write Σ as shorthand for
the regular expression (0 ∪ 1) to get (0 ∪ 1)∗ = Σ∗.
More generally, if Σ is any alphabet:

The regular expression Σ describes the language consisting of all
strings of length 1 over this alphabet.
Σ∗ describes the language consisting of all strings over that alphabet.
Σ∗1 is the language that contains all strings that end in a 1.
The language (0Σ∗) ∪ (Σ∗1) consists of all strings that either start
with a 0 or end with a 1.

In arithmetic, we say that × has precedence over + to mean that,
when there is a choice, we do the × operation first.

In regular expressions the order is ∗, ◦,∪, unless parentheses are used
to change the usual order.

George Voutsadakis (LSSU) Languages and Computation July 2014 64 / 99

Regular Languages Regular Expressions

Regular Expressions

Definition (Regular Expression)

We say that R is a regular expression if R is:

1 a, for some a in the alphabet Σ;

2 ε;

3 ∅;

4 (R1 ∪ R2), where R1 and R2 are regular expressions;

5 (R1 ◦ R2), where R1 and R2 are regular expressions;

6 (R∗

1), where R1 is a regular expression.

In items 1 and 2, the regular expressions a and ε represent the languages
{a} and {ε}, respectively. In item 3, the regular expression ∅ represents
the empty language. In items 4, 5, and 6, the expressions represent the
languages obtained by taking the union or concatenation of the languages
R1 and R2, or the star of the language R1, respectively.

Be careful to distinguish the languages represented by ε and ∅.

George Voutsadakis (LSSU) Languages and Computation July 2014 65 / 99

Regular Languages Regular Expressions

Remarks and Notation

In defining a notion in terms of itself, one commits the fallacy of a
circular definition.

Note that in the definition of regular expression, R1 and R2 are always
smaller than R . Thus, regular expressions are defined in terms of
smaller regular expressions avoiding circularity.

A definition of this type is called an inductive definition.

Parentheses in an expression may be omitted, in which case evaluation
is done in the precedence order: star, then concatenation, then union.

For convenience, we let R+ be shorthand for RR∗. So the language
R+ has all strings that are 1 or more concatenations of strings from R .

So R+ ∪ ε = R∗.

Rk is shorthand for the concatenation of k R ’s with each other.

When we want to distinguish between a regular expression R and the
language that it describes, we write L(R) to be the language of R .

George Voutsadakis (LSSU) Languages and Computation July 2014 66 / 99

Regular Languages Regular Expressions

Examples of Regular Expressions and Their Languages

Consider the alphabet Σ = {0, 1}.
0∗10∗ = {w : w contains a single 1}.
Σ∗1Σ∗ = {w : w has at least one 1}.
Σ∗001Σ∗ = {w : w contains the string 001 as a substring}.
1∗(01+)∗ = {w : every 0 in w is followed by at least one 1}.
(ΣΣ)∗ = {w : w is a string of even length}.
(ΣΣΣ)∗ = {w : the length of w is a multiple of three}.
01 ∪ 10 = {01, 10}.
0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1 = {w : w starts and ends with the same symbol}.
(0 ∪ ε)1∗ = 01∗ ∪ 1∗.
The expression 0 ∪ ε describes the language {0, ε}, so the
concatenation operation adds either 0 or ε before every string in 1∗.
(0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}.
1∗∅ = ∅.
Concatenating the empty set to any set yields the empty set.
∅∗ = {ε}.
If the language is empty, the star operation can only put together 0
strings, giving only the empty string.

George Voutsadakis (LSSU) Languages and Computation July 2014 67 / 99

Regular Languages Regular Expressions

Simple Identities Involving Regular Expressions

If we let R be any regular expression, we have the following identities:

R ∪ ∅ = R .
Adding the empty language to any other language will not change it.
R ◦ ε = R .
Joining the empty string to any string will not change it.
However, exchanging ∅ and ε in the preceding identities may cause the
equalities to fail.
R ∪ ε may not equal R .
For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}.
R ◦ ∅ may not equal R .
For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅.

George Voutsadakis (LSSU) Languages and Computation July 2014 68 / 99

Regular Languages Regular Expressions

Equivalence of Regular Languages and Regular Expressions

Even though finite automata and regular expressions appear to be
different, they are equivalent in their descriptive power.

Any regular expression can be converted into a finite automaton that
recognizes the language it describes, and vice versa.

Recall that a regular language is one that is recognized by some finite
automaton.

Theorem (Equivalence of Regular Languages and Regular Expressions)

A language is regular if and only if some regular expression describes it.

This theorem has two directions which are proven as separate lemmas.

George Voutsadakis (LSSU) Languages and Computation July 2014 69 / 99

Regular Languages Regular Expressions

Regular Expressions to Automata

Lemma

If a language is described by a regular expression, then it is regular.

Let R be a regular expression describing some language A. We show
how to convert R into an NFA recognizing A. We consider the six
cases in the formal definition of regular expressions.

1. R = a, for some a ∈ Σ. Then L(R) = {a}, recognized by the NFA:

Formally, N = ({q1, q2},Σ, δ, q1, {q2}), where we describe δ by saying
that δ(q1, a) = {q2} and δ(r , b) = ∅, for r 6= q1 or b 6= a.

2. R = ε. Then L(R) = {ε}. The second NFA recognizes L(R). Formally,
N = ({q1},Σ, δ, q1, {q1}), where δ(r , b) = ∅, for any r and b.

3. R = ∅. Then L(R) = ∅. The last NFA recognizes L(R). Formally,
N = ({q},Σ, δ, q, ∅), where δ(r , b) = ∅, for any r and b.

George Voutsadakis (LSSU) Languages and Computation July 2014 70 / 99

Regular Languages Regular Expressions

Regular Expressions to Automata (Cont’d)

The last three cases in the formal definition of regular expressions:
4. R = R1 ∪ R2.
5. R = R1 ◦ R2.
6. R = R∗

1 . For 4,5 and 6 we use the constructions showing the closure of
the class of regular languages under these operations.

Example: Convert the regular expression (ab ∪ a)∗ to an NFA:

We do not generally get the NFA with the fewest states.

George Voutsadakis (LSSU) Languages and Computation July 2014 71 / 99

Regular Languages Regular Expressions

Another Example

Convert the regular expression (a ∪ b)∗aba to an NFA.

George Voutsadakis (LSSU) Languages and Computation July 2014 72 / 99

Regular Languages Regular Expressions

DFAs to Regular Expressions through GNFAs

Lemma

If a language is regular, then it is described by a regular expression.

We describe a procedure for converting DFAs into equivalent regular
expressions. We use a new type of finite automaton called a
generalized nondeterministic finite automaton, GNFA.

First we show how to convert DFAs into GNFAs.
Then convert GNFAs into regular expressions.

GNFAs are NFAs wherein the transition arrows may have any regular
expressions as labels, instead of only members of Σ or ε.

The GNFA reads blocks of symbols from the input, not necessarily just
one symbol at a time. It moves along transitions by reading blocks of
symbols as described by the regular expressions.
A GNFA is nondeterministic and so may have several different ways to
process the same input string.
It accepts if it can be in an accept state at the end of the input.

George Voutsadakis (LSSU) Languages and Computation July 2014 73 / 99

Regular Languages Regular Expressions

A Generalized Nondeterministic Finite Automaton

George Voutsadakis (LSSU) Languages and Computation July 2014 74 / 99

Regular Languages Regular Expressions

Special Form of GNFAS

For convenience we require that GNFAs always have a special form:
The start state has transition arrows going to every other state but no
arrows coming in from any other state.
There is only a single accept state, and it has arrows coming in from
every other state but no arrows going to any other state. Furthermore,
the accept state is not the same as the start state.
Except for the start and accept states, one arrow goes from every state
to every other state and also from each state to itself.

We can easily convert a DFA into a GNFA in the special form:
We simply add a new start state with an ε arrow to the old start state
and a new accept state with ε arrows from the old accept states.
If any arrows have multiple labels (or if there are multiple arrows going
between the same two states in the same direction), we replace each
with a single arrow whose label is the union of the previous labels.
Finally, we add arrows labeled ∅ between states that had no arrows.
This does not change the language recognized since a transition
labeled with ∅ can never be used.

George Voutsadakis (LSSU) Languages and Computation July 2014 75 / 99

Regular Languages Regular Expressions

Reducing the GNFA’s Number of States

Now we show how to convert a GNFA into a regular expression.
Say that the GNFA has k states.
Because a GNFA must have a start and an accept state and they must
be different, we know that k ≥ 2.
If k > 2, we construct an equivalent GNFA with k − 1 states.

This step can be repeated until the GNFA is reduced to two states.

If k = 2, the GNFA has a single arrow going from the start to the
accept state.

The label of this arrow is the equivalent regular expression.

Example: The stages in converting a DFA with three states to an
equivalent regular expression are:

George Voutsadakis (LSSU) Languages and Computation July 2014 76 / 99

Regular Languages Regular Expressions

Choosing a State to Purge

To construct an equivalent GNFA with one fewer state when k > 2,
we select a state qrip, remove it and repair the remainder so that the
same language is still recognized.

Any state will do, provided that it is not the start or accept state.

After removing qrip we repair the machine by altering the regular
expressions that label each of the remaining arrows.

The new labels compensate for the absence of qrip by adding back the
lost computations.

The new label going from a state qi to a state qj is a regular
expression that describes all strings that would take the machine from
qi to qj either directly or via qrip.

George Voutsadakis (LSSU) Languages and Computation July 2014 77 / 99

Regular Languages Regular Expressions

Purging the Chosen State

If in the old machine qi goes to qrip with an arrow R1, qrip goes to
itself with an arrow R2, qrip goes to qj with an arrow labeled R3, and
qi goes to qj with an arrow R4, then in the new machine the arrow
from qi to qj gets the label (R1)(R2)

∗(R3) ∪ (R4).

We make this change for each arrow going from any state qi to any
state qj , including the case where qi = qj .

George Voutsadakis (LSSU) Languages and Computation July 2014 78 / 99

Regular Languages Regular Expressions

Generalized Nondeterministic Finite Automata

The transition function is δ : (Q − {qaccept})× (Q − {qstart}) → R,
where R is the collection of all regular expressions over the alphabet
Σ, and qstart and qaccept are the start and accept states.

If δ(qi , qj) = R , the arrow from state qi to state qj has the regular
expression R as its label.

Definition (GNFA)

A generalized nondeterministic finite automaton is a 5-tuple
(Q,Σ, δ, qstart, qaccept), where:

1 Q is the finite set of states;

2 Σ is the input alphabet;

3 δ : (Q − {qaccept})× (Q − {qstart}) → R is the transition function;

4 qstart is the start state;

5 qaccept is the accept state.

George Voutsadakis (LSSU) Languages and Computation July 2014 79 / 99

Regular Languages Regular Expressions

Acceptance Condition of a GNFA

A GNFA (Q,Σ, δ, qstart, qaccept) accepts a string w in Σ∗ if
w = w1w2 · · ·wk , where each wi is in Σ∗ and a sequence of states
q0, q1, . . . , qk exists, such that

1 q0 = qstart is the start state,
2 qk = qaccept is the accept state, and
3 for each i , we have wi ∈ L(Ri), where Ri = δ(qi−1, qi); in other words,

Ri is the expression on the arrow from qi−1 to qi .

George Voutsadakis (LSSU) Languages and Computation July 2014 80 / 99

Regular Languages Regular Expressions

Converting a GNFA to a Regular Expression

Returning to the proof, we let M be the DFA for language A. Then
we convert M to a GNFA G by adding a new start state and a new
accept state and additional transition arrows as necessary.

We use the procedure Convert(G), which takes a GNFA and
returns an equivalent regular expression.

Convert(G)

1. Let k be the number of states of G .
2. If k = 2, then G must consist of a start state, an accept state, and a single

arrow connecting them and labeled with a regular expression R . Return the
expression R .

3. If k > 2, select any qrip ∈ Q different from qstart and qaccept and let G ′ be
the GNFA (Q ′,Σ, δ′, qstart, qaccept), where Q ′ = Q − {qrip}, and for any
qi ∈ Q ′ − {qaccept} and any qj ∈ Q ′ − {qstart} let

δ′(qi , qj) = (R1)(R2)
∗(R3) ∪ (R4),

for R1 = δ(qi , qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and R4 = δ(qi , qj).

4. Compute Convert(G ′) and return this value.

George Voutsadakis (LSSU) Languages and Computation July 2014 81 / 99

Regular Languages Regular Expressions

Correctness of the Conversion

Claim (Correctness of Convert(G))

For any GNFA G , Convert(G) is equivalent to G .

By induction on k , the number of states of the GNFA.

Basis: If G has only two states, it can have only a single arrow, which
goes from the start state to the accept state. The regular expression
label on this arrow describes all the strings that allow G to get to the
accept state. Hence this expression is equivalent to G .
Induction step: Assume that the claim is true for k − 1 states. We
show that G and G ′ recognize the same language.

Suppose that G accepts an input w . Let qstart, q1, q2, . . ., qaccept be an
accepting computation of G . If no state is qrip, clearly G ′ also accepts
w . If qrip does appear, removing each run of consecutive qrip states
forms an accepting computation for G ′. The states qi and qj
bracketing a run have a new regular expression on the arrow between
them that describes all strings taking qi to qj via qrip on G .

George Voutsadakis (LSSU) Languages and Computation July 2014 82 / 99

Regular Languages Regular Expressions

Correctness of the Conversion (Cont’d)

We finish the Induction step:

Conversely, suppose that G ′ accepts an input w . Each arrow between
any two states qi and qj in G ′ describes the collection of strings taking
qi to qj in G either directly or via qrip. Thus, G must also accept w .

Thus G and G ′ are equivalent.

The induction hypothesis states that when the algorithm calls itself
recursively on input G ′, the result is a regular expression that is
equivalent to G ′ because G ′ has k − 1 states. Hence this regular
expression is also equivalent to G , and the algorithm is correct.

George Voutsadakis (LSSU) Languages and Computation July 2014 83 / 99

Regular Languages Regular Expressions

Illustrating the Conversion

Consider the two-state DFA:

We make a GNFA by adding a new start state and a new accept state.
We did not draw the arrows labeled ∅, even though they are present.

We remove State 2, and update the remaining arrow labels. The only
label that changes is the one from 1 to a. It was ∅, but became
b(a ∪ b)∗ according to Step 3 of the Convert. Convert gives
(b)(a ∪ b)∗(ε) ∪ ∅, which can be simplified to b(a ∪ b)∗.

Finally, remove State 1 and follow the same procedure.

George Voutsadakis (LSSU) Languages and Computation July 2014 84 / 99

Regular Languages Regular Expressions

Another Example

add s and a
−→

remove 1
−→

remove 2
−→

remove 3
−→

George Voutsadakis (LSSU) Languages and Computation July 2014 85 / 99

Regular Languages Nonregular Languages

Subsection 4

Nonregular Languages

George Voutsadakis (LSSU) Languages and Computation July 2014 86 / 99

Regular Languages Nonregular Languages

Limitations of Finite Automata

Finite automata have limitations: we show how to prove that certain
languages cannot be recognized by any finite automaton.

Example: Consider the language B = {0n1n : n ≥ 0}. An attempt to
find a DFA that recognizes B indicates that the machine needs to
remember how many 0s have been seen so far as it reads the input.
Because the number of 0s is not limited, the machine will have to
keep track of an unlimited number of possibilities. This cannot be
accomplished with a finite number of states.

We present a method for proving that languages are not regular.

A formal method is needed: just because the language appears to
require unbounded memory does not mean that it actually does.

Example: Consider two languages over the alphabet Σ = {0, 1}:
C = {w : w has an equal number of 0s and 1s}, and D = {w :
w has an equal number of occurrences of 01 and 10 as substrings}.
Neither language appears to be regular. C is not, but D is!

George Voutsadakis (LSSU) Languages and Computation July 2014 87 / 99

Regular Languages Nonregular Languages

A Finite Automaton Recognizing D

Consider the language

D = {w : w has an equal number of 01 and 10 as substrings}.

It is regular since it is recognized by the following NFA:

George Voutsadakis (LSSU) Languages and Computation July 2014 88 / 99

Regular Languages Nonregular Languages

Introducing the Pumping Lemma

The technique for proving nonregularity relies on a theorem about
regular languages, called the pumping lemma.

It states that all regular languages have a special property. If we can
show that a language does not have this property, then the language
is not regular.

The property states that all strings in the language can be “pumped”
if they are at least as long as a certain special value, called the
pumping length.

This means that each such string contains a section that can be
repeated any number of times with the resulting string remaining in
the language.

George Voutsadakis (LSSU) Languages and Computation July 2014 89 / 99

Regular Languages Nonregular Languages

The Pumping Lemma

Theorem (The Pumping Lemma)

If A is a regular language, then there is a number p (the pumping

length), such that, if s is any string in A of length at least p, then s may
be divided into three pieces, s = xyz , satisfying the following conditions:

1. for each i > 0, xy iz ∈ A,

2. |y | > 0, and

3. |xy | ≤ p.

|s| represents the length of string s, y i means that i copies of y are
concatenated together, and y0 equals ε.

When s is divided into xyz , either x or z may be ε, but Condition 2
says that y 6= ε. This ensures the theorem is not trivially true.

Condition 3 states that the pieces x and y together have length at
most p. This is a useful technical condition in applications.

George Voutsadakis (LSSU) Languages and Computation July 2014 90 / 99

Regular Languages Nonregular Languages

Idea Behind the Proof of the Pumping Lemma

Let M = (Q,Σ, δ, q1,F) be a DFA that recognizes A. We assign the
pumping length p to be the number of states of M. We show that
any string s in A of length at least p may be broken into the three
pieces xyz satisfying the three conditions.

If no strings in A are of length at least p, the task is easier because the
theorem becomes vacuously true.
If s in A has length at least p, consider the sequence of states that M
goes through when computing with input s:

start state
︷︸︸︷
q1 → q3 → q20 → q9 → · · · →

end of input
︷︸︸︷
q13

With s in A, we know that M accepts s, so q13 is an accept state. If
we let n be the length of s, the sequence of states
q1, q3, q20, q9, . . . , q13 has length n + 1. Because n is at least p, we
know that n + 1 is greater than p, the number of states of M .
Therefore, the sequence must contain a repeated state.

George Voutsadakis (LSSU) Languages and Computation July 2014 91 / 99

Regular Languages Nonregular Languages

Idea Behind the Proof of the Pumping Lemma (Cont’d)

Suppose state q9 is the one that repeats. We divide s into the three
pieces x , y and z :

Piece x is the part of s appearing before q9;
Piece y is the part between the two appearances of q9;
Piece z is the remaining part of s.

So x takes M from the state q, to q9, y takes M from q9 back to q9
and z takes M from q9 to the accept state q13:

If we run M on input xy iz , M accepts it.
|y | > 0, as it was the part of s that occurred between two different
occurrences of state q9.
By taking q9 to be the first repetition, we ensure |xy | < p.

George Voutsadakis (LSSU) Languages and Computation July 2014 92 / 99

Regular Languages Nonregular Languages

Formal Proof of the Pumping Lemma

Let M = (Q,Σ, δ, q1,F) be a DFA recognizing A and p be the
number of states of M. Let s = s1s2 · · · sn be a string in A of length
n, where n ≥ p. Let r1, , . . . , rn+1 be the sequence of states that M
enters while processing s, i.e., ri+1 = δ(ri , si), for 1 ≤ i ≤ n. This
sequence has length n + 1, which is at least p + 1. Among the first
p + 1 elements in the sequence, two must be the same state, by the
pigeonhole principle. We call the first of these rj and the second rℓ.
Because rℓ occurs among the first p + 1 places in a sequence starting
at r1, we have ℓ ≤ p + 1. Now let x = s1 · · · sj−1, y = sj · · · sℓ−1 and
z = sℓ · · · sn.

As x takes M from r1 to rj , y takes M from rj to rj , and z takes M from
rj to rn+1, which is an accept state, M must accept ry i z , for i ≥ 0.
We know that j 6= ℓ, so |y | > 0;
ℓ ≤ p + 1, so |xy | ≤ p.

Thus we have satisfied all three conditions of the pumping lemma.

George Voutsadakis (LSSU) Languages and Computation July 2014 93 / 99

Regular Languages Nonregular Languages

How to Apply the Pumping Lemma to Prove Nonregularity

Using the pumping lemma to prove that a language B is not regular:

Assume that B is regular in order to obtain a contradiction.
Use the pumping lemma to guarantee the existence of a pumping
length p such that all strings of length p or greater in B can be
pumped.
Find a string s in B of length p or greater that cannot be pumped.
Demonstrate that s cannot be pumped:

Consider all ways of dividing s into x , y and z (taking Condition 3 of
the pumping lemma into account, if convenient) and, for each such
division, finding a value i where xy i z 6∈ B.
This step often involves grouping the various ways of dividing s into
several cases and analyzing them individually.

The existence of s contradicts the pumping lemma if B were regular, so
B cannot be regular.

Finding s is not always straightforward: We try members of B that
seem to exhibit the “essence” of B ’s nonregularity.

George Voutsadakis (LSSU) Languages and Computation July 2014 94 / 99

Regular Languages Nonregular Languages

The Language {0n1n : n ≥ 0}

Let B be the language {0n1n : n ≥ 0}. We use the pumping lemma
to prove that B is not regular.
Assume that B is regular. Let p be the pumping length. Choose s to
be the string 0p1p . Because s is a member of B and s has length
more than p, the pumping lemma guarantees that s can be split into
three pieces, s = xyz , such that, for any i ≥ 0, the string xy iz is in
B . We consider three cases to show that this result is impossible:
1. The string y consists only of 0s: In this case the string xyyz has more

0s than 1s and so is not a member of B, a contradiction.
2. The string y consists only of 1s: This case also gives a contradiction.
3. The string y consists of both 0s and 1s: In this case the string xyyz

may have the same number of 0s and 1s, but they will be out of order
with some 1s before 0s. Hence it is not a member of B, a contradiction.

Thus, assuming B regular leads to a contradiction, so B is not regular.

In this example, finding the string s was easy, because any string in B

of length p or more would work.

We next look at an example where some choices for s do not work.

George Voutsadakis (LSSU) Languages and Computation July 2014 95 / 99

Regular Languages Nonregular Languages

Equal Number of 0s and 1s

Let C = {w : w has an equal number of 0s and 1s}. We use the
pumping lemma to prove that C is not regular.

Assume that C is regular. Let p be the pumping length. Let s be the
string 0p1p. With s being a member of C and having length more
than p, the pumping lemma guarantees that s can be split into three
pieces, s = xyz , where, for any i ≥ 0, the string xy iz is in C . Even
though we wish to show that this is impossible, it is not the case! If
we let x and z be the empty string and y be the string 0p1p , then
xy iz always has an equal number of 0s and 1s and hence is in C . So
it seems that s can be pumped.

Condition 3 in the pumping lemma, however, stipulates that when
pumping s, it must be divided so that |xy | ≤ p. If |xy | ≤ p, then y

must consist only of 0s, so xyyz 6∈ C . Therefore s cannot be pumped,
a contradiction.

George Voutsadakis (LSSU) Languages and Computation July 2014 96 / 99

Regular Languages Nonregular Languages

The Language {ww : w ∈ {0, 1}∗}

Let F = {ww : w ∈ {0, 1}∗}. We show that F is nonregular, using
the pumping lemma.

Assume that F is regular. Let p be the pumping length. Let s be the
string 0p10p1. Because s is a member of F and s has length more
than p, the pumping lemma guarantees that s can be split into three
pieces, s = xyz , satisfying the three conditions of the lemma. We
show that this outcome is impossible.

Condition 3 is crucial, because without it we could pump s if we let x
and z be the empty string. With Condition 3, the proof follows
because y must consist only of 0s, so xyyz 6∈ F .

Observe that we chose s = 0p10p1 to be a string that exhibits the
“essence” of the nonregularity of F, as opposed to, say, the string
0p0p . Even though 0p0p is a member of F , it fails to demonstrate a
contradiction because it can be pumped.

George Voutsadakis (LSSU) Languages and Computation July 2014 97 / 99

Regular Languages Nonregular Languages

Perfect Squares

Let D = {1n
2
: n ≥ 0}. In other words, D contains all strings of 1s

whose length is a perfect square. We use the pumping lemma to
prove that D is not regular.
Assume that D is regular. Let p be the pumping length. Let s be the
string 1p

2
. Because s is a member of D and s has length at least p,

the pumping lemma guarantees that s can be split into three pieces,
s = xyz , where, for any i ≥ 0, the string xy iz is in D. As in the
preceding examples, we show that this outcome is impossible.
Consider the two strings xyz and xy2z . Their lengths differ by the
length of y . By Condition 3 of the pumping lemma, |xy | ≤ p, whence
|y | ≤ p. We have |xyz | = p2. so |xy2z | ≤ p2 + p. But p2 + p

< p2 + 2p + 1 = (p + 1)2. Moreover, condition 2 implies that y is
not the empty string and so |xy2z | > p2. Therefore, the length of
xy2z lies strictly between the consecutive perfect squares p2 and
(p + 1)2. Hence, it cannot be a perfect square itself, i.e., xy2z 6∈ D, a
contradiction. Thus, D is not regular.

George Voutsadakis (LSSU) Languages and Computation July 2014 98 / 99

Regular Languages Nonregular Languages

“Pumping Down”

We use the pumping lemma to show that E = {0i1j : i > j} is not
regular.

Assume that E is regular. Let p be the pumping length. Let
s = 0p+11p. Then s can be split into xyz , satisfying the conditions of
the pumping lemma. By Condition 3, y consists only of 0s. Consider
the string xyyz . Adding an extra copy of y increases the number of
0s. But, E contains all strings in 0∗1∗ that have more 0s than 1s, so
increasing the number of 0s will still give a string in E . No
contradiction occurs.

We try something else: The pumping lemma states that xy iz ∈ E

even when i = 0. Consider the string xy0z = xz . Removing string y

decreases the number of 0s in s. Recall that s has just one more 0
than 1. Therefore, xz cannot have more 0s than 1s, so it cannot be a
member of E . Thus, we obtain a contradiction.

George Voutsadakis (LSSU) Languages and Computation July 2014 99 / 99

	Regular Languages
	Finite Automata
	Nondeterminism
	Regular Expressions
	Nonregular Languages

