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The Church-Turing Thesis Turing Machines

The Turing Machine Model

A much more powerful model than finite automata and pushdown
automata is the Turing machine.

It has an unlimited and unrestricted memory and can do everything
that a real computer can do.

Even a Turing machine cannot solve certain problems; these problems
are beyond the theoretical limits of computation.

The Turing machine model has:

An infinite tape as its unlimited memory, which, initially, contains only
the input string;
A tape head that can read and write symbols and move around on the
tape; If the machine needs to store information, it may write it on the
tape. To read what it has written, it can move its head back over it.
The machine either outputs accept or reject by entering designated
accepting or rejecting states, or goes on forever, never halting.
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The Church-Turing Thesis Turing Machines

Turing Machines Versus Finite Automata

The differences between finite automata and Turing machines:

1. A Turing machine can both write on the tape and read from it.
2. The read-write head can move both to the left and to the right.
3. The tape is infinite.
4. The special states for rejecting and accepting take effect immediately.
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The Church-Turing Thesis Turing Machines

A Turing Machine M1

We introduce a Turing machine M1 for testing membership in the
language B = {w#w : w ∈ {0, 1}∗}. We want M1 to accept if its
input is a member of B and to reject otherwise.
To determine whether the input comprises two identical strings
separated by a # symbol, M1 zig-zags to the corresponding places on
the two sides of the # and determines whether they match. It does
this by placing marks on the tape to keep track of which places
correspond.

M1: On input string w :
1 Zig-zag across the tape to corresponding positions on either side of the

# symbol to check whether these positions contain the same symbol.
If they do not, or if no # is found, reject. Cross off symbols as they are
checked to keep track of which symbols correspond.

2 When all symbols to the left of the # have been crossed off, check for
any remaining symbols to the right of the #. If any symbols remain,
reject; otherwise, accept.
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The Church-Turing Thesis Turing Machines

A Computation of M1

The following figure contains several snapshots of M1’s tape while it
is computing on input 011000#011000:

The description of Turing machine M1 sketches the way it functions
but does not give all its details.

We can describe Turing machines formally by specifying each of the
parts of the definition of the Turing machine model.

This is almost never done because formal descriptions tend to be long.
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The Church-Turing Thesis Turing Machines

Turing Machines

The transition function δ takes the form: Q × Γ → Q × Γ× {L,R}.

δ(q, a) = (r , b, L) means when the machine is in a certain state q and
the head is over a tape square containing a symbol a, the machine
writes the symbol b replacing the a, goes to state r and the head
moves to the left or right after writing.

Definition (Turing Machine)

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept, qreject), where
Q,Σ, Γ are all finite sets and

1 Q is the set of states,

2 Σ is the input alphabet not containing the blank symbol ,

3 Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ,

4 δ : Q × Γ → Q × Γ× {L,R} is the transition function,

5 q0 ∈ Q is the start state,

6 qaccept ∈ Q is the accept state, and

7 qreject ∈ Q is the reject state, where qreject 6= qaccept.
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The Church-Turing Thesis Turing Machines

Computation of a Turing Machine

A Turing machine M = (Q,Σ, Γ, δ, q0, qaccept, qreject) computes as
follows.

Initially M receives its input w = w1w2 · · ·wn ∈ Σ∗ on the leftmost n
squares of the tape, and the rest of the tape is blank.
The head starts on the leftmost square of the tape. The first blank
appearing on the tape marks the end of the input.
Once M has started, the computation proceeds according to the rules
described by the transition function.
If M ever tries to move its head to the left off the left-hand end of the
tape, the head stays in the same place for that move.
The computation continues until it enters either the accept or reject
states at which point it halts. If neither occurs, M goes on forever.
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The Church-Turing Thesis Turing Machines

Configurations of a Turing Machine

A setting of the current state, the current tape contents, and the
current head location is called a configuration of the Turing machine.

For a state q and two strings u and v over the tape alphabet Γ we
write uqv for the configuration where:

the current state is q,
the current tape contents are uv ,
the current head location is the first symbol of v .

The tape contains only blanks following the last symbol of v .

Example: 1011q701111 represents the configuration
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The Church-Turing Thesis Turing Machines

Formalizing Computation

Configuration C1 yields configuration C2 if the Turing machine can
legally go from C1 to C2 in a single step:

Suppose that we have a, b and c in Γ, as well as u and v in Γ∗ and
states qi and qj .
In that case uaqibv and uqjacv are two configurations.
Say that

uaqibv yields uqjacv

if in the transition function δ(qi , b) = (qj , c , L). That handles the case
where the Turing machine moves leftward.
For a right move,

uaqibv yields uacqjv

if δ(qi , b) = (qj , c ,R).
When the head is at the left-hand end, the configuration qibv yields
qjcv if the transition is left moving; it yields cqjv for the right-moving
transition.
For the right-hand end, the configuration uaqi is equivalent to uaqi
because blanks follow the part represented in the configuration.
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The Church-Turing Thesis Turing Machines

Halting Configurations and Acceptance

The start configuration of M on input w is the configuration q0w ;
in the start state q0 with the head at the leftmost position.

In an accepting configuration the state of the configuration is
qaccept.

In a rejecting configuration the state of the configuration is qreject.

Accepting and rejecting configurations are halting configurations

and do not yield further configurations.

Because the machine is defined to halt when in the states qaccept and
qreject, the transition function could equivalently be expressed as
δ : Q ′×Γ → Q×Γ×{L,R}, where Q ′ is Q without qaccept and qreject.

A Turing machine M accepts input w if a sequence of configurations
C1,C2, . . . ,Ck exists, where
1. C1 is the start configuration of M on input w ,
2. each Ci yields Ci+1, and
3. Ck is an accepting configuration.
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The Church-Turing Thesis Turing Machines

Turing Recognizable Languages

The collection of strings that M accepts is the language of M, or
the language recognized by M, denoted L(M).

Definition (Turing-Recognizable Language)

A language is called Turing-recognizable (or recursively enumerable) if
some Turing machine recognizes it.

When we start a Turing machine on an input, three outcomes are
possible:

accept;
reject;
loop, where “loop” means that the machine does not halt.

A Turing machine M can fail to accept an input by entering the qreject
state and rejecting, or by looping.
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The Church-Turing Thesis Turing Machines

Turing Decidable Languages

Turing machines that halt on all inputs, i.e., that never loop, are
called deciders because they always make a decision to accept or
reject.

A decider that recognizes some language also is said to decide that
language.

Definition (Turing-Decidable Language)

A language is called Turing-decidable or, simply, decidable (or
recursive) if some Turing machine decides it.

Every decidable language is Turing-recognizable.

There are Turing recognizable but not Turing decidable languages, as
will be seen later.
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The Church-Turing Thesis Turing Machines

Higher-Level versus Formal Descriptions

As we did for finite and pushdown automata, we can formally describe
a particular Turing machine by specifying each of its seven parts.

Doing this is cumbersome for all but the tiniest Turing machines.

One usually gives only higher level descriptions because they are
precise enough and much easier to understand.

It is important to remember that every higher level description is
actually just shorthand for its formal counterpart.
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The Church-Turing Thesis Turing Machines

A Turing Machine M2: Informal Description

A Turing machine (TM) M2 that decides A = {02
n

: n ≥ 0}, the
language consisting of all strings of 0s whose length is a power of 2:

M2 : On input string w
1 Sweep left to right across the tape, crossing off every other 0.
2 If in stage 1 the tape contained a single 0, accept.
3 If in stage 1 the tape contained more than a single 0 and the number

of 0s was odd, reject.
4 Return the head to the left-hand end of the tape.
5 Go to stage 1.

Each iteration of stage 1 cuts the number of 0s in half.

As the machine sweeps across the tape in stage 1, it keeps track of
whether the number of 0s seen is even or odd.

If that number is odd and greater than 1, the original number of 0s in
the input could not have been a power of 2. The machine rejects.
If the number of 0s seen is 1, the original number must have been a
power of 2. So in this case the machine accepts.
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The Church-Turing Thesis Turing Machines

A Turing Machine M2: Formal Description

The formal description: M2 = (Q,Σ, Γ, δ, q1, qaccept, qreject):
Q = {q1, q2, q3, q4, q5, qaccept, qreject},
Σ = {0},
Γ = {0, x , },
δ is given with a state diagram:

The start, accept, and reject states are q1, qaccept and qreject.
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The Church-Turing Thesis Turing Machines

Remarks on the State Diagram

The label 0 → ,R appears on the transition from q1 to q2. This
label signifies that, when in state q1 with the head reading 0, the
machine goes to state q2, writes , and moves the head to the right.
In other words, δ(q1, 0) = (q2, ,R).

For clarity we use the shorthand 0 → R in the transition from q3 to
q4, to mean that the machine moves to the right when reading 0 in
state q3 but does not alter the tape, so δ(q3, 0) = (q4, 0,R).

This machine begins by writing a blank symbol over the leftmost 0 on
the tape so that it can find the left-hand end of the tape in Stage 4.
Normally a more suggestive symbol, such as #, is used for the
left-hand end delimiter, but using a blank here helped keep the tape
alphabet and state diagram small.

A sample run of this machine on input
0000, i.e., with starting configuration
q10000:
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The Church-Turing Thesis Turing Machines

Formal Description of M1

The machine M1 = (Q,Σ, Γ, δ, q1, qaccept, qreject), informally described
previously, for deciding the language B = {w#w : w ∈ {0, 1}∗}:

Q = {q1, . . . , q14, qaccept, qreject},
Σ = {0, 1,#}, and Γ = {0, 1,#, x , },
δ is given by

The start, accept, and reject states are q1, qaccept, and qreject.
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The Church-Turing Thesis Turing Machines

Some Remarks on M1

In the state diagram of TM M1, the label 0, 1 → R on the transition
going from q3 to itself means that the machine stays in q3 and moves
to the right when it reads a 0 or a 1 in state q3. It does not change
the symbol on the tape.

Stage 1 is implemented by states q1 through q6, and Stage 2 by the
remaining states.

To simplify the figure, we do not show the reject state or the
transitions going to the reject state. Those transitions occur implicitly
whenever a state lacks an outgoing transition for a particular symbol.
Thus, because in state q5 no outgoing arrow with a # is present, if a
# occurs under the head when the machine is in state q5, it goes to
state qreject. For completeness, we say that the head moves right in
each of these transitions to the reject state.
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The Church-Turing Thesis Turing Machines

A Turing Machine M3: Informal Description

The TM M3 decides C = {aibjck : i × j = k and i , j , k ≥ 1}.

M3: On input string w

1 Scan the input from left to right to determine whether it is a member
of a∗b∗c∗ and reject if it is not.

2 Return the head to the left-hand end of the tape.
3 Cross off an a and scan to the right until a b occurs. Shuttle between

the b’s and the c ’s, crossing off one of each until all b’s are gone. If all
c ’s have been crossed off and some b’s remain, reject.

4 Restore the crossed off b’s and repeat Stage 3 if there is another a to
cross off. If all a’s have been crossed off, determine whether all c ’s also
have been crossed off. If yes, accept; otherwise, reject.
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The Church-Turing Thesis Turing Machines

A Turing Machine M3: The Operation

In Stage 1 the machine operates like a finite automaton. The head
moves from left to right, keeping track by using its states to
determine whether the input is in the proper form.

In Stage 2 the TM finds the left-hand end of the input tape by
marking the leftmost symbol in some way when the machine starts
with its head on that symbol. Then the machine may scan left until it
finds the mark when it wants to reset its head to the left-hand end.

Another method takes advantage of the fact that, if the machine tries
to move its head beyond the left-hand end of the tape, it stays in the
same place. Thus, to detect the left-hand end, the machine can write
a special symbol over the current position, while recording the symbol
that it replaced in the control. Then, if an attempt to move the head
to the left still leaves the head over the special symbol, the head must
have been at the left-hand end. Before going farther, the machine
must be sure to restore the changed symbol to the original.
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The Church-Turing Thesis Turing Machines

A Turing Machine M4: Informal Description

TM M4 solves the element distinctness problem. It is given a list
of strings over {0, 1} separated by #s and its job is to accept if all
the strings are different, i.e., the language is

E = {#x1#x2# · · ·#xi : each xi ∈ {0, 1}∗ and
xi 6= xj , for all i 6= j}.

Machine M4 works by

first comparing x1 with x2 through xi ,
then by comparing x2 with x3 through xi ,
and so on.
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The Church-Turing Thesis Turing Machines

A Turing Machine M4: Informal Description (Cont’d)

M4: On input w
1 Place a mark on top of the leftmost tape symbol. If that symbol was a

blank, accept. If that symbol was a #, continue with the next stage.
Otherwise, reject.

2 Scan right to the next # and place a second mark on top of it. If no #
is encountered before a blank symbol, only x1 was present, so accept.

3 By zig-zagging, compare the two strings to the right of the marked #s.
If they are equal, reject.

4 Move the rightmost of the two marks to the next # symbol to the
right. If no # symbol is encountered before a blank symbol, move the
leftmost mark to the next # to its right and the rightmost mark to the
# after that. This time, if no # is available for the rightmost mark, all
the strings have been compared, so accept.

5 Go to Stage 3.
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The Church-Turing Thesis Turing Machines

The Technique of Marking Tape Symbols

This machine illustrates the technique of marking tape symbols.

In Stage 2, the machine places a mark above a symbol, # in this case.

In the actual implementation, the machine has two different symbols,

# and
•

#, in its tape alphabet.

Saying that the machine places a mark above a # means that the

machine writes the symbol
•

# at that location.

Removing the mark means that the machine writes the symbol
without the dot.

In general, we may want to place marks over various symbols on the
tape. To do so, we include versions of all these tape symbols with
dots in the tape alphabet.
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The Church-Turing Thesis Variants of Turing Machines

Subsection 2

Variants of Turing Machines
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The Church-Turing Thesis Variants of Turing Machines

Variants of Turing Machines and Robustness

There exist many alternative definitions of Turing machines, including
versions with multiple tapes or with nondeterminism.

They are called variants of the Turing machine model.

The original model and its reasonable variants all have the same
power, i.e., they recognize the same class of languages.

This invariance to certain changes in the definition is termed
robustness.

Both finite automata and pushdown automata are somewhat robust,
but Turing machines have an astonishing degree of robustness.

If we allow the Turing machine the ability to stay put, the transition
function becomes δ : Q × Γ → Q × Γ× {L,R,S}. This feature does
not allow Turing machines to recognize additional languages, because
we can convert any TM with the “stay put” feature to one that does
not have it. We do so by replacing each stay put transition with two
transitions, one to the right and the second back to the left.
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The Church-Turing Thesis Variants of Turing Machines

Multitape Turing Machines

A multitape Turing machine is like an ordinary Turing machine with
several tapes.

Each tape has its own head for reading and writing.

Initially the input appears on Tape 1, and the others start out blank.

The transition function is changed to allow for reading, writing, and
moving the heads on some or all of the tapes simultaneously.
Formally, it is δ : Q × Γk → Q × Γk × {L,R,S}k , where k is the
number of tapes. The expression

δ(qi , a1, . . . , ak) = (qj , b1, . . . , bk , L,R, . . . , L)

means that, if the machine is in state qi and heads 1 through k are
reading symbols a1, through ak , the machine goes to state qj , writes
symbols b1, through bk , and directs each head to move left or right,
or to stay put, as specified.

Multitape Turing machines appear to be more powerful than ordinary
Turing machines, but they are equivalent in power.
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The Church-Turing Thesis Variants of Turing Machines

Equivalence of Multitape and Single-Tape TMs

Theorem

Every multitape Turing machine has an equivalent single-tape Turing
machine.

We show how to convert a multitape TM M to an equivalent
single-tape TM S . We show how to simulate M with S . Say that M
has k tapes. Then S simulates the effect of k tapes by storing their
information on its single tape. It uses the new symbol # as a
delimiter to separate the contents of the different tapes.

In addition to the contents of these
tapes, S must keep track of the loca-
tions of the heads. It does so by writ-
ing a tape symbol with a dot above it
to mark the place where the head on
that tape would be:
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The Church-Turing Thesis Variants of Turing Machines

Simulation Algorithm

S : On input w = w1 . . .wn

1 First S puts its tape into the format that represents all k tapes of M .

The formatted tape contains #
•

w1w2 · · ·wn# •# •# · · ·#.
2 To simulate a single move, S scans its tape from the first # to the

(k + 1)st # in order to determine the symbols under the virtual heads.
Then S makes a second pass to update the tapes according to the way
that M ’s transition function dictates.

3 If at any point S moves one of the virtual heads to the right onto a #,
this action signifies that M has moved the corresponding head onto the
previously unread blank portion of that tape. So S writes a blank
symbol on this tape cell and shifts the tape contents, from this cell
until the rightmost #, one unit to the right. Then it continues the
simulation as before.

Corollary

A language is Turing-recognizable if and only if some multitape Turing
machine recognizes it.
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The Church-Turing Thesis Variants of Turing Machines

Nondeterministic Turing Machines

A nondeterministic Turing machine is defined in the expected way:
At any point in a computation the machine may proceed according to
several possibilities.

The transition function for a nondeterministic Turing machine has the
form δ : Q × Γ → P(Q × Γ× {L,R}).

The computation of a nondeterministic Turing machine is a tree
whose branches correspond to different possibilities for the machine.

If some branch of the computation leads to the accept state, the
machine accepts its input.

We show that nondeterminism does not affect the power of the
Turing machine model.
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The Church-Turing Thesis Variants of Turing Machines

Equivalence of Nondeterministic and Deterministic TMs

Theorem

Every nondeterministic Turing machine has an equivalent deterministic
Turing machine.

We can simulate any nondeterministic TM N with a deterministic TM
D. D tries all possible branches of N’s nondeterministic computation.
If D ever finds the accept state, D accepts. Otherwise, D’s simulation
will not terminate.

We view N’s computation on an input w as a tree. Each branch of
the tree represents one of the branches of the nondeterminism. Each
node of the tree is a configuration of N. The root of the tree is the
start configuration. The TM D searches this tree for an accepting
configuration. Conducting this search carefully is crucial lest D fail to
visit the entire tree. So D is designed to explore the tree by using
breadth first search.
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The Church-Turing Thesis Variants of Turing Machines

Configuration of D

The simulating deterministic TM D has three tapes. This
arrangement is equivalent to having a single tape. The machine D

uses its three tapes in a particular way:

Tape 1 always contains the input string and is never altered.
Tape 2 maintains a copy of N ’s tape on some branch of its
nondeterministic computation.
Tape 3 keeps track of D’s location in N ’s nondeterministic
computation tree.
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The Church-Turing Thesis Variants of Turing Machines

Description of the Address Tape

Every node in the tree can have at most b children, where b is the size
of the largest set of possible choices given by N’s transition function.

To every node in the tree we assign an address that is a string over the
alphabet Σb = {1, 2, . . . , b}. E.g., we assign the address 231 to the
node we arrive at by starting at the root, going to its 2nd child, going
to that node’s 3rd child, and finally going to that node’s 1st child.

Each symbol in the string tells us which choice to make next when
simulating a step in one branch in N’s nondeterministic computation.

Sometimes a symbol may not correspond to any choice if too few
choices are available for a configuration. In that case the address is
invalid and does not correspond to any node.

Tape 3 contains a string over Σb. It represents the branch of N’s
computation from the root to the node addressed by that string,
unless the address is invalid.

The empty string is the address of the root of the tree.
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The Church-Turing Thesis Variants of Turing Machines

Description of D

D: On input w
1 Initially Tape 1 contains the input w , and Tapes 2 and 3 are empty.
2 Copy Tape 1 to Tape 2.
3 Use Tape 2 to simulate N with input w on one branch of its

nondeterministic computation. Before each step of N consult the next
symbol on Tape 3 to determine which choice to make among those
allowed by N ’s transition function.

If no more symbols remain on Tape 3 or if this nondeterministic choice

is invalid, abort this branch by going to Stage 4.

Also go to Stage 4 if a rejecting configuration is encountered.

If an accepting configuration is encountered, accept the input.

4 Replace the string on Tape 3 with the lexicographically next string.
Simulate the next branch of N ’s computation by going to Stage 2.
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The Church-Turing Thesis Variants of Turing Machines

Turing Recognizability and Turing Decidability

Corollary

A language is Turing-recognizable if and only if some nondeterministic
Turing machine recognizes it.

Any deterministic TM is automatically a nondeterministic TM, and so
one direction of this theorem follows immediately.
The other direction follows from the theorem.

We can modify the proof so that, if N always halts on all branches of
its computation, D will also always halt.

We call a nondeterministic Turing machine a decider if all branches
halt on all inputs.

Corollary

A language is decidable if and only if some nondeterministic Turing
machine decides it.
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The Church-Turing Thesis Variants of Turing Machines

Enumerators

Some people use the term recursively enumerable language for
Turing recognizable language.

That term originates from a type of Turing machine variant called an
enumerator, which is a Turing machine with an attached printer.
The Turing machine can use that printer as an output device to print
strings. Every time the Turing machine wants to add a string to the
output list, it sends the string to the printer:

An enumerator E starts with a
blank input tape.

If the enumerator does not halt,
it may print an infinite list of
strings.

The language enumerated by E is the collection of all the strings
that it eventually prints out.
E may generate the strings of the language in any order, possibly with
repetitions.
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The Church-Turing Thesis Variants of Turing Machines

Enumerators as Recognizers

Theorem

A language is Turing-recognizable if and only if some enumerator
enumerates it.

Let E be an enumerator that enumerates a language A. A TM M

recognizing A works as follows:
M: On input w

1 Run E . Every time that E outputs a string, compare it with w .
2 If w ever appears in the output of E , accept.

Clearly, M accepts those strings that appear on E ’s list.

If TM M recognizes a language A, the following E enumerates A. Say
that s1, s2, s3, . . . is a list of all possible strings in Σ∗.
E : Ignore the input.

1 Repeat the following for i = 1, 2, 3, . . ..
2 Run M for i steps on each input, s1, s2, . . . , si .
3 If any computations accept, print out the corresponding sj .

If M accepts a string s, s will appear on the list generated by E .
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The Church-Turing Thesis Variants of Turing Machines

Equivalence of Computational Models: Algorithms

Many other models of general purpose computation have been
proposed: All share the essential feature of Turing machines, i.e.,
unrestricted access to unlimited memory.

They turn out to be equivalent in power, so long as they satisfy
reasonable requirements, e.g., the ability to perform only a finite
amount of work in a single step.

A similar phenomenon occurs with programming languages: Many,
such as Pascal and LISP, look quite different from one another in
style and structure. But every algorithm that can be programmed in
one of them can be programmed in all others.

Equivalence of computational models has the same root: Any two
computational models that satisfy certain reasonable requirements
can simulate one another and hence are equivalent in power.

Even though we can imagine many different computational models,
the class of algorithms that they describe remains the same.
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Subsection 3

The Definition of Algorithm
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Algorithms Informally

Informally speaking, an algorithm is a collection of simple instructions
for carrying out some task.

Algorithms sometimes are called procedures or recipes.

The mathematical literature contains descriptions of algorithms for a
multitude of tasks, such as finding prime numbers and greatest
common divisors.

Even though algorithms have had a long history in mathematics, the
notion of algorithm itself was not defined precisely until the twentieth
century.

Before that, mathematicians had an intuitive notion of what
algorithms were, sufficient for describing them, but insufficient for
gaining a deeper understanding of algorithms.
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Hilbert’s Tenth Problem

In 1900, David Hilbert identified twenty-three challenging
mathematical problems for the coming century.

The tenth problem on his list concerned algorithms.

A polynomial is a sum of terms, where each term is a product of
certain variables and a constant called a coefficient. For example,
6 · x · x · x · y · z · z = 6x3yz2 is a term with coefficient 6, and
6x3yz2 + 3xy2 − x3 − 10 is a polynomial with four terms.

For this discussion, we consider only integer coefficients.

A root of a polynomial is an assignment of values to its variables so
that the value of the polynomial is 0.

A root is integral if all the variables are assigned integer values.

Hilbert’s tenth problem was to devise an algorithm that tests
whether a polynomial has an integral root.

We now know no algorithm exists for this task; it is algorithmically
unsolvable. Proving that no algorithm exists requires having a clear
definition of algorithm.
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The Church-Turing Thesis

The definition came in 1936 by Alonzo Church and Alan Turing.
Church used a notational system called the λ-calculus to define
algorithms.
Turing did it with his “machines”.
These two definitions were shown to be equivalent.

This connection between the informal notion of algorithm and the
precise definition has come to be called the Church-Turing thesis.

Intuitive notion
of algorithms

equals
Turing machine
algorithms.

In 1970, Yuri Matiyasevich, building on work of Martin Davis, Hilary
Putnam, and Julia Robinson, showed that no algorithm exists for
testing whether a polynomial has integral roots.

In the next set of slides we develop the techniques for proving that
problems are algorithmically unsolvable.
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Single-Variable Polynomials

Let D = {p : p is a polynomial with an integral root}.

Hilbert’s tenth problem asks whether the set D is decidable.
The answer is negative.

In contrast we can show that D is Turing-recognizable.

We first consider a simpler problem, an analog of Hilbert’s tenth
problem for polynomials that have only a single variable, such as
4x3 − 2x2 + x − 7.

D1 = {p : p is a polynomial over x with an integral root}.

Here is a TM M1 that recognizes D1:

M1: The input is a polynomial p over the variable x .
1 Evaluate p with x set successively to 0, 1,−1, 2,−2, 3,−3, . . . If at any

point the polynomial evaluates to 0, accept.

If p has an integral root, M1 eventually will find it and accept. If p
does not have an integral root, M1 will run forever.
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Comparison with Multi-Variable Polynomials

For the multivariable case, we can present a similar TM M that
recognizes D. M goes through all possible settings of its variables to
integral values.

Both M1 and M are recognizers but not deciders.

We can convert M1 to be a decider for D1: We can calculate bounds
within which the roots of a single variable polynomial must lie and
restrict the search to these bounds.

We can show that the roots of such a polynomial must lie between the

values ±k
cmax

c1
, where k is the number of terms in the polynomial, cmax

is the coefficient with largest absolute value, and c1 is the coefficient of
the highest order term.
If a root is not found within these bounds, the machine rejects.

Matiyasevich’s theorem shows that calculating such bounds for
multi-variable polynomials is impossible.
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Turing Machines as Algorithms

Even though we continue to speak of Turing machines, the real focus
will be on algorithms.

Turing machines serve as a precise model for defining algorithms.

To standardize the way we describe Turing machine algorithms, we
may adopt one of three possibilities:

The first is the formal description that spells out in full the Turing
machine’s states, transition function, and so on. It is the lowest, most
detailed, level of description.
The second is a higher level of description, called the implementation
description, in which one describes the way that the Turing machine
moves its head and the way that it stores data on its tape. At this level
we do not give details, such as states or the transition function.
Third is the high-level description, wherein we use English prose to
describe an algorithm, ignoring the implementation details. At this level
we do not need to mention how the machine manages its tape or head.

We adopt the high-level description from now on.
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Encoding Inputs in Informal Descriptions

The input to a Turing machine is always a string. An object other
than a string must first be represented as a string. A Turing machine
may be programmed to decode the representation so that it can be
interpreted in the way we intend.

Our notation for the encoding of an object O into its representation
as a string is 〈O〉. If we have several objects O1,O2, . . . ,Ok , we
denote their encoding into a single string by 〈O1,O2, . . . ,Ok〉.

The encoding itself can be done in many reasonable ways. It does not
matter which one we pick because a Turing machine can always
translate one such encoding into another.
For descriptions, we break the algorithm into stages, each usually
involving many individual steps of the Turing machine’s computation.

The first line of the algorithm describes the input to the machine.
If the input description is simply w , the input is taken to be a string.
If the input is an encoding 〈A〉 of an object A, the Turing machine first
implicitly tests whether the encoding is valid and rejects if it is not.
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Connected Graphs

Let A be the language consisting of all strings representing undirected
graphs that are connected.

A graph is connected if every node can be reached from every other
node by traveling along the edges of the graph.

We write

A = {〈G 〉 : G is a connected undirected graph}.

The following is a high-level description of a TM M that decides A.

M: On input 〈G 〉, the encoding of a graph G ,
1 Select the first node of G and mark it.
2 Repeat the following stage until no new nodes are marked:

3 For each node in G , mark it if it is attached by an edge to a node that

is already marked.

4 Scan all the nodes of G to determine whether they all are marked. If
they are, accept; otherwise, reject.
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Implementation-Level Details: An Encoding

〈G 〉 encodes the graph G as a string. It may be a list of the nodes of
G followed by a list of the edges of G .

Each node is a decimal number.
Each edge is the pair of decimal numbers that represent the nodes at
the two endpoints of the edge.
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Implementation-Level Details: Verifying Validity of Input

When M receives the input 〈G 〉, it first checks to determine whether
the input is the proper encoding of some graph: M scans the tape to
be sure that there are two lists and that they are in the proper form.

The first list should be a list of distinct decimal numbers.
The second should be a list of pairs of decimal numbers.

Then M checks several things.

First, the node list should contain no repetitions.
Second, every node appearing on the edge list should also appear on
the node list.

If the input passes these checks, it is the encoding of some graph G .
This verification completes the input check, and M goes on to Stage
1.
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Implementation-Level Details: Algorithm

For Stage 1, M marks the first node with a dot on the leftmost digit.

For Stage 2, M scans the list of nodes to find an undotted node n1
and flags it by marking it differently - say, by underlining the first
symbol.
Then M scans the list again to find a dotted node n2 and underlines
it, too. Now M scans the list of edges. For each edge, M tests
whether the two underlined nodes n1 and n2 are the ones appearing in
that edge.
If they are, M dots n1, removes the underlines, and goes on from the
beginning of Stage 2.
If they are not, M checks the next edge on the list. If there are no
more edges, {n1, n2} is not an edge of G .
Then M moves the underline on n2 to the next dotted node and now
calls this node n2.
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Implementation-Level Details: Algorithm (Cont’d)

Continuing with Stage 2:
It repeats the steps in this paragraph to check, as before, whether the
new pair {n1, n2} is an edge. If there are no more dotted nodes, n1 is
not attached to any dotted nodes.
Then M sets the underlines so that n1 is the next undotted node and
n2 is the first dotted node and repeats the steps in this paragraph. If
there are no more undotted nodes, M has not been able to find any
new nodes to dot, so it moves on to Stage 4.

For Stage 4, M scans the list of nodes to determine whether all are
dotted.
If they are, it enters the accept state.
Otherwise it enters the reject state.
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