
Introduction to Languages and Computation

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Languages and Computation July 2014 1 / 60

Outline

1 Context-Free Languages
Context-Free Grammars
Pushdown Automata
Non-Context-Free Languages

George Voutsadakis (LSSU) Languages and Computation July 2014 2 / 60

Context-Free Languages

Context-Free Languages and Pushdown Automata

We introduced finite automata and regular expressions.

We now present context-free grammars, a more powerful method of
describing languages.

They were first used in the study of human languages.

Another important application occurs in the specification and
compilation of programming languages. Most compilers and
interpreters contain a component called a parser that extracts the
meaning of a program prior to generating the compiled code or
performing the interpreted execution. There are tools that can
automatically generate the parser from the grammar.

The collection of languages associated with context-free grammars
are called the context-free languages. They include all the regular
languages and many additional languages.

Pushdown automata is a class of machines recognizing the
context-free languages.

George Voutsadakis (LSSU) Languages and Computation July 2014 3 / 60

Context-Free Languages Context-Free Grammars

Subsection 1

Context-Free Grammars

George Voutsadakis (LSSU) Languages and Computation July 2014 4 / 60

Context-Free Languages Context-Free Grammars

Introducing Grammars

The following grammar G1 is an example of a context-free grammar:

A → 0A1
A → B

B → #

A grammar consists of a collection of substitution rules, also called
productions. Each rule appears as a line in the grammar, comprising
a symbol and a string separated by an arrow:

The symbol is called a variable. The variable symbols often are
represented by capital letters.
The string consists of variables and other symbols called terminals.
The terminals are analogous to the input alphabet and often are
represented by lowercase letters, numbers, or special symbols.

One variable is designated as the start variable. It usually occurs on
the left-hand side of the topmost rule.

Example: Grammar G1 contains three rules. G1’s variables are A and
B ; A is the start variable. Its terminals are 0, 1, #.

George Voutsadakis (LSSU) Languages and Computation July 2014 5 / 60

Context-Free Languages Context-Free Grammars

Derivations in a Grammar

Grammars describe a language by generating each string of that
language in the following manner:

1. Write down the start variable. It is the variable on the left-hand side of
the top rule, unless specified otherwise.

2. Find a variable that is written down and a rule that starts with that
variable. Replace the written down variable with the right-hand side of
that rule.

3. Repeat step 2 until no variables remain.

Example: G1 generates the string 000#111.

The sequence of substitutions to obtain a string is called a derivation.

Example: A derivation of 000#111 in G1 is

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000#111.

George Voutsadakis (LSSU) Languages and Computation July 2014 6 / 60

Context-Free Languages Context-Free Grammars

Parse Trees and Languages

The same information as in a derivation can be given with a parse

tree:

All strings generated in this way constitute
the language of the grammar. We write
L(G1) for the language of grammar G1.

In the example, L(G1) = {0n#1n : n ≥ 0}.

Any language that can be generated by some context-free grammar is
called a context-free language (CFL).

Sometimes, for convenience, we abbreviate several rules with the
same left-hand variable. E.g., we write A → 0A1 | B in place of both
A → 0A1 and A → B .

George Voutsadakis (LSSU) Languages and Computation July 2014 7 / 60

Context-Free Languages Context-Free Grammars

A Context-Free Grammar G2

The following is a context-free grammar G2 which describes a
fragment of the English language:

〈SENTENCE〉 → 〈NOUN− PHRASE〉〈VERB− PHRASE〉
〈NOUN− PHRASE〉 → 〈CMPLX− NOUN〉 |

〈CMPLX− NOUN〉〈PREP− PHRASE〉
〈VERB− PHRASE〉 → 〈CMPLX− VERB〉 |

〈CMPLX− VERB〉〈PREP− PHRASE〉
〈PREP− PHRASE〉 → 〈PREP〉〈CMPLX− NOUN〉
〈CMPLX− NOUN〉 → 〈ARTICLE〉〈NOUN〉
〈CMPLX− VERB〉 → 〈VERB〉 | 〈VERB〉〈NOUN− PHRASE〉

〈ARTICLE〉 → a | the
〈NOUN〉 → boy | girl | flower
〈VERB〉 → touches | likes | sees
〈PREP〉 → with

Grammar G2 has 10 variables, 27 terminals and 18 rules. Strings in
L(G2) include a boy sees

the boy sees a flower
a girl with a flower likes the boy

George Voutsadakis (LSSU) Languages and Computation July 2014 8 / 60

Context-Free Languages Context-Free Grammars

A Derivation in Grammar G2

The following is a derivation of the first string on this list:

〈SENTENCE〉 ⇒ 〈NOUN− PHRASE〉〈VERB− PHRASE〉
⇒ 〈CMPLX− NOUN〉〈VERB − PHRASE〉
⇒ 〈ARTICLE〉〈NOUN〉〈VERB− PHRASE〉
⇒ a〈NOUN〉〈VERB − PHRASE〉
⇒ a boy〈VERB− PHRASE〉
⇒ a boy〈CMPLX− VERB〉
⇒ a boy〈VERB〉
⇒ a boy sees.

George Voutsadakis (LSSU) Languages and Computation July 2014 9 / 60

Context-Free Languages Context-Free Grammars

Context-Free Grammars

Definition (Context-Free Grammar)

A context-free grammar is a 4-tuple (V ,Σ,R ,S), where

1. V is a finite set of variables,

2. Σ is a finite set, disjoint from V , of terminals,

3. R is a finite set of rules, with each rule being a variable and a string
of variables and terminals, and

4. S ∈ V is the start variable.

If u, v and w are strings of variables and terminals, and A → w is a
rule of the grammar, we say that uAv yields uwv , written
uAv ⇒ uwv .

Say that u derives v , written u
∗
⇒ v , if u = v or if a sequence

u1, u2, . . . , uk exists for k ≥ 0 and u ⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v .

The language of the grammar is {w ∈ Σ∗ : S
∗
⇒ w}.

George Voutsadakis (LSSU) Languages and Computation July 2014 10 / 60

Context-Free Languages Context-Free Grammars

Examples

In grammar G1,

V = {A,B},
Σ = {0, 1,#},
S = A,
R is the collection of the three rules A → 0A1, A → B, B → #.

In grammar G2,

V = {〈SENTENCE〉, 〈NOUN− PHRASE〉, 〈VERB− PHRASE〉,
〈PREP− PHRASE〉, 〈CMPLX− NOUN〉, 〈CMPLX− VERB〉,
〈ARTICLE〉, 〈NOUN〉, 〈PREP〉, 〈VERB〉},
Σ = {a, b, c , . . . , z , “ ”}. The symbol “ ” is the blank symbol, placed
invisibly after each word (a, boy, etc.), so the words not run together.

Often we specify a grammar by writing down only its rules:

Variables are the symbols that appear on the left-hand side of the rules;
Terminals are the remaining symbols.
The start variable is the variable on the left-hand side of the first rule.

George Voutsadakis (LSSU) Languages and Computation July 2014 11 / 60

Context-Free Languages Context-Free Grammars

Grammars G3 and G4

Consider grammar G3 = ({S}, {a, b},R ,S). The set of rules, R , is

S → aSb|SS |ε.

This grammar generates strings such as abab, aaabbb, and aababb.
We can understand more easily the language of this grammar by
thinking of a as a left parenthesis and b as a right parenthesis.
Viewed in this way, L(G3) consists of all strings of properly nested
parentheses.
Consider grammar G4 = (V ,Σ,R , 〈EXPR〉).

V = {〈EXPR〉, 〈TERM〉, 〈FACTOR〉},
Σ = {a,+,×, (,)}.
The rules are

〈EXPR〉 → 〈EXPR〉+ 〈TERM〉 | 〈TERM〉
〈TERM〉 → 〈TERM〉 × 〈FACTOR〉 | 〈FACTOR〉

〈FACTOR〉 → (〈EXPR〉) | a

The two strings a + a× a and (a + a)× a can be generated with
grammar G4.

George Voutsadakis (LSSU) Languages and Computation July 2014 12 / 60

Context-Free Languages Context-Free Grammars

Two Parse Trees in G4

The left tree is a parse tree for a + a× a in G4:

The right tree is a parse tree for (a + a)× a in G4.

George Voutsadakis (LSSU) Languages and Computation July 2014 13 / 60

Context-Free Languages Context-Free Grammars

Designing a CFG: Breaking into Pieces

Many CFLs are the union of simpler CFLs. To construct a CFG for a
CFL that can be broken into simpler pieces, we construct individual
grammars for each piece. These grammars can be merged into a
single grammar by combining their rules and then adding the new rule
S → S1 | S2 | · · · | Sk , where the variables Si are the start variables
for the individual grammars.

Example: To get a grammar for the language {0n1n : n ≥ 0}∪
{1n0n : n ≥ 0}, construct:

S1 → 0S11 | ε, for the language {0n1n : n ≥ 0}
S2 → 1S20 | ε, for the language {1n0n : n ≥ 0}.

Then add the rule S → S1 | S2 to give the grammar

S → S1 | S2
S1 → 0S11 | ε
S2 → 1S20 | ε

George Voutsadakis (LSSU) Languages and Computation July 2014 14 / 60

Context-Free Languages Context-Free Grammars

Designing a CFG: Regular Languages

Constructing a CFG for a language that happens to be regular is easy.

First construct a DFA for that language.
Then, convert the DFA into an equivalent CFG as follows:

Make a variable Ri for each state qi of the DFA.
Add the rule Ri → aRj to the CFG if δ(qi , a) = qj is a transition in the
DFA.
Add the rule Ri → ε if qi is an accept state of the DFA.
Make R0 the start variable of the grammar, where q0 is the start state
of the machine.

The resulting CFG generates the same language that the DFA
recognizes.

George Voutsadakis (LSSU) Languages and Computation July 2014 15 / 60

Context-Free Languages Context-Free Grammars

Designing a CFG: Linked Strings

Certain context-free languages contain strings with two substrings
that are “linked” in the sense that a machine for such a language
would need to remember an unbounded amount of information about
one of the substrings to verify that it corresponds properly to the
other substring.

This situation occurs in the language {0n1n : n ≥ 0} because a
machine would need to remember the number of 0s in order to verify
that it equals the number of 1s.

You can construct a CFG to handle this situation by using a rule of
the form

R → uRv ,

which generates strings wherein the portion containing the u’s
corresponds to the portion containing the v ’s.

George Voutsadakis (LSSU) Languages and Computation July 2014 16 / 60

Context-Free Languages Context-Free Grammars

Designing a CFG: Recursive Patterns

Finally, in more complex languages, the strings may contain certain
structures that appear recursively as part of other structures.

That situation occurs in the grammar that generates arithmetic
expressions in the preceding example.

Any time the symbol a appears, an entire parenthesized expression
might appear recursively instead.

To achieve this effect, place the variable symbol generating the
structure in the location of the rules corresponding to where that
structure may recursively appear.

The grammar

〈EXPR〉 → 〈EXPR〉+ 〈TERM〉 | 〈TERM〉
〈TERM〉 → 〈TERM〉 × 〈FACTOR〉 | 〈FACTOR〉

〈FACTOR〉 → (〈EXPR〉) | a

is of this type.

George Voutsadakis (LSSU) Languages and Computation July 2014 17 / 60

Context-Free Languages Context-Free Grammars

The Issue of Ambiguity

Sometimes a grammar can generate the same string in several
different ways.

Such a string will have several different parse trees and thus several
different meanings.

This result may be undesirable for certain applications, such as
programming languages, where a given program should have a unique
interpretation.

If a grammar generates the same string in several different ways, we
say that the string is derived ambiguously in that grammar.

If a grammar generates some string ambiguously we say that the
grammar is ambiguous.

George Voutsadakis (LSSU) Languages and Computation July 2014 18 / 60

Context-Free Languages Context-Free Grammars

Example of an Ambiguous Grammar

Consider grammar G5:

〈EXPR〉 → 〈EXPR〉+ 〈EXPR〉 | 〈EXPR〉 × 〈EXPR〉 | (〈EXPR〉) | a

This grammar generates the string a+ a × a ambiguously:

This grammar does not capture the usual precedence relations and so
may group the + before the × or vice versa.

In contrast grammar G4 generates exactly the same language, but
every generated string has a unique parse tree.

Hence G4 is unambiguous, whereas G5 is ambiguous.

George Voutsadakis (LSSU) Languages and Computation July 2014 19 / 60

Context-Free Languages Context-Free Grammars

Ambiguity

A grammar generating a string ambiguously means that the string has
two different parse trees, not two different derivations.

Two derivations may differ only in the order in which they replace
variables, but not in their overall structure.

A derivation of a string w in a grammar G is a leftmost derivation if
at every step the leftmost remaining variable is the one replaced.

Definition (Ambiguous Derivation and Grammar)

A string w is derived ambiguously in context-free grammar G if it has
two or more different leftmost derivations. Grammar G is ambiguous if it
generates some string ambiguously.

Sometimes when we have an ambiguous grammar we can find an
unambiguous grammar that generates the same language.

Some context-free languages can be generated only by ambiguous
grammars. They are called inherently ambiguous.

Example: {aibjck : i = j or j = k} is inherently ambiguous.

George Voutsadakis (LSSU) Languages and Computation July 2014 20 / 60

Context-Free Languages Context-Free Grammars

Chomsky Normal Form

Definition (Chomsky Normal Form)

A context-free grammar is in Chomsky normal form if every rule is of the
form A → BC , A → a,

where a is any terminal and A,B and C are any variables - except that B
and C may not be the start variable. In addition, we permit the rule
S → ε, where S is the start variable.

Theorem (Chomsky Normal Form)

Any context-free language is generated by a context-free grammar in
Chomsky normal form.

We can convert any grammar G into Chomsky normal form:
First, we add a new start variable.
Then, we eliminate all ε rules of the form A → ε. We also eliminate all
unit rules of the form A → B. In both cases we patch up the grammar
to be sure that it still generates the same language.
Finally, we convert the remaining rules into the proper form.

George Voutsadakis (LSSU) Languages and Computation July 2014 21 / 60

Context-Free Languages Context-Free Grammars

Proof of the Chomsky Normal Form Theorem

We add a new start variable S0 and the rule S0 → S , where S was the
original start variable.
We take care of all ε rules:

We remove an ε-rule A → ε, where A is not the start variable.
Then for each occurrence of an A on the right-hand side of a rule, we
add a new rule with that occurrence deleted.
If we have the rule R → A, we add R → ε unless we had previously
removed the rule R → ε.
We repeat until we eliminate all ε rules not involving the start variable.

We now handle all unit rules:
We remove a unit rule A → B.
Then, whenever a rule B → u appears, we add the rule A → u unless
this was a unit rule previously removed.
We repeat these steps until we eliminate all unit rules.

We convert all remaining rules into the proper form.
We replace each rule A → u1u2 · · · uk , where k ≥ 3, with the rules
A → u1A1, A1 → u2A2, A2 → u3A3, . . ., Ak−2 → uk−1uk .
If k = 2, replace a terminal ui with new variable Ui and add Ui → ui .

George Voutsadakis (LSSU) Languages and Computation July 2014 22 / 60

Context-Free Languages Context-Free Grammars

Example of Conversion to Chomsky Normal Form

S → ASA | aB
A → B | S
B → b | ε

S0 → S

S → ASA | aB
A → B | S
B → b | ε

S0 → S

S → ASA | aB | a
A → B | S | ε
B → b

S0 → S

S → ASA | aB | a | SA | AS | S
A → B | S
B → b

S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → B | S
B → b

S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → b | ASA | aB | a | SA | AS
B → b

S0 → AA1 | UB | a | SA | AS
S → AA1 | UB | a | SA | AS
A → b | AA1 | UB | a | SA | AS
A1 → SA

U → a

B → b

George Voutsadakis (LSSU) Languages and Computation July 2014 23 / 60

Context-Free Languages Pushdown Automata

Subsection 2

Pushdown Automata

George Voutsadakis (LSSU) Languages and Computation July 2014 24 / 60

Context-Free Languages Pushdown Automata

Pushdown Automata: Adding a Stack to Finite Automata

We introduce a new type of computational model called pushdown
automata.

They are like nondeterministic finite automata but have an extra
component called a stack.

The stack provides additional memory beyond that available in the
control, thus allowing recognition of some nonregular languages.

Pushdown automata are equivalent to context-free grammars. Thus,
to prove that a language is context free we can give

either a context-free grammar generating it
or a pushdown automaton
recognizing it.

George Voutsadakis (LSSU) Languages and Computation July 2014 25 / 60

Context-Free Languages Pushdown Automata

Operation of the Stack

A pushdown automaton (PDA) can write symbols on the stack and
read them back later.

Writing a symbol “pushes down” all the other symbols on the stack.
At any time, the symbol on the top of the stack can be read and
removed and the remaining symbols then move back up.

Writing a symbol on the stack is often referred to as pushing the
symbol.

Removing a symbol is referred to as popping it.

Note that all access to the stack, for both reading and writing, may
be done only at the top, i.e., a stack is a “last in, first out” storage
device.

If certain information is written on the stack and additional
information is written afterward, the earlier information becomes
inaccessible until the later information is removed.

George Voutsadakis (LSSU) Languages and Computation July 2014 26 / 60

Context-Free Languages Pushdown Automata

An Informal Example

A stack can hold an unlimited amount of information.

A finite automaton is unable to recognize the language {0n1n : n ≥ 0}
because it cannot store very large numbers in its finite memory.

A PDA is able to recognize this language because it can use its stack
to store the number of 0s it has seen. Thus, the unlimited nature of a
stack allows the PDA to store numbers of unbounded size:

Read symbols from the input. As each 0 is read, push it onto the
stack. As soon as 1s are seen, pop a 0 off the stack for each 1 read.

If reading the input is finished exactly when the stack becomes
empty of 0s, accept the input.

If the stack becomes empty while 1s remain or if the 1s are finished
while the stack still contains 0s or if any 0s appear in the input
following 1s, reject the input.

George Voutsadakis (LSSU) Languages and Computation July 2014 27 / 60

Context-Free Languages Pushdown Automata

Determinism and Nondeterminism in PDAs

As mentioned earlier, pushdown automata may be nondeterministic.

Deterministic and nondeterministic pushdown automata are not
equivalent in power. Nondeterministic pushdown automata recognize
certain languages which no deterministic pushdown automata can
recognize, though we will not prove this fact.

Recall that deterministic and nondeterministic finite automata do
recognize the same class of languages, so the pushdown automata
situation is different.

Nondeterministic pushdown automata are the ones that are equivalent
in power to context-free grammars.

George Voutsadakis (LSSU) Languages and Computation July 2014 28 / 60

Context-Free Languages Pushdown Automata

Components of a Pushdown Automaton

In a pushdown automaton different alphabets may be used for the
input and the stack; the input alphabet is Σ and the stack alphabet Γ.

A transition function describes the behavior:

If Σε = Σ ∪ {ε} and Γε = Γ ∪ {ε}, the domain of the transition
function is Q × Σε × Γε. Thus, the current state, next input symbol
read, and top symbol of the stack determine the next move of a
pushdown automaton. Either symbol may be ε, causing the machine to
move without reading a symbol from the input or without reading a
symbol from the stack.
The automaton may enter some new state and possibly write a symbol
on the top of the stack. The function δ can indicate this action by
returning a member of Q together with a member of Γε, that is, a
member of Q × Γε. Nondeterminism is reflected in the transition
function returning a set of members of Q × Γε, i.e., a member of
P(Q × Γε).

In conclusion, δ : Q × Σε × Γε → P(Q × Γε).

George Voutsadakis (LSSU) Languages and Computation July 2014 29 / 60

Context-Free Languages Pushdown Automata

Pushdown Automata (PDAs)

Definition (Pushdown Automaton)

A pushdown automaton is a 6-tuple (Q,Σ, Γ, δ, q0,F), where Q,Σ, Γ
and F are all finite sets, and

1 Q is the set of states,

2 Σ is the input alphabet,

3 Γ is the stack alphabet,

4 δ : Q × Σε × Γε → P(Q × Γε) is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

George Voutsadakis (LSSU) Languages and Computation July 2014 30 / 60

Context-Free Languages Pushdown Automata

Operation of Pushdown Automata (PDAs)

A pushdown automaton M = (Q,Σ, Γ, δ, q0,F) computes as follows:
It accepts input w if w can be written as w = w1w2 · · ·wm, where
each wi ∈ Σε and there exist sequences of states r0, r1, . . . , rm ∈ Q
and strings s0, s1, . . . , sm ∈ Γ∗ that satisfy the following three
conditions:

1. r0 = q0 and s0 = ε. This condition signifies that M starts out properly,
in the start state and with an empty stack.

2. For i = 0, . . . ,m − 1, we have (ri+1, b) ∈ δ(ri ,wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗. This condition states that
M moves properly according to the state, stack, and next input symbol.

3. rm ∈ F . This condition states that an accept state occurs at the input
end.

George Voutsadakis (LSSU) Languages and Computation July 2014 31 / 60

Context-Free Languages Pushdown Automata

An Example of a PDA

The following is the formal description of the PDA (informally
described previously) that recognizes the language {0n1n : n ≥ 0}.

Let M1 be (Q,Σ, Γ, δ, q1,F), where
1 Q = {q1, q2, q3, q4};
2 Σ ∈ {0, 1};
3 Γ = {0, $};
4 F = {q1, q4}, and
5 δ is given by the following table wherein blank entries signify ∅:

George Voutsadakis (LSSU) Languages and Computation July 2014 32 / 60

Context-Free Languages Pushdown Automata

Diagram of a PDA Transition Function

We can also use a state diagram to describe the PDA:

We write “a, b → c” to signify that when the machine is reading an a
from the input it may replace the symbol b on the top of the stack
with a c . Any of a, b and c may be ε.

If a is ε, the machine may make this transition without reading any
symbol from the input.
If b is ε, the machine may make this transition without reading and
popping any symbol from the stack.
If c is ε, the machine does not write any symbol on the stack when
going along this transition.

George Voutsadakis (LSSU) Languages and Computation July 2014 33 / 60

Context-Free Languages Pushdown Automata

Testing for Empty Stack and for End of Input

The formal definition of a PDA contains no explicit mechanism to
allow the PDA to test for an empty stack. This PDA is able to get the
same effect by initially placing a special symbol $ on the stack. Then,
if it ever sees the $ again, it knows that the stack effectively is empty.

Similarly, PDAs cannot test explicitly for having reached the end of
the input string. The PDA just presented is able to achieve that
effect because the accept state takes effect only when the machine is
at the end of the input. We assume that PDAs can test for the end of
the input, which can be implemented in this manner.

George Voutsadakis (LSSU) Languages and Computation July 2014 34 / 60

Context-Free Languages Pushdown Automata

An Example of a PDA

A pushdown automaton that recognizes the language
{aibjck : i , j , k ≥ 0 and i = j or i = k} works as follows:

First reads and pushes the a’s.
When the a’s are done the machine has all of them on the stack so
that it can match them with either the b’s or the c ’s.
Since the machine does not know in advance whether to match the a’s
with the b’s or the c’s, it uses nondeterminism to guess whether to
match the a’s with the b’s or with the c ’s:

George Voutsadakis (LSSU) Languages and Computation July 2014 35 / 60

Context-Free Languages Pushdown Automata

Another PDA

A PDA M3 recognizing the language {wwR : w ∈ {0, 1}∗} is shown:

Recall that wR means w written backwards.

Begin by pushing the symbols that are read onto the stack.
At each point nondeterministically guess that the middle of the string
has been reached and then change into popping off the stack for each
symbol read, checking to see that they are the same.
If they are always the same symbol and the stack empties at the same
time as the input is finished, accept; otherwise reject.

George Voutsadakis (LSSU) Languages and Computation July 2014 36 / 60

Context-Free Languages Pushdown Automata

Equivalence of CFGs and PDAs

Context-free grammars and pushdown automata are equivalent in
power.

Both are capable of describing the class of context-free languages.

To establish this equivalence, we show how to convert any
context-free grammar into a pushdown automaton that recognizes the
same language and vice versa.

Theorem (Equivalence of CFGs and PDAs)

A language is context free if and only if some pushdown automaton
recognizes it.

Since this is an “if and only if” theorem, both directions have to be
proved.

George Voutsadakis (LSSU) Languages and Computation July 2014 37 / 60

Context-Free Languages Pushdown Automata

From CFGs to PDAs: Outline

Lemma

If a language is context free, then some pushdown automaton recognizes it.

Let A be a CFL. By definition, there exists a CFG G generating A.
We show how to convert G into an equivalent PDA P . P accepts its
input w , if G generates that input. It determines whether some series
of substitutions using the rules of G can lead from the start variable
to w . It uses nondeterminism to guess the sequence of correct
substitutions. At each step of the derivation one of the rules for a
particular variable is selected nondeterministically and used to
substitute for that variable.

The PDA begins by writing the start variable on its stack.
It goes through a series of intermediate strings, making one
substitution after another.
Eventually it may arrive at a string that contains only terminal
symbols, meaning that it has used the grammar to derive a string.
It accepts if this string is identical to the string it has received as input.

George Voutsadakis (LSSU) Languages and Computation July 2014 38 / 60

Context-Free Languages Pushdown Automata

From CFGs to PDAs: Fine-tuning

The PDA must store intermediate strings.

Simply using the stack does not work because the PDA needs to find
the variables to make substitutions and the PDA can only access the
top symbol on the stack which may be a terminal symbol instead of a
variable.
So, the PDA keeps only part of the intermediate string on the stack:

the symbols starting with the first variable in the intermediate string.
Any terminal symbols appearing before the first variable are matched
immediately with symbols in the input string.

George Voutsadakis (LSSU) Languages and Computation July 2014 39 / 60

Context-Free Languages Pushdown Automata

From CFGs to PDAs: Informal Description

1. Place the marker symbol $ and the start variable on the stack.

2. Repeat the following steps forever.

(a) If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

(b) If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a.

If they match, repeat.
If they do not match, reject on this branch of the nondeterminism.

(c) If the top of stack is the symbol $, enter the accept state.
Doing so accepts the input if it has all been read.

George Voutsadakis (LSSU) Languages and Computation July 2014 40 / 60

Context-Free Languages Pushdown Automata

From CFGs to PDAs: Shorthand Notation

Let P = (Q,Σ, Γ, δ, q1,F).

We use a shorthand notation, which provides a way to write an entire
string on the stack in one step of the machine.

This may be simulated by introducing additional states to write the
string one symbol at a time:

Let q and r be states, a be in Σε and s be in Γε. Say that we want the
PDA to go from q to r when it reads a and pops s. Furthermore we
want it to push the entire string u = u1 · · · uℓ on the stack. Introduce
new states q1, . . . , qℓ−1 and set:

δ(q, a, s) to contain (q1, uℓ),
δ(q1, ε, ε) = {(q2, uℓ−1)}
δ(q2, ε, ε) = {(q3, uℓ−2)},
...
δ(qℓ−1, ε, ε) = {(r , u1)}.

The notation (r , u) ∈ δ(q, a, s) signifies this move.

George Voutsadakis (LSSU) Languages and Computation July 2014 41 / 60

Context-Free Languages Pushdown Automata

From CFGs to PDAs: Formal Proof

The states of P are Q = {qstart, qloop, qaccept} ∪ E , where E is the set
of states implementing the shorthand described previously.

The start state is qstart.

The only accept state is qaccept.

For the transition function:

Initialize the stack to contain $ and S : δ(qstart, ε, ε) = {(qloop, S$)}.
We add transitions for the main loop of Step 2:

First, we handle Case (a) wherein the top of the stack contains a
variable: δ(qloop, ε,A) = {(qloop,w)}, where A → w is a rule in R.
Second, we handle Case (b) wherein the top of the stack contains a
terminal: δ(qloop, a, a) = {(qloop, ε)}.
Finally, we handle Case (c) wherein the empty stack marker $ is on the
top of the stack: δ(qloop, ε, $) = {(qaccept, ε)}.

George Voutsadakis (LSSU) Languages and Computation July 2014 42 / 60

Context-Free Languages Pushdown Automata

An Example Illustrating the Proof

We construct a PDA P from the CFG G :
S → aTb | b
T → Ta | ε.

George Voutsadakis (LSSU) Languages and Computation July 2014 43 / 60

Context-Free Languages Pushdown Automata

PDAs to CFGs: Outline

Lemma

If a pushdown automaton recognizes some language, then it is context free.

We have a PDA P , and want to construct a CFG G that generates all
the strings that P accepts.
We design a grammar that does somewhat more:

For each pair of states p and q in P the grammar has a variable Apq .
This variable generates all the strings that can take P from p with an
empty stack to q with an empty stack.
Such strings can also take P from p to q, regardless of the stack
contents at p, leaving the stack at q in the condition it was at p.

We simplify our task by modifying P slightly to give it the following
three features:
1. It has a single accept state, qaccept.
2. It empties its stack before accepting.
3. Each transition either pushes a symbol onto the stack (a push move) or

pops one off the stack (a pop move), but it does not do both at once.

George Voutsadakis (LSSU) Languages and Computation July 2014 44 / 60

Context-Free Languages Pushdown Automata

PDAs to CFGs: Informal Description

To design G so that Apq generates all strings that take P from p to
q, starting and ending with an empty stack, we look at P ’s operation
on these strings:

For any such x , P ’s first move on x must be a push, because every
move is either a push or a pop and P cannot pop an empty stack.
The last move on x must be a pop, because the stack ends up empty.
Either the symbol popped at the end is the symbol that was pushed at
the beginning, or not:

If so, the stack is empty only at the beginning and end of P’s
computation on x . This possibility is simulated by the rule
Apq → aArsb, where a is the input read at the first move, b is the input
read at the last move, r is the state following p, and s is the state
preceding q.
If not, the initially pushed symbol must get popped at some point
before the end of x and thus the stack becomes empty at this point.
This possibility is simulated by the rule Apq → AprArq , where r is the
state when the stack becomes empty.

George Voutsadakis (LSSU) Languages and Computation July 2014 45 / 60

Context-Free Languages Pushdown Automata

PDAs to CFGs: Formal Proof

Let P = (Q,Σ, Γ, δ, q0, {qaccept}) and construct G :

The variables of G are {Apq : p, q ∈ Q}.
The start variable is Aq0qaccept .
Now we describe G ’s rules:

For each p, q, r , s ∈ Q, t ∈ Γ, and a, b ∈ Σε, if δ(p, a, ε) contains (r , t)
and δ(s, b, t) contains (q, ε), put the rule Apq → aArsb in G .
For each p, q, r ∈ Q, put the rule Apq → AprArq in G .
Finally, for each p ∈ Q, put the rule App → ε in G .

George Voutsadakis (LSSU) Languages and Computation July 2014 46 / 60

Context-Free Languages Pushdown Automata

Proof of the Role of Apq Part I

Claim: If Apq generates x , then x can bring P from p with empty
stack to q with empty stack.

Proof is by induction on the number of steps in the derivation of x
from Apq.

Basis: The derivation has 1 step. A derivation with a single step must
use a rule whose right-hand side contains no variables. The only rules
in G where no variables occur on the right-hand side are App → ε.
Input ε takes P from p with empty stack to p with empty stack.
Induction step: Assume true for derivations of length at most k , where
k ≥ 1, and prove true for derivations of length k + 1. Suppose that
Apq

∗

⇒ x with k + 1 steps. The first step is either Apq ⇒ aArsb or
Apq ⇒ AprArq .

George Voutsadakis (LSSU) Languages and Computation July 2014 47 / 60

Context-Free Languages Pushdown Automata

Proof of the Role of Apq Part I (Cont’d)

The first step is either Apq ⇒ aArsb or Apq ⇒ AprArq.
In the first case, consider the portion y of x that Ars generates, so
x = ayb. Because Ars

∗

⇒ y with k steps, the induction hypothesis tells
us that P can go from r on empty stack to s on empty stack. Because
Apq → aArsb is a rule of G , δ(p, a, ε) contains (r , t) and δ(s, b, t)
contains (q, ε), for some stack symbol t. Hence, if P starts at p with
an empty stack, after reading a it can go to state r and push t onto
the stack. Then reading string y can bring it to s and leave t on the
stack. Then after reading b it can go to state q and pop t off the
stack. Therefore x can bring it from p with empty stack to q with
empty stack.
In the second case, consider the portions y and z of x that Apr and Arq

respectively generate, so x = yz . Because Apr
∗

⇒ y in at most k steps

and Arq
∗

⇒ z in at most k steps, the induction hypothesis tells us that
y can bring P from p to r , and z can bring P from r to q, with empty
stacks at the beginning and end. Hence x can bring it from p with
empty stack to q with empty stack.

George Voutsadakis (LSSU) Languages and Computation July 2014 48 / 60

Context-Free Languages Pushdown Automata

Proof of the Role of Apq Part II

Claim: If x can bring P from p with empty stack to q with empty
stack, Apq generates x .

Proof is by induction on the number of steps in the computation of P
that goes from p to q with empty stacks on input x .

Basis: The computation has 0 steps. If a computation has 0 steps, it
starts and ends at the same state, say p. So we must show that
App

∗

⇒ x . In 0 steps, P only has time to read the empty string, so
x = ε. By construction, G has the rule App → ε, so the basis is proved.
Induction step: Assume true for computations of length at most k ,
where k ≥ 0, and prove true for computations of length k + 1.
Suppose that P has a computation wherein x brings p to q with empty
stacks in k + 1 steps. Either the stack is empty only at the beginning
and end of this computation, or it becomes empty elsewhere, too.

George Voutsadakis (LSSU) Languages and Computation July 2014 49 / 60

Context-Free Languages Pushdown Automata

Proof of the Role of Apq Part II (Cont’d)

Either the stack is empty only at the beginning and end of this
computation, or it becomes empty elsewhere, too.

In the first case, the symbol t that is pushed at the first move must be
the same as the symbol that is popped at the last move. Let a, b be
the inputs read in the first, last move, respectively, r , s be the states
after the first and before the last move. Then δ(p, a, ε) contains (r , t)
and δ(s, b, t) contains (q, ε). So the rule Apq → aArsb is in G . Let y
be the portion of x without a and b, so x = ayb. Input y can bring P

from r to s without touching t on the stack, so P can go from r with
empty stack to s with empty stack on input y . The computation on y

has k − 1 steps. By the hypothesis, Ars
∗

⇒ y . Hence, Apq
∗

⇒ x .
In the second case, let r be a state where the stack becomes empty
other than at the beginning or end of the computation on x . The
computations from p to r and from r to q each contain at most k
steps. Say that y is the input read during the first and z during the
second portion. The induction hypothesis tells us that Apr

∗

⇒ y and

Arq
∗

⇒ z . Because rule Apq → AprArq is in G , Apq
∗

⇒ x .

George Voutsadakis (LSSU) Languages and Computation July 2014 50 / 60

Context-Free Languages Pushdown Automata

Regular Languages are Context-Free

We have just proved that pushdown automata recognize the class of
context-free languages.

Recall that every regular language is recognized by a finite automaton
and every finite automaton is automatically a pushdown automaton
that simply ignores its stack.

Therefore, every regular language is also a context-free language.

Corollary

Every regular language is context-free.

George Voutsadakis (LSSU) Languages and Computation July 2014 51 / 60

Context-Free Languages Non-Context-Free Languages

Subsection 3

Non-Context-Free Languages

George Voutsadakis (LSSU) Languages and Computation July 2014 52 / 60

Context-Free Languages Non-Context-Free Languages

Pumping Lemma for Context-Free Languages

The pumping lemma states that all strings longer than a pumping

length in a context-free language can be “pumped” (in a way
different from that in regular languages).

Pumping Lemma for Context-Free Languages

If A is a context-free language, then there is a number p (the pumping
length) where, if s is any string in A of length at least p, then s may be
divided into five pieces s = uvxyz , satisfying the conditions

1. for each i ≥ 0, uv ixy iz ∈ A,

2. |vy | > 0, and

3. |vxy | ≤ p.

When s is being divided into uvxyz , Condition 2 says that either v or
y is not the empty string.

Condition 3 states that the pieces v , x and y together have length at
most p. This technical condition is useful in proving languages to be
non-context-free.

George Voutsadakis (LSSU) Languages and Computation July 2014 53 / 60

Context-Free Languages Non-Context-Free Languages

Idea Behind the Proof

Let A be a CFL and let G be a CFG that generates it. We must show
that any sufficiently long string s in A can be pumped remaining in A.
Since s is in A, it is derivable from G . So it has a parse tree. The
parse tree for s must be very tall because s is assumed to be “very
long”. That is, the parse tree must contain some long path from the
start variable at the root of the tree to one of the terminal symbols at
a leaf. On this long path some variable symbol R must repeat
because of the pigeonhole principle.

This repetition allows us to replace the sub-
tree under the second occurrence of R with
the subtree under the first occurrence of R

and still get a legal parse tree. Therefore, we
may cut s into five pieces uvxyz as in the fig-
ure, and we may repeat the second and fourth
pieces and obtain a string still in the language.

George Voutsadakis (LSSU) Languages and Computation July 2014 54 / 60

Context-Free Languages Non-Context-Free Languages

Proof of the Pumping Lemma: Pumping Length

Let G be a CFG for CFL A. Let b ≥ 2 be the maximum number of
symbols in the right-hand side of a rule. In any parse tree using this
grammar, a node can have no more than b children, i.e., at most b
leaves are 1 step from the start variable; at most b2 leaves are within
2 steps of the start variable; and at most bh leaves are within h steps
of the start variable. So, if the height of the parse tree is at most h,
the length of the string generated is at most bh.

Conversely, if a generated string is at least bh + 1 long, each of its
parse trees must be at least h + 1 high.

Say |V | is the number of variables in G . We set p, the pumping

length, to be b|V |+1 > b|V | + 1. If s is a string in A and its length is
p or more, its parse tree must be at least |V |+ 1 high.

George Voutsadakis (LSSU) Languages and Computation July 2014 55 / 60

Context-Free Languages Non-Context-Free Languages

Proof of the Pumping Lemma: Splitting a Parse Tree

To see how to pump any such string s, let τ be one of its parse trees.
If s has several parse trees, choose τ to be a parse tree that has the
smallest number of nodes. We know that τ must be at least |V |+ 1
high, so it must contain a path from the root to a leaf of length at
least |V |+1. That path has at least |V |+2 nodes; one at a terminal,
the others at variables. Hence that path has at least |V |+1 variables.
With G having only |V | variables, some variable R appears more than
once on that path. For convenience later, we select R to be a variable
that repeats among the lowest |V |+ 1 variables on this path.

We divide s into uvxyz according to the previous figure. Each
occurrence of R has a subtree under it, generating part of the string
s. The upper occurrence of R has a larger subtree and generates vxy ,
whereas the lower occurrence generates just x with a smaller subtree.
Both of these subtrees are generated by the same variable, so we may
substitute one for the other and still obtain a valid parse tree.

George Voutsadakis (LSSU) Languages and Computation July 2014 56 / 60

Context-Free Languages Non-Context-Free Languages

Proof of the Pumping Lemma: Proving the Properties

Replacing the smaller by the larger subtree repeatedly gives parse
trees for the strings uv ixy iz at each i ≥ 1. Replacing the larger by
the smaller generates the string uxz . That establishes Condition 1 of
the lemma.

To get Condition 2 we must be sure that not both v and y are ε. If
they were, the parse tree obtained by substituting the smaller subtree
for the larger would have fewer nodes than τ does and would still
generate s. This result is not possible because we had already chosen
τ to be a parse tree for s with the smallest number of nodes.

In order to get Condition 3 we must show that vxy has length at
most p. In the parse tree for s the upper occurrence of R generates
vxy . We chose R so that both occurrences fall within the bottom
|V |+ 1 variables, and we chose the longest path, so the subtree
where R generates vxy is at most |V |+ 1 high. A tree of this height
can generate a string of length at most b|V |+1 = p.

George Voutsadakis (LSSU) Languages and Computation July 2014 57 / 60

Context-Free Languages Non-Context-Free Languages

Example I

The language B = {anbncn : n ≥ 0} is not context free.

Assume that B is a CFL. Let p be the pumping length for B . Select
the string s = apbpcp . Clearly s is a member of B and of length at
least p. The pumping lemma states that s can be pumped. However,
we show that no matter how we divide s into uvxyz , one of the three
conditions of the lemma is violated. Condition 2 stipulates that either
v or y is nonempty. The substrings v and y either both contain only
one type of alphabet symbol or not.

1. When both v and y contain only one type of alphabet symbol, v does
not contain both a’s and b’s or both b’s and c ’s, and the same holds
for y . In this case the string uv2xy2z cannot contain equal numbers of
a’s, b’s, and c ’s. Therefore it cannot be a member of B. That violates
Condition 1 of the lemma. So, we obtain a contradiction.

2. When either v or y contain more than one type of symbol uv2xy2z

may contain equal numbers of the three alphabet symbols but not in
the correct order. Hence, it cannot be a member of B.

George Voutsadakis (LSSU) Languages and Computation July 2014 58 / 60

Context-Free Languages Non-Context-Free Languages

Example II

The language C = {aibjck : 0 ≤ i ≤ j ≤ k} is not a CFL.
Assume that C is a CFL. Let p be the pumping length. We use the
string s = apbpcp, but now we must pump both up and down. Let
s = uvxyz and again consider the previous cases:
1. When both v and y contain only one type of symbol, v does not

contain both a’s and b’s or both b’s and c ’s, and the same holds for y .
In this case, one of a, b, or c does not appear in v or y .

a. If a’s do not appear, then we pump down to obtain uv0xy0z = uxz . It
contains the same number of a’s as s does, but it contains fewer b’s or
fewer c’s. Therefore it is not a member of C .

b. If b’s do not appear, then either a’s or c’s must appear in v or y
because not both are empty. If a’s appear, the string uv2xy2z contains
more a’s than b’s, so it is not in C . If c’s appear, the string uv0xy0z

contains more b’s than c’s, so it is not in C .
c. If c’s do not appear, then the string uv2xy2z contains more a’s or more

b’s than c’s, so it is not in C , and a contradiction occurs.

2. When v or y contain more than one type of symbol, uv2xy2z will not
contain the symbols in the correct order.

George Voutsadakis (LSSU) Languages and Computation July 2014 59 / 60

Context-Free Languages Non-Context-Free Languages

Example III

The language D = {ww : w ∈ {0, 1}∗} is not a CFL.

Assume that D is a CFL. Let p be the pumping length. The string
0p10p1 appears to be a good candidate, but it can be pumped:

0p1
︷ ︸︸ ︷

000 · · · 000
︸ ︷︷ ︸

u

0
︸︷︷︸

v

1
︸︷︷︸

x

0p1
︷ ︸︸ ︷

0
︸︷︷︸

y

000 · · · 0001
︸ ︷︷ ︸

z

.

We consider s = 0p1p0p1p. Condition 3 says we can pump s by
dividing s = uvxyz , where |vxy | ≤ p. First, we show that the
substring vxy must straddle the midpoint of s.

If it occurs only in the first half of s, pumping s up to uv2xy2z moves
a 1 into the first position of the second half, and so it cannot be of the
form ww .
If vxy occurs in the second half of s, pumping s up to uv2xy2z moves
a 0 into the last position of the first half, and so it cannot be of the
form ww .

If vxy straddles the midpoint of s, pumping s down to uxz gives
0p1i0j1p , where i and j cannot both be p.

George Voutsadakis (LSSU) Languages and Computation July 2014 60 / 60

	Context-Free Languages
	Context-Free Grammars
	Pushdown Automata
	Non-Context-Free Languages

